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 
Abstract—Estimating the 6D pose of objects is a core step for 

robot bin-picking tasks. The problem is that various objects are usually 
randomly stacked with heavy occlusion in real applications. In this 
work, we propose a method to regress 6D poses by predicting three 
points for each object in the 3D point cloud through deep learning. To 
solve the ambiguity of symmetric pose, we propose a labeling method 
to help the network converge better. Based on the predicted pose, an 
iterative method is employed for pose optimization. In real-world 
experiments, our method outperforms the classical approach in both 
precision and recall. 

 
Keywords—Pose estimation, deep learning, point cloud, 

bin-picking, 3D computer vision.  

I. INTRODUCTION 

IN-picking is a crucial step in industrial automation. Since 
the demands of flexible manufacturing in industry 4.0, 

pose recognition by RGB/RGB-D images and point clouds has 
become a hot research field. In the real industrial scene, there is 
usually a pile of parts stacked randomly in a bin. The major 
problem is that the parts are from multiple categories and 
stacked with heavy occlusion. In this paper, we propose a 
method that can simultaneously detect mechanical parts, 
recognize their categories, and estimate their 6D poses from 
point clouds for the real bin-picking tasks. 

Classical methods first extract features from scenes and treat 
pose estimation as a feature matching problem [1]. However, 
the handcrafted features are sensitive to the occlusion in bin- 
picking tasks. Therefore, recent works [6]-[9] use deep learning 
and deploy end-to-end solutions by considering the problem as 
a combination of object detection and pose estimation. These 
works usually use color and texture information from RGB/ 
RGB-D images, but mechanical parts often do not have these 
features. Dong et al. [9] proposed PPR-Net for point cloud 
inputs and achieved great results on Siléane Dataset [10] and 
take real-world experiments on the same objects of the dataset. 
But it was not applied on actual mechanical parts. 

In this work, we propose a deep network that performs object 
detection and coarse pose registration simultaneously and 
refines the pose by Iterative Closest Point (ICP) [2]. The 
intuition of the method is simple: if our network has the ability 
to predict (or vote) a 3D location (like the object center and 
bounding-box corners) aligned on the same object by 
point-wise feature, we can get rough poses by predicting three 
locations of an object and matching them with the model in the 
same category. Then we could project the model box according 
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to the coarse pose and select local points by the box. Finally, we 
sample the model points by occlusion-aware sampling and 
deploy ICP between the sampled model and the selected points 
to get precise 6D poses. 
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Fig. 1 Pose estimation using our method: (a) Real bin-picking scene 
and its corresponding point cloud. (b) The coarse pose registration 

(left) and final pose prediction (right) 
 

In summary, our main contributions are as follows: (1) We 
propose a labeling method to regress the poses of symmetric 
objects through learning. (2) We propose a point-cloud based 
neural network which can detect objects and output the 
information of 6D poses at the same time. (3) We employ a 
clustering algorithm to predict poses and propose an iterative 
method based on ICP. 

II. PREVIOUS WORK 

Classical 6D pose estimation approaches usually take both 
model and scene point clouds as input and output a transform 
based on the matching of handcrafted features. Papazov et al. 
[3] use an efficient RANSAC-like sampling strategy for robust 
pose registration. Drost et al. [1] proposed Point Pair Feature 
(PPF) based method to regress poses by descriptor voting 
scheme. PPF has been widely used since then. Abbeloos et al. 
[4] and Vidal et al. [5] further improved it for better 
performance. These methods have achieved success in special 
bin-picking tasks, but their performance will decrease due to 
occlusion and the variety of objects. Learning-based methods 
developed rapidly in recent years. Xiang et al. [6] used a 
convolutional network to estimate poses through RGB images. 

Hesheng Wang, Haoyu Wang, Chungang Zhuang 

Deep Learning Based 6D Pose Estimation for 
Bin-Picking Using 3D Point Clouds 

B 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:15, No:1, 2021

37

 

 

Wang et al. [7] estimated 6D poses by an architecture 
(DenseFusion) which fuses the features of RGB images and 
corresponding point clouds. He et al. [8] achieved SOTA 
results through keypoints voting based on DenseFusion. These 
works gained great performance on the open dataset, but these 

approaches use RGB information and they were not designed 
for industrial scenes. Dong et al. [9] designed PPR-Net for 
industrial scenes with only 3D point clouds, which took 
experiments on both open dataset [10] and real tasks. 

 

 

Fig. 2 Pipeline of our method for 6D pose estimation 
 

Our work is based on the approaches of [12], [13], which 
predict 3D locations by learning-based Hough Voting. We 
extend the idea from instance segmentation to pose estimation. 
The proposed method takes experiments on real-world scenes 
and outperforms the classical approach which has been widely 
applied. 

