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DCBOR: A Density Clustering Based on Outlier
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Abstract—Data clustering is an important data exploration tech-
nique with many applications in data mining. We present an enhanced
version of the well known single link clustering algorithm. We will
refer to this algorithm as DCBOR. The proposed algorithm alleviates
the chain effect by removing the outliers from the given dataset.
So this algorithm provides outlier detection and data clustering
simultaneously. This algorithm does not need to update the distance
matrix, since the algorithm depends on merging the most k-nearest
objects in one step and the cluster continues grow as long as possible
under specified condition. So the algorithm consists of two phases;
at the first phase, it removes the outliers from the input dataset. At
the second phase, it performs the clustering process. This algorithm
discovers clusters of different shapes, sizes, densities and requires
only one input parameter; this parameter represents a threshold for
outlier points. The value of the input parameter is ranging from 0 to
1. The algorithm supports the user in determining an appropriate
value for it. We have tested this algorithm on different datasets
contain outlier and connecting clusters by chain of density points,
and the algorithm discovers the correct clusters. The results of
our experiments demonstrate the effectiveness and the efficiency of
DCBOR.

Keywords—Data Clustering, Clustering Algorithms, Handling
Noise, Arbitrary Shape of Clusters.

I. INTRODUCTION

N
UMEROUS applications require the management of spa-

tial data, i.e. data related to space. Spatial Database

Systems(SDBS) are database systems for the management

of spatial data. Increasingly large amounts of data are ob-

tained from satellite images, X-ray crystallography or other

automatic equipment. Therefore, automated knowledge dis-

covery becomes more and more important in spatial databases.

Clustering is an important task of knowledge discovery in

databases. Clustering is the organization of a database D into

homogeneous and separated groups with respect to a distance

or a similarity measure. Its objective is to assign the similar

objects to the same cluster, and dissimilar objects to differ-

ent clusters. Clustering methods basically classified into two

types; partitional and hierarchical methods [9]. Partitioning

algorithms construct a partition of a database D of n objects

into a set of k clusters; k is an input parameter for these

algorithms. A partitioning algorithm typically starts with an
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initial partition of D and then uses an iterative control strategy

to optimize an objective function. The square error criterion,

defined below in (1), is the most commonly used (m i is the

mean of cluster Ci).

k
∑

i=1

∑

p∈Ci

‖ p − mi ‖
2 (1)

The square-error is a good measure of the within cluster

variation across all the partitions. The objective is to find k
partitions that minimize the square error. Thus, square error

clustering tries to make the k clusters as compact and sepa-

rated as possible, and works well when clusters are compact

clouds that are rather well separated from one another. Each

cluster is represented by the gravity center of the cluster

(k − means algorithm) or by one of the objects of the

cluster located near its center (k−medoid algorithms). Con-

sequently, partitioning algorithms use a two-step procedure.

First, determine k representatives minimizing the objective

function. Second, assign each object to the cluster with its

representative ”closest” to the considered object.

Hierarchical algorithms create a hierarchical decomposition

of D. The hierarchical decomposition is represented by a

dendrogram; a tree that iteratively splits D into smaller subsets

until each subset consists of only one object. In such a

hierarchy, each node of the tree represents a cluster of D.

The dendrogram can either be created from the leaves up to

the root (agglomerative approach) or from the root down to

the leaves (divisive approach) by merging or dividing clusters

at each step. Agglomerative hierarchical clustering (AHC) is

more stable but its computation and computer memory used

are very expensive, and thus, it is not feasible for a large data

set. Moreover, for examples, the single link approaches are

very susceptible to noise and differences in density. While

group average and complete link are not as susceptible to

noise, they have trouble with varying densities and cannot

handle clusters of different shapes and sizes [4].

Besides the partitional and hierarchical approaches, density

based clustering methods such as DenClue [7] and DBSCAN

[3] form a third clustering type. These are often used in

data mining for knowledge discovery. Density-based clustering

uses a local cluster criterion, in which clusters are defined as

regions in the data space where the objects are dense, and

remain, separated from one another by low-density regions.

Density-based clustering has advantages over k-clustering and

AHC in discovering clusters of arbitrary shapes and sizes.

However, it was shown that current density based clustering

works well only on a simple data set where cluster densities
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are similar [1]. Density based clustering is important for

knowledge discovery in databases. Its practical application

areas include biomedical image segmentation [2], molecular

biology and geospatial data clustering [13], and earth science

tasks [3].

