
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:9, 2020

311

Deep Learning Based, End-to-End Metaphor
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Convolutional Neural Networks
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Abstract—This paper presents and benchmarks a number of
end-to-end Deep Learning based models for metaphor detection in
Greek. We combine Convolutional Neural Networks and Recurrent
Neural Networks with representation learning to bear on the metaphor
detection problem for the Greek language. The models presented
achieve exceptional accuracy scores, significantly improving the
previous state-of-the-art results, which had already achieved accuracy
0.82. Furthermore, no special preprocessing, feature engineering or
linguistic knowledge is used in this work. The methods presented
achieve accuracy of 0.92 and F-score 0.92 with Convolutional
Neural Networks (CNNs) and bidirectional Long Short Term Memory
networks (LSTMs). Comparable results of 0.91 accuracy and 0.91
F-score are also achieved with bidirectional Gated Recurrent Units
(GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The
models are trained and evaluated only on the basis of training tuples,
the related sentences and their labels. The outcome is a state-of-the-art
collection of metaphor detection models, trained on limited labelled
resources, which can be extended to other languages and similar
tasks.

Keywords—Metaphor detection, deep learning, representation
learning, embeddings.

I. INTRODUCTION

METAPHOR as a figure of speech has a widespread

presence in any form of communication, either oral or

written. According to Steen [1] data analysis suggests that, on

average, one in every seven and a half lexical units in a corpus

is related to metaphor. However, it is difficult to clearly define

the boundaries that separate metaphorical from literal uses, as

well as metaphor from other figures of speech.

The difficulty of clearly establishing a theoretical

background for metaphor justifies the variety of NLP systems

that aim at automatically distinguishing between metaphorical

and literal meanings of a word or a phrase. This difficulty is

further exacerbated if we take into account the limitations of

Greek as regards resources and tools for metaphor detection.

Thus, we can conclude that the development of neural

language models is necessary for the automatic differentiation

between the literal and the metaphorical meaning of phrases

that are part of an authentic and non-annotated Greek corpus.

For these reasons, our attempt to identify metaphors here is

based on the principles of distributional semantics which focus

on determining the relations of a word with its linguistic

context and grouping semantic similarities between linguistic
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items based on distributional properties rather than connections

of a certain term with its related concepts. Distributional

semantics have been paramount in shifting research interest

towards neural language models, which can attribute hidden

statistical characteristics of distributed representations of

word sequences in natural language. Therefore, a serious

problem such as the automatic detection of metaphors and

their differentiation from literal uses can be dealt with the

development of neural language models.

II. PREVIOUS WORK

The computational identification and interpretation of

metaphors have been based on a variety of computational tools

such as statistical models [2], word taxonomies [3], clustering

[4], logistic regression [5], [6] or generative statistical models

such as Latent Dirichlet Allocation (LDA) [7]. As has

happened with many linguistic phenomena, computational

approaches to metaphor are now based on neural models and

take advantage of the benefits of representation learning [8],

and more specifically distributed representations, also known

as word embeddings [9], [10]. The neural models for metaphor

detection include Long Short Term Memory (LSTMs) and

Conditional Random Fields (CRFs) [11], which perform better

with the contribution of linguistic features like the Wordnet,

POS tags or clustering.

The omnipresence of metaphor in all types of Greek texts

initially guided our research interest to an alternative approach

to automatic metaphor detection, following the principles

of distributional semantics and without the requirement of

access to linguistic resources and tools or expensive and

time-consuming manual annotation. This approach has been

based on neural language models and has taken into account

the context of each term in order to identify its function and

uses without explicitly employing any connections between a

word and its related concepts. Neural language models offer

the opportunity to a language which is poor in linguistic

resources and tools to overpass the problem of calculating

the semantic relevance between phrases. By taking advantage

of the benefits of distributional semantics we substituted the

semantic comparison of terms with a numerical comparison

of their distributional representation in vector space. By this

comparison we were able to identify the literal or metaphorical

function of words in a specific context. This first approach

of metaphor detection in Greek texts is our baseline for

this paper. Specifically, we aim at improving the procedure
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of metaphor detection and for this reason we take into

account state-of-the-art Deep Learning based models such

as Convolutional and Recurrent Neural Networks in order

to achieve the prediction of metaphoricity for each word in

running text.