III. THE PROPOSED METHOD 

In this paper, we propose a general framework for detecting 
objects and estimating 6D poses on industrial bin-picking 
applications. This framework takes 3D point cloud as input and 
output 6D poses of workpieces. 

 

 

Fig. 3 Objects and corresponding models 
 

For bin-picking tasks in industry, we usually have models of 
target objects. Hence, we prepare the virtual dataset by 
simulating stacks of these models. After annotation of the 
dataset, we introduce an architecture to predict coarse pose 
through each point votes three points on the object to which it 
belongs and grouping the votes. According to the coarse pose, 

we sample the model to make it more similar to the target point 
cloud in the scene which improves the accuracy of the final 
ICP. The pipeline of our method is shown in Fig. 2. 

Section III A shows the process of generating and annotating 
the virtual dataset. Section III B introduces the predicting 
network. Section III C presents details of the 6D pose 
refinement after network outputs. 

A. Pose Annotation on Symmetric Objects 

The procedure of creating the virtual dataset is similar to 
[10]. The 3D models were first reconstructed by 3D scanning 
from multiple views. Fig. 3 shows the metal parts and 
corresponding models. Then the synthetic dataset could be 
obtained by simulation with these models. The domain 
randomization on simulation [11] has proven its capacity on 
sim-to-real transfer. Hence, we also considered these aspects 
like using random numbers of objects. 

 

 

Fig. 4 The annotation method for symmetrical objects 
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As Fig. 3 shows, these objects all have symmetric properties 
on at least two surfaces, which means direct labeling of rotation 
often confuses the predicting network and does not gain good 

training results. To solve this problem, we propose an 
annotation method considering symmetry and ambiguous 
poses. 

 

 

Fig. 5 The architecture of our neural network 
 

The core idea of this method is to mark multiple ambiguous 
positions of the same object at the same time, then keep only 
one annotation according to certain rules, and finally, the 
network understands these rules through learning. As shown in 
Fig. 4, we mark three points for each object, represents the 

center transform, and the control points ( 1c and 1
2c  or 2

2c ) 

together with o constitute a local coordinate system to 

represent the rotation. For ambiguity points 1
2c  and 2

2c , we first 

calculate their distance: 
 

 2 1
2 2( , , )Tx y cz c     (1) 

 

Then the main axis is determined by { , , }argmax x y z   . 

The point with a smaller coordinate value on the main axis will 
be reserved as 2c . 

B. Object Detection Network 

In Fig. 5, we first voxelized the point clouds and feed them 
into the feature extraction network. We employ 3D U-net [14], 
a deep network which has the impressive ability to extract 
multi-scale feature information from 3D voxels as our 
backbone. Then it obtains the point-wise features F of size
N K by recover points from voxels. After that, we construct 
three branches with shared multi-layer perceptron (MLP) to 
consume F and predict semantic label iS , center offset iO , 

control points offsets 1iC  and 2iC  for each point ip . 

1) Semantic Segmentation Branch 

As there are multiple types of objects in the same scene, it is 
necessary to classify the category iS  for each point. We feed 

features F through an MLP and produce semantic scores SC  

of size N C . ,i jSC indicates the probability that ip  belongs 

to class j  and iS  is obtained by (2): 
 

  , , 1, 2,...,i i jS argmax SC j C   (2) 

The semantic loss semL  is the cross-entropy loss between 

SC  and ground truth labels. 

2) Center Offset Branch 

The center offset branch is similar to [13]. It consumes F as 
input and predicts offset vectors O  of size 3N  , where iO  

represents the spatial vector from pi  to its object center. The 

loss function _o regL  and _o dirL  are the same with VoteNet [12] 

and PointGroup [13]: 
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m is a binary mask. 1im   denotes ip  belongs to an object 

and 0im   otherwise. io  is the ground truth of center point and 

it has been obtained at III-A. _ o regL  is the 1L  loss of vectors. 

_o dirL  is irrelevant to the vector norm and would punish the 

network for biases of vector directions. The loss of this branch 
is defined as: 
 

 _ _o o reg o dirL L L   (5) 

3) Control Points Offset Branch 

This part is similar to the center offset branch because they 
are both solving the problem of predicting positions. The 
difference is that this branch takes two MLP to predict control 
points respectively. The evaluation function is defined as: 

 

 1_ 1_ 2 _ 2 _c c reg c dir c reg c dirL L L L L     (6) 

 

1_c regL , 2 _c regL , 1_c dirL , 2 _c dirL are similar to (3), (4) while iO  
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is replaced by 1iC  or 2iC  and io  is replaced by 1ic  or 2ic  . 

C. Pose Optimization 

After the deep network, we obtained semantic labels S , 

offset vectors O , 1C  and 2C . As Fig. 5 shows, we will first 

detect objects by grouping points. Then we regress coarse poses 
from O , 1C and 2C for each cluster. Hence, we sample the 

model according to coarse poses and refine poses by ICP. 