In this paper we propose an algorithm that merges between

hierarchical, partional and density based methods. This al-

gorithm builds the k nearest neighbors graph, estimates the

density for each point from this graph, and removes the low

density points according to the input parameter ranging from

0 to 1. This parameter represents a threshold for outliers in

data and is the only parameter required by our algorithm.

After outlier removal the algorithm start the clustering process,

starting from the most density point, applying the idea of

the single link [14] with some modification to overcome

the computational complexity, and depending on the density

estimation, the algorithm eliminates the chain effect problem

of the single link algorithm. Also this algorithm does not

require O(n2) since we use the idea of canopy to construct

the k nearest neighbors graph. We do not use a distance

matrix. The running time of this algorithm is O(n). Also

we can cluster all points in the data set if we want by

assigning each outlier point to the nearest clustered point

starting with the most density outlier point. Our experimental

results demonstrate the effectiveness and efficiency of the

proposed algorithm. This paper is organized as follows, in

section 2 we review some of related works. In section 3, some

details of the proposed algorithm are presented. We present

some experimental evaluation of the proposed algorithm in

section 4 and conclude with section 5.

II. RELATED WORK

Existing clustering algorithms can be broadly classified

into hierarchical and partitioning clustering algorithms [8].

The Single-Link method is a commonly used hierarchical

clustering method [14]. Starting with the clusters obtained by

placing every object in a unique cluster, in every step the two

closest clusters in the current clustering are merged until all

objects are in one cluster. This algorithm is time consuming,

and is very sensitive to outliers. BIRCH method [15] can

be classified as a hierarchical method. BIRCH constructs a

CF-tree which is a hierarchical data structure designed for a

multiphase clustering method. First, the data set is scanned to

build an initial in memory CF-tree which can be seen as a

multi-level compression of the data that tries to preserve the

inherent clustering structure of the data. Second, an arbitrary

clustering algorithm can be used to cluster the leaf nodes of

the CF-tree. This algorithm uses the idea of diameter and

the cluster center to cluster the leaf nodes of the CF-tree.

And this leads the algorithm to be more similar to partitional

algorithms. Another hierarchical algorithm CURE has been

proposed in [5]. This algorithm stops the creation of a cluster

hierarchy if a level consists of k clusters where k is one of sev-

eral input parameters. It utilizes multiple representative points

to evaluate the distance between clusters, thereby adjusting

well to arbitrary shaped clusters and avoiding the single-link

effect. This results in a very good clustering quality. But this

algorithm has several parameters. The parameter setting does

have a profound influence on the result.

Partitioning algorithms typically represent clusters by a

prototype. Points are assigned to the cluster represented by

the most similar prototype. These clustering algorithms are

effective in determining a good clustering if the clusters

are of convex shape, similar size and density, and if their

number k can be reasonably estimated. Depending on the

kind of prototypes, one can distinguish k-means, k-modes and

k-medoid algorithms. The algorithm CLARANS introduced

in [12] is an improved k-medoid type algorithm restricting

the huge search space by using two additional user-supplied

parameters.

Density-based approaches apply a local cluster criterion

and are very popular for the purpose of database mining.

Clusters are regarded as regions in the data space in which the

objects are dense, and which are separated by regions of low

object density (noise). In [3] a density-based clustering method

is presented. The basic idea for the algorithm DBSCAN is

that for each point of a cluster the neighborhood of a given

radius (e) has to contain at least a minimum number of points

(MinPts) where e and MinPts are input parameters. These two

parameters are globular for the data set. And it is not easy

to determine the best value for e. In [7] the density-based

algorithm DenClue is proposed. This algorithm uses a grid

but is very efficient because it only keeps information about

grid cells that do actually contain data points and manages

these cells in a tree-based access structure. This algorithm

generalizes some other clustering approaches which, however,

results in a large number of input parameters. We propose

the DCBOR that uses the density notion and a level of

dissimilarity used in single link.

III. THE ALGORITHM

In this section we present our proposed algorithm that

operates on a sparse graph in which nodes represent data items,

and weighted edges represent the distances between the data

points. This algorithm finds the clusters in the data set by

using a two phase algorithm. During the first phase, it builds

the k-nearest neighbors graph and removes the outlier from

the data set. During the second phase, it uses the single link

with simple modification to discover the genuine clusters. We

describe the details in the following subsections.