III. DEEP LEARNING FOR TEXT CLASSIFICATION

Recent advances in Neural Networks and Transfer

learning have been successfully applied to Natural Language

Processing. More specifically, Convolutional Neural Networks

(CNNs, ConvNets) and Recurrent Neural Network (RNNs)

architectures have been applied to text classification problems,

such as Named Entity Recognition, Part-of-Speech tagging,

Semantic Role Labelling etc. [12], [13], [14], [15]

Training models with RNNs and CNNs from scratch

typically requires a vast amount of labelled data, which is

generally a time-consuming and expensive process. We tackle

this by using transfer learning, and more specifically by using

pre-trained word embeddings, and by allowing the model

to fine-tune the first layer of the network (the embedding

layer) as part of the training process. The term embeddings
refers to compact, continuous representations of words in a

D-dimensional space and has emerged from representation

learning [8]. Based on this compact representation, we can

measure the semantic similarity of words by using geometrical

properties of the word vector representation, typically the

cosine distance between word vectors.

Continuing on the work of [16], we use fastText [17]

embeddings trained in the Corpus of Greek Texts [18].

FastText1, as described in [17] is an efficient library for

representation learning and text classification. Similar to

word2vec [19], it produces word embeddings by training a

neural language model that is trying to predict words, given a

certain context (CBOW architecture) or context given words

(SkipGram architecture). As in word2vec, fastText operates as

a neural language model. The key difference with fastText,

however, is that it is taking into account morphology in the

form of ngram representations. The representation of a word

is calculated as the sum of the embeddings of its ngrams. The

ability of fastText to capture morphological information in the

produced representations seems to be more efficient, compared

to other models in downstream tasks such as text classification.

IV. DATA AND METHODOLOGY

We trained fastText embeddings on the Corpus of Greek

Texts [18], for dimensions ranging from D = 50 to D = 500,

in steps of 50. The Corpus of Greek Texts consists of

approximately 28 million words, a reasonable corpus size

to produce meaningful embeddings, able to capture semantic

similarity.

FastText is using sub-word information to learn distributed

word representation and empirically performs better in

downstream NLP tasks compared to word2vec [19] or Glo.Ve.

[20]. It also naturally tackles the problem of spelling errors,

as word-level embeddings are essentially averages of n-gram

1fastText, https://fasttext.cc/

level embeddings, while words with simple spelling errors still

produce very similar embeddings to the intended word.2

The metaphor training set consists of 1145 labelled

sentences, 563 metaphoric and 582 literal ones. The median

length of words in the training set is 12, the minimum number

of words is 2 and the maximum is 225.

To customize the training set we distinguished between

literal and metaphorical phrases according to the Metaphor

Identification Procedure (MIP) as suggested by the Pragglejaz

Group [21]. Based on MIP, we created two lists of phrases,

one with literal and one with metaphorical ones, from the

Corpus of Greek Texts. Both lists had the same verbs as

a kernel but each could take various objects as predicates.

Our training set included a few cases of intransitive verbs

but did not include collocations, auxiliary, linking, modal

or delexical verbs. Furthermore, the phrases of our training

corpus did not have any metaphor markers, which could signal

the metaphorical use of a term. Finally, it must be noted that

in many cases the metaphorical interpretation is based on the

comparison between a human activity and the implementation

of the same activity by a non-human.

In [16] the classification of phrases into literal and

metaphorical is performed by locating the verb in the sentence

and averaging the embeddings of a small, fixed-size window

centred on the verb, to produce a fixed size input vector

for the machine learning algorithm. The averaged context

representation is then fed to a Support Vector Machine, which

results to 0.83 classification accuracy. The idea of averaging

context embeddings in small window sizes comes from [19]

and the window size is empirically determined.

Here, we extend the fixed-size contextual representation by

passing the entire sentence to the classifier. The classifier then

models the probability of a sentence being a metaphor, e.g.

p(label = metaphor|sentence) and we accordingly optimize

the model.

Both CNNs and RNNs are utilizing the learned (or

fine-tuned) representations of all words in a sentence. This

is done by the convolution operator in CNNs and the

hidden states in LSTM and GRU reccurent neural networks.

Eventually, in both cases, a representation of all words in the

sentence is passed to a fully connected layer of the classifier.

This improves classification quality, whereas in the simple

window-based averaging method contextual information is

distorted for context size larger than 3 or 4 words.

We evaluate all our models with 10-fold cross validation

and we report average accuracy and f1-score.

A. CNN Architecture

The CNN architecture is based on the work of [12]. More

specifically, we use kernel heights with sizes k = {3, 4, 5}
and out channel size of 32. The convolution channels are then

max-pooled, concatenated and passed into a fully connected

layer. The network is regularized to prevent overfitting by

using dropout [22], e.g. dropping units from the network to

prevent overfitting, with dropout probability 0.5.

2fastText embeddings for Greek can be downloaded at http://sek.edu.gr
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Fig. 1 CNN architecture

B. RNN Architecture

In our experiments we tested Gated Recurrent Units

(GRUs, [23]) and Long Short Term Memory architectures

(LSTMs, [24]), using both unidirectional and bidirectional [25]

architectures.