1) Point Clustering 

Towards the point clouds which have semantic labels, the 
clustering algorithm deployed in PointGroup [13] has achieved 
impressive performance on shifted points. We employ O  , 1C

and 2C  as our shift vectors: 
 

 1 2
1 2,  ,o c c

i i i i i i i i ip p O p p C p p C       (7) 

Then the clustering algorithm is performed on op  because 

centers of different objects often have a distance for their 
collision shapes, which makes clustering easier. After the 
clustering, we obtained clusters M' . In order to obtain more 
concentrated clustering results for pose regression, we filter 

each cluster by ball-query filtering on 1cp  and 2cp  to get final 

clusters M and kM  denotes the thk  cluster. 

2) Coarse Pose Regression 

The center and control points prediction of the cluster kM  

can be estimated as follows: 
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Fig. 6 The procedure to regress rotation 
 

As Fig. 6 shows, pred
ko  is the origin of the local coordinate 

system, and 1 1
pred pred

k k kocD  and 2 2
pred pred

k k kocD   represent 

the axis direction vectors. The third axis is calculated by 

3 1 2
pred pred

k k kDD D  . Then we use 2 3 1
m pred pred
k k kD DD  to modify 

the axis direction and ensure orthogonality of coordinate axes. 
Then the rotation matrix kR  can be calculated by Rodrigues' 

rotation formula [15] and rotation vectors ( 1r  and 2r ) in Fig. 6. 

Hence, the transform matrix of the coarse pose is obtained: 
 

 [ , ]pred
k k k
0 o RT  (9) 

3) Pose Refinement 

ICP is a general method in point clouds pose optimization. 
However, its performance will decrease due to the heavy 
occlusion in bin-picking tasks. Furthermore, it is sensitive to 
initial pose selection. To overcome its limitations, we propose 

an iterative method based on ICP in Fig. 7. i
kT  is the transform 

matrix after thi  iteration and the initial matrix is 0
kT . Before 

ICP, we sample the model point cloud according to the 

occlusion of i
kT .We also select scene points by projecting 

model bounding-box through i
kT . Then the sampled model, 

selected points and i
kT  are fed into ICP to get 1i

k
T . 

IV. EXPERIMENTS 

In this section, we evaluate our method on real-world scenes 
captured by an industrial 3D scanner. To prove its capacity on 
pose estimation, we also compared its mean precision and mean 
recall with the classical approach: PPF with ICP. 

A. Real World Data 

Fig. 8 (a) shows the hardware for experiments. A 3D scanner 
produced by Photoneo is using as our point clouds producer. 
The perspective of the sensor and its output point cloud is 
shown in Fig. 8 (b). We prepared 50 different scenes for the 
experiment. Each scene has 14-17 objects from three 
categories. 

B. Implementation Details 

Before being fed into the network, we sample each scene by 
voxel sampling and the voxel size is 0.003 m. The synthetic 
dataset contains 1530 scenes for training. The voxel size using 
in occlusion sampling is 0.002 m. The mean distance threshold 
is 0.006 m, which determines if a prediction is considered as 
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positive after the final ICP. We implement PPF with Halcon for 
comparison. 

 

 

(a) 
 

 

(b)             (c) 

Fig. 7 The pose refinement: (a) The sample method with occlusion. (b) 
Scene points selection. (c) The iterative method based on ICP 

 

 

(a)             (b) 

Fig. 8 (a) Experiment setting. (b) Photo and the corresponding point 
cloud captured by 3D scanner 

C. Results and Discussion 

The method is employed on 50 real-world scenes. Several 
predictions are visualized in Fig. 9. We also implement PPF in 
the same scenes. The mean precision and mean recall of all the 
scenes are shown in Fig. 10. The blue bars are the results of our 
method and the red bars are the results of PPF. As Fig. 10 
shows, the proposed method achieves higher mean precision 
and mean recall than PPF with ICP does. Our method 
outperforms PPF by 16% in precision and 6% in recall. 

 

(a)         (b)         (c) 

Fig. 9 Real scenes and corresponding predictions (a) Scene photos. (b) 
Coarse poses produced by the network. (c) Final poses refined by our 

method 
 

 

Fig. 10 Comparison of our method and PPF 

V. CONCLUSIONS 

In this paper, based on the intuition that the coarse poses of 
objects could be regressed by three 3D locations, we proposed a 
labeling method for symmetry objects. Hence, we employed a 
network, which takes point clouds as input and trained by these 
labels, to vote centers and control points. With the output of the 
network, a clustering method is adopted to detect objects and 
get their coarse poses. Then the coarse poses were refined with 
an iterative method based on ICP. In the experiments, we take 
real-world scenes for tests. Our method outperformed PPF in 
both precision and recall. 
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