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Abstract—This paper presents an alternate approach that uses 

artificial neural network to simulate the flood level dynamics in a 
river basin. The algorithm was developed in a decision support 
system environment in order to enable users to process the data.  The 
decision support system is found to be useful due to its interactive 
nature, flexibility in approach and evolving graphical feature and can 
be adopted for any similar situation to predict the flood level. The 
main data processing includes the gauging station selection, input 
generation, lead-time selection/generation, and length of prediction. 
This program enables users to process the flood level data, to 
train/test the model using various inputs and to visualize results. The 
program code consists of a set of files, which can as well be modified 
to match other purposes. This program may also serve as a tool for 
real-time flood monitoring and process control. The running results 
indicate that the decision support system applied to the flood level 
seems to have reached encouraging results for the river basin under 
examination. The comparison of the model predictions with the 
observed data was satisfactory, where the model is able to forecast 
the flood level up to 5 hours in advance with reasonable prediction 
accuracy. Finally, this program may also serve as a tool for real-time 
flood monitoring and process control.  

 
Keywords—Decision Support System, Neural Network, Flood 

Level  

I. INTRODUCTION 
IVER management is undoubtedly a challenging field of 
operational hydrology, and a huge literature has been 

developed in years. Modeling of flood dynamics is performed 
not only to provide a warning system as a technical way to 
reduce flood risks but also assist in managing reservoir 
operation particularly during the drought periods. In the past, 
prediction of river flood was mainly performed using 
conceptual and deterministic models [1]. Recently, artificial 
neural network has gained an increasing popularity for 
modeling nonlinear systems.   

Artificial neural network (ANN) is an empirical modeling 
tool that has an ability to identify underlying highly complex 
relationship from input-output data only. This empirical 
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modeling tool is designed to emulate the human pattern 
recognition function through parallel processing of multiple 
inputs. Neural network operate like a black box model, 
requiring no detailed information about the system. Instead, 
they learn the relationship between the input parameters and 
the controlled and uncontrolled variables by studying 
previously recorded data [2]. The advantages of neural 
networks over the traditional methods are the ability to handle 
large amounts of noisy data from dynamic and nonlinear 
systems, especially when the underlying physical relationships 
are not fully understood [3]. There are many different types of 
neural networks architectures and topologies, and among 
them, feed forward network has recently gained popularity as 
an emerging and challenging computational technology [4]. 
Feed forward networks are the most common form applied in 
hydrology due to the simple framework.  

Neural network technology have provided many promising 
results in modeling complex nonlinear systems, and successful 
applications of this artificial intelligence in the field of 
hydrology and water resources modeling have been widely 
reported, such as for river flow forecasting [5]-[8], rainfall 
forecasting [9]-[12], groundwater modeling [13]-[16], and 
rainfall-runoff simulation [17]-[20]. A comprehensive review 
of the application of neural network to hydrology can be 
found in the ASCE Task Committee [21] and in Maier and 
Dandy [22].  

In this paper, a decision support system is developed 
involving a neural network decision-making method and 
applied to monitor the flood level dynamics in a river basin. 
The decision-support system was developed for use in 
estimating a one-step and multi-step ahead prediction of 
hourly flood level dynamics. 

II. ARTIFICIAL NEURAL NETWORK 
ANN is a parallel and dynamic system of highly 

interconnected interacting parts based on neurobiological 
models. Here the nervous system consists of individual but 
highly interconnected nerve cells called neurons. These 
neurons typically receive information or stimuli from the 
external environment. Similar to its biological counterpart, 
ANN is designed to emulate the human pattern recognition 
function through parallel processing of multiple inputs i.e. 
ANN have the ability to scan data for patterns and can be used 
to construct non-linear models. 

Feed forward neural network (FFNN) is widely used for the 
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input/output pair mapping of qualitative relationship due to its 
capability of approximating nonlinear model functions [11]. 
The FFNN has a parallel and distributed processing structure. 
In general, it is composed of three layers: an input layer, 
which is used to present data to the network; an output layer, 
which is used to produce an appropriate response to the given 
input; and one or more intermediate layers, which are used to 
act as a collection of feature detectors. The network topology 
consists of a set of nodes (neurons) connected by links and 
usually organized in a number of layers. Each node in a layer 
receives and processes weighted input from a previous layer 
and transmits its output to nodes in the following layer 
through links. Each link is assigned a weight, which is a 
numerical estimate of the connection strength. The weighted 
summation of inputs to a node is converted to an output 
according to a transfer function (typically a sigmoid function). 
A schematic diagram of a three-layer FFNN is shown in Fig. 
1. 