Bidirectional recurrent neural networks are essentially

trained on the same sequence of data in forward and backward

directions simultaneously and so the output state at every step

encodes information about the past (forward direction) and the

future (backward direction).

The architecture is exactly the same in both GRU and LSTM

configurations, with the recurrence mechanism as the only

difference. We feed a fixed size, zero padded sentence into

the network, followed by the recurrence unit. We then apply

1-max-pooling3 over the intermediate hidden layers, followed

by a fully connected layer of 100 units and finally the output

sigmoid unit.

C. CRNN

Finally, we also evaluated a combination of Convolutional

Neural Nets and Recurrent Neural Nets, and more specifically

the architecture described in [27]. Here, the architecture

utilises recurrent structure to capture contextual information as

far as possible when learning word representations, followed

by a max-pooling layer. Essentially, max-pooling determines

3In our experiments we also tried average pooling, with good but inferior
results compared to max-pooling, a result consistent with [26]

Fig. 2 LSTM architecture

the most significant words in the underlying text classification

problem. Bi-directional architectures consistently outperform

uni-directional so we omit results. This is in agreement with

[28].

All network architectures presented in this paper are

optimised by the Adam optimizer [29] under the Maximum

Likelihood principle and Negative Log Likelihood as loss

function. The implementation is based in PyTorch [30]. The

results of the experiments are summarized in table 1

V. DISCUSSION

We presented a collection of state-of-the art metaphor

detection models achieving accuracy higher than 90% for the

Greek language. This extends the work of [16] and, to the best
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Fig. 3 RCNN architecture

of our knowledge, sets a new state-of-the-art for metaphor

detection in Greek, dealing simultaneously with the lack of

linguistic resources for the language. We aim at continuing our

TABLE 1
EXPERIMENT RESULTS, WITH MODEL ARCHITECTURE AND FASTTEXT

EMBEDDING DIMENTIONALITY

Results
Model Accuracy F1-score
Florou et.al. 2018 0.83 0.83
CNN (D = 500) 0.90 0.89
CNN, fine-tuning (D = 150) 0.92 0.92
b-LSTM (D = 350) 0.90 0.91
b-LSTM, fine-tuning (D = 200) 0.92 0.92
b-GRU, fine-tuning (D = 450) 0.91 0.91
b-GRU (D = 200) 0.86 0.83
CRNN, fine-tuning (D = 450) 0.91 0.91
CRNN, (D = 450) 0.90 0.91

work by exploring the performance of contextual embeddings

such as ELMO [31] and BERT [32]. Another recent promising

direction, especially for small datasets, is Graph Neural

Networks (GNNs) [33], [34]. In this specific variation of

graph neural networks, the entire training set is represented

as a graph G = (V,E) and the task of the model is node

representation and classification, even with potentially few

training examples. This is achieved by exploiting the graph

structure and the representation of adjacent nodes in the graph.

Both CNNs and bi-directional LSTMs with fine-tuning

achieve accuracy higher than 90%. If we disable fine-tuning,

classification accuracy is still high, although overall

fine-tuning appears to consistently outperform non-fine-tuning

configurations, which is also consistent with the results

presented in [28].

There are several factors that can explain the performance

achieved with neural networks. First, the full sentence is

passed into the classifier and thus the model can benefit

by exploiting potential long-term semantic dependencies.

These dependencies are captured by the LSTM cells and the

convolutional operators. Additionally, in the case of LSTMs

and GRUs, bidirectional architectures appear to consistently

outperform unidirectional architectures.

Finally, transfer learning, in the form of pre-trained

embeddings such as fastText is extremely useful in the sense

that the learned representations capture semantic properties

of words in an unsupervised learning fashion; we also

allow fine-tuning, which is proven to further enhance the

accuracy of models [35]. Fast-text’s ability to implicitly

utilize morphological structure in the form of sub-word

representations is also proven to help the overall downstream

architecture to significantly improve. We conjecture that

this property holds in languages with a rich morphological

structure like Greek.

Keeping in mind that it is possible to distinguish between

different kinds of metaphor and even between levels of

metaphoricity of a term in a sentence, our effort is solely aimed

at distinguishing between the literal and the metaphorical

use of a term in a specific linguistic context. In this regard,

we have not checked at all whether neural language models

have the appropriate properties in order to discriminate

pure metaphor from other kinds of figurative speech such

as personification, metonymy, synecdoche etc. In addition,

our approach to metaphor detection is not able to classify

metaphorical phrases into categories like direct and indirect,
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or implied and extended. Of course, such an endeavour

constitutes a particularly interesting and demanding research

challenge, even though the main goal of our specific approach

is metaphor detection and its discrimination from literal cases

by the use of machine learning algorithms.
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