A. Outlier removal

To remove the outlier from the dataset we use the idea

of graph, since the graph shows the relationship between the

data points. So we build the k-nearest neighbors graph. In this

graph every nod is connected to its k nearest neighbors. The

edge between two nods represents the distance between them.

We compute the influence of each point within its k nearest

neighbors using influence function; the influence function

describes the impact of a point within its neighbors, we use

the Euclidean distance to present the influence function. As

the distance between the two points increase the influence

of a point within its neighbor decrease. Also we calculate

the density for each point in the dataset, note that not all
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data points contribute the density of a point, so we use this

observation to calculate the density for a point x, only k
points of the dataset which are close to x actually contribute

to the density. All other points may be neglected without

making a substantial error. Here, we do not use fixed radius

for neighborhood, but we use the k nearest neighbors. Since

the distance to the k nearest neighbors is more impressive

than EPS neighborhood in the DBSCAN algorithm. And we

calculate the density of point as the summation of the influence

in its k nearest neighbors which is better than counting the

points in EPS neighborhood. This method is more accurate

than that of DBSCAN algorithm to determine the core point

based on neighborhood radius and the minimum number of

points that must be within this radius, we remove the most

low density points from the dataset as outliers. To get the k
nearest neighbors for each point, we use a data structure called

canopy [11], that partition the data space into overlapping

subsets based on the average radius of the data space. A data

point may be covered by more than one canopy, and every

point must be at least in one canopy. For each point, we keep

track to its nearest canopy, and use this canopy to answer the

query region for this point. After computing the density for all

points in the dataset and removing the lowest density points,

we are ready to perform clustering based on merging ideas

from the slink and DBSCAN algorithm.

1) The influence and density function: The main idea of our

algorithm is to remove the lowest density points from the data.

We compute the density of point according to the following

functions: Influence function represent the impact of point x
on point y as the Euclidean distance between them, where

x, y ∈ Rd.

INF (x, y) =

√

√

√

√

d
∑

i=1

(xi − yi)2 (2)

As the distance between the two points decrease the impact

of x on y increase, and vice versa. The density function for

a point x is defined as the summation of (influence functions

within the k nearest neighbors) distances between the point x
and the k nearest neighbors. The density function is defined

as

DEN(x, y1, y2, ..., yk) =

k
∑

i=1

INF (x, yi) (3)

The definition of density based on the summation of distances

of the k nearest neighbors is better than counting the points

within the Eps-neighborhood radius. Consider the following

example as in Figure1. As we see in Figure 1.a and 1.b both

Fig. 1. Density based on distance to k nearest neighbors.

Fig. 2. An example of three data clusters and canopies cover them.

black points has four points in neighbor (the Eps is the same

represented by black arrow) but Figure 1.b is more density

than Figure 1.a. based on the summation of distances reflects

this fact accurately. But based on the Eps-neighborhood radius

as in DBSCAN algorithm there is no difference, because each

point has four points within its Eps. And we can note that

the value of Eps vary according to the density using the k
nearest neighbors. Also the point inside the cluster has high

density, on the other hand the point at the edge (border) of

cluster has low density, since the neighbors for this point lie

on one side of it, but the point at the core of cluster has its

neighbor surrounding it from all directions. So density based

on distances summation is better than points numeration within

Eps-neighborhood radius.

2) Creating Canopies: Our algorithm based on outlier

removal and density calculation, also based on a simple and

efficient data structure to find the k nearest neighbors, this

data structure is called canopy which is simply a number of

overlapped hyper spheres of the same radius cover the data

space. This data structure is used to partition the data space

like the grid but here there is overlap between cells and the

cells are not (hyper) rectangular regions but (hyper) spherical

regions. To get the k nearest neighbors for a point x, only we

consider the points lie in the same canopy of x. Also a point

x may be covered by more than one canopy, so we select the

best (nearest) canopy to get them, (i.e. we select the canopy

where x is in its core). To create canopies, we find the means

of the dataset, then find the average radius of the dataset and

divide this value by six. This value referred to it as BRC (Basic

Radius of Canopy) and we extend this radius to EBRC which

equals 1.5 of BRC. We start from the first point in the dataset

as the center of the first canopy, all points that are within the

distance BRC are the core of the canopy, and are excluded

from being a center for other canopy. But the points that are

within the distance between BRC and EBRC are added to the

canopy but one or more of them may form center(s) for other

canopy (canopies). To answer the query region for a point

only one canopy is tested. And we reach this canopy directly,

since each point labeled by its canopy number. The circles

with dashed (blue) outlines in Figure 2 show an example of

overlapping canopies that cover a data set. The red points from

A to E represent the centers for canopies.
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Fig. 3. k-nearest graphs from an original data in 2D.