Fig. 1 shows the y output that is transformed from the I 
inputs (x1, x2…, xi,…, xI) through the hidden layer with J 
neurons. The output of the neural network, y, can be computed 
as follows: 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1. A three-layer feed forward neural network. 
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where zj is the output value of the j-th hidden node, wj are the 
weights between nodes of the hidden and output layer, wij are 
the weights between input and hidden layer, wo is the bias for 
neuron y, woj is the bias for neurons zj, fy and fz are the 
activation functions, which are normally nonlinear functions. 
Sigmoid shape activation functions are normally defined as: 
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There are so many types of algorithms available for training 
a network, and selection of an algorithm that provides the best 

fit to the data is required. The Levenberg-Marquardt algorithm 
was designed to approach second-order training speed without 
having to compute the Hessian matrix [23]. When the 
performance function has the form of a sum of squares, the 
Hessian matrix can be approximated as follows: 

JJH T=  (4) 
and the gradient can be computed as: 

eJG T=  (5) 
where J is the Jacobian matrix, which contains first 
derivatives of the network errors with respect to the weights 
and biases, and e is a vector of network errors. The 
Levenberg-Marquardt algorithm uses this approximation to 
the Hessian matrix in the following Newton-like weight 
update: 

[ ] eJIJJxx TT
kk

1
1

−
+ +−= µ  (6) 

where x indicate the weights of neural network, and µ a scalar 
that controls the learning process. Note that when parameter 
µ  is large, the above expression approximates gradient 
descent with a small step size while for a small µ the 
algorithm approximates the Newton’s method. By adaptively 
adjusting the parameter Newton’s method, the Levenberg-
Marquardt can maneuver between its two extremes – the 
gradient descent and the Newton’s algorithm. The Levenberg-
Marquardt algorithm is very efficient for training small to 
medium-size networks. 

III. MODEL DEVELOPMENT 

A. Input Vector Selection 
A potentially critical issue in applying an extrapolative 

prediction method in river stage management is the choice of 
input variables. The parameters that need to be selected in the 
input variable are determined by two statistical methods, i.e. 
autocorrelation (ACF) and partial autocorrelation (PACF) 
between the variables. The ACF and PACF are generally used 
to gather information about the autoregressive process of the 
data series [24]. The number of antecedent river stage that 
should be included in the input variables are usually 
determined by placing a 95% confidence interval on the 
autocorrelation and partial autocorrelation plots. 
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Fig. 2 Autocorrelation plot of the data series 

 
The ACF and the corresponding 95% confidence intervals 

of the river stage series for lag 0 to lag 20 is presented in Fig. 
2. Similarly, the PACF and the corresponding 95% confidence 
intervals of the river stage series are presented in Fig. 3. The 
ACF (Fig. 2) showed a significant correlation at 95% 
confidence level interval up to 14-h of river stage lag. In 
addition, the PACF showed significant correlation up to lag of 
3 (3-h). Result of correlogram plots of the data series shown 
in Figs. 2 and 3 imply that incorporating the antecedent values 
up to lag 3-h can best represent the process in the catchment 
area under examination. Therefore, in this study three 
antecedent values of river stage are selected as input for 
modeling river stage.  
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Fig. 3 Partial autocorrelation plot of the data series 

B. ANN Model Development 
The network architecture that is employed uses a multilayer 

perceptron network. The network has three layers including 
input layer, output layer and hidden layer. A single hidden 
layer was used in this study, and the number of neuron in the 
hidden layer was identified using a trial and error procedure 
by varying the number of hidden layer neurons from 2 to 10 
with an increment of 2. The output layer had one neuron 

corresponding to the predicted river water level. A tan-
sigmoid activation function was used for the hidden layer, and 
a linear transfer function for the output layer. Levenberg-
Marquardt algorithm was used to train the network. The 
optimal network architecture for each model was selected 
from the one which resulted in minimum error and best 
correlation in the data set. The effect of changing the number 
of hidden neurons on the root mean square error (RMSE) of 
the data set is shown in Fig. 3. As can be seen from Fig. 3that 
the effect of the number of neurons assigned to the hidden 
layer has a little effect on the performance of the feed forward 
model. As could be concluded from Fig. 3, the use of three or 
four neurons gives the lowest prediction error in the testing 
data set. Therefore a Levenberg-Marquardt-FFNN with 4 
input neurons, 4 hidden neurons and 1 output neuron (4-4-1) 
was adopted as the best structure combination to capture the 
relationship inherent in the data under consideration. 
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performance 

C. Case Study and Data Description 
The ANN configuration described in Section III.B is 

illustrated with its application to the management of the 
Cilalawi river basin in Indonesia (Fig. 5). Cilalawi river basin 
is located in the Purwakarta Regency, West Java Indonesia.  
The total drainage area of the river basin is approximately 
6,017.58 km2. The climate of the catchment is generally dry, 
except during the monsoon months from December to April. It 
has an annual precipitation depth of 3,000 mm in the 
mountainous area and 2,500 in the lowland and normally 70% 
falls during rainy season whereas 30% falls during dry season. 
Water resources in the Cilalawi river basin are operated and 
managed by Perum Jasa Tirta II (PJT II), a public corporation 
formed in 1967.  
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Fig. 5 Satellite image of the river (acquired on Sep 4 2005) 

The continuous hourly water level data were measured from 
year 2002-2003, and separately used to train and validate the 
model. The whole data set was composed of 9000 hourly data 
sets, and divided into two subsets: a training subset includes 
5000 data sets and the testing subset that has the remaining 
4000 data sets. The training data set is used for model 
development and parameter estimation, whereas the 
verification data set is used to validate the model. 

IV. CONTINUOUS FLOOD LEVEL SIMULATION 
A decision support system is developed involving a neural 

network decision-making method and applied to the water 
level forecasting in the Cilalawi river basin in Indonesia. The 
decision support system is found to be useful due to its 
interactive nature, flexibility in approach and evolving 
graphical feature and can be adopted for any similar situation 
to predict the water level. Fig. 6 presents the sample screen of 
the main module of the decision support system. 

 
Fig. 6 Sample screen of the main module 

The training period was considered for the first 5000 data 
sets and the last of the data was used for testing the model. 
The input layer consisted of 3 nodes representing the water 
level values at t, t-1, and t-2. and the output layer consisted of 
a single node representing the flow value at t+1. A 
Levenberg-Marquardt-FFNN with 4 input neurons, 4 hidden 
neurons and 1 output neuron (4-4-1) was adopted to evaluate 
the competence of the network. During the network training, 
prediction models were generated from historical data, which 
was provided and was combined with another parameter to 
deliver the results. Performance of the model was compared 
with the actual data using two performance criteria. 

The comparison between the predicted and actual flow 
values at training phase was satisfactory, and ANN can catch 
the low and peak flood level dynamics with a good 
generalization. During the training stage, the MAPE and 
RMSE resulted were 1.010 % and 4.421 respectively. The 
final values of model parameters obtained after training, were 
then used as the optimal parameter combination for multiple-
step ahead forecasting. In this particular case, the predicted 
outputs were feed back into the networks to predict more 
values. The decision support system was develop to forecasts 
up to 5-h water level in advance, in a recursive way.  It is to 
be noted that as the number of steps ahead increases, it is 
expected that the prediction error variance should also 
increase. The values of the performance indices of the model 
for multi-step ahead forecasting is presented in Table II. This 
can be observed in Table II in which the MAPE is small for 
forecasts 1-h and 2-h ahead (1.029 and 1.667% respectively). 
However, once the period of short-term predictability is over, 
the reconstructed model starts to move away from the actual 
data. The results indicated that the performance of the 
proposed model is much better when predicting the near 
future, but it decreased gradually when predicting larger lead 
times. 

TABLE I 
STATISTICAL PARAMETER USED TO TEST THE MODEL  

Statistical parameter Expression 

 
Mean absolute percentage error 
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TABLE II 
PERFORMANCE OF THE MODEL DURING THE TESTING PERIOD  

Testing period MAPE (%) RMSE 

1-h ahead 1.029   4.616 
2-h ahead 1.667   7.409 
3-h ahead 2.390   9.005 
4-h ahead 2.928 10.258 
5-h ahead 3.388 11.013 
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In order to obtain a brief picture of the general performance 
of the decision model, we also provide the sample screen of 
the hydrographs of observed water level against 1-h, 3-h, and 
5-h prediction in advance. Figs. 8 through 10 indicate a good 
agreement between the observed and computed flood level at 
shorter lead times. The computed value at 5-h lead-time 
produces satisfactory result, where the ANN model resulted in 
the MAPE<3.468% and RMSE<11.122 cm. It is clearly 

indicated in Figs. 8 through 10 that the high water level is 
predicted higher than the actual data, especially for lead-time 
of 5-h in advance. This error is probably due to the result of 
error accumulation at previous time steps, which is increase as 
the increase of lead-time. Therefore, our next task should 
rather give more importance to the model's ability in multi-
step-ahead predictions. 

 

 
 

Fig. 7 Sample screen of the prediction result for 1-h ahead 
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Fig. 8 Sample screen of the prediction result for 3-h ahead 

 
 

Fig. 9 Sample screen of the prediction result for 5-h ahead

V.  CONCLUSION  
In this study, a decision support system is developed 

involving a neural network decision-making method and 
applied to the flood level forecasting. The algorithm was 

developed in a decision support system environment in order 
to enables users to process the data.  The decision support 
system is found to be useful due to its interactive nature, 
flexibility in approach and evolving graphical feature and can 
be adopted for any similar situation to predict the flood level. 
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The main data processing includes the gauging station 
selection, input generation, lead-time selection/generation, and 
length of prediction. This program enables users to process the 
flood level data, to train/test the model using various inputs 
and to visualize results. The program code consists of a set of 
files, which can as well be modified to match other purposes. 
This program may also serve as a tool for real-time flood 
monitoring and process control. The running results indicate 
that the decision support system applied to the flood level 
seems to have reached encouraging results for the river basin 
under examination. The comparison of the model predictions 
with the observed data was satisfactory, where the model is 
able to forecast the flood level up to 5 hours in advance with 
reasonable prediction accuracy. Finally, this program may also 
serve as a tool for real-time monitoring and process control. 
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