3) The k-nearest neighbor graph: After creating canopies,

for each point x we compute its distance to the other points at

the canopy, and keep the distances to the k-nearest neighbors.

These distances are arranged in ascending order, and we start

to build the k-nearest neighbors graph. Each vertex of the k-

nearest neighbors graph represents a point, and there exists an

edge between two vertices, if a point corresponding to either of

the nodes is among the k-most nearest points of the data point

corresponding to the other node. Figure 3 illustrates the 1-, 2-,

and 3-nearest neighbor graphs of a simple data set. Note that

since our algorithm operates on a sparse graph, each cluster

is nothing more than a sub-graph of the original sparse graph

representation of the data set.

There are several advantages of representing data using a

k-nearest neighbors graph Gk. Firstly, data points that are

far apart are completely disconnected in the Gk. Secondly,

Gk captures the concept of neighborhood dynamically. The

neighborhood radius of a data point is determined by the

density of the region in which this data point resides. In a

dense region, the neighborhood is defined narrowly and in

a sparse region, the neighborhood is defined more widely.

Compared to the model defined by DBSCAN [3] in which a

global neighborhood density is specified, Gk captures more

natural neighborhood. Finally, the density of the region is

recorded as the weights of the edges. The edge weights of

dense regions in Gk (with edge weights representing distances)

tend to be small and the edge weights of sparse regions

tend to be large. After creating the k-nearest neighbors graph

and computing the density of points using equation (3), the

algorithm removes the lowest density points as outlier, the

number of discarded points depends on the input parameter

ranging from 0 to 1. When we want to cluster all data points

we can assign each outlier point to the nearest clustered

point, or cluster the outlier themselves. After removing the

outliers the algorithm moves to the second phase to cluster

the data depending on the idea of single link algorithm [14]

and DBSCAN [3].

4) The Threshold of Outlier: The outlier threshold is the

only required input parameter for DCBOR. The algorithm

supports the user in determining an appropriate value for it.

To detect the outlier we assign outlying factor for each data

point, this value is based on the local density. The outlying

factor for a point xi is given by the following Equation (4).

OF (xi) =

∑k

j=1 d(xi, yj)

max(
∑k

j=1 d(z, yj))
(4)

d(x, y) is the Euclidean distance between the two points, the

numerator represents the local density at the point x i which

was computed by Equation (3), the denominator represents the

local density of the lowest density point z in the data set. So

the outlying factor for a point xi is ranging from 0 to 1, as the

outlying factor become closer to one as the higher probability

for the point to be outlier. The algorithm divides the interval

[0,1] into 20 sub-intervals, and determine the count of points

in each sub-interval. By examining this information the user

can determine appropriate value for the outlier threshold. All

points that have outlying factor larger than the input value

are discarded as outliers. Outlier detection is an important

problem. You can see for example [6].

B. Clustering Stage

As we know that the single link is susceptible to outliers.

We overcome this problem by removing the outliers at the first

phase. And slink require O(n2), where n is the number of

points in dataset. This high computational complexity makes

this algorithm not suitable to large data set. But based on

canopy to get the most similar point for each other, and the

density notion we solve the problem of complexity and the

chain effect. And our proposed algorithm is very efficient for

clustering very large datasets. As we know the single link is

an agglomerative hierarchical clustering algorithm, and this

family of algorithms create a hierarchical dendrogram from

the leaf node up to the root, and the input parameter for

this algorithm may be the required number of clusters or a

threshold parameter used to cut the dendrogram at specified

level. And it is not easy to determine the number of cluster, so

in this paper we will depends on the threshold. We can deduce

a suitable value for the threshold from the graph after removing

the outliers. We search for the maximum distance between a

point and its first nearest neighbor. This distance is the ideal

distance for threshold (level of dissimilarity between clusters)

according to the main idea of the single link algorithm. After

that we perform the clustering process as in the following

steps:

1) Search for the most density point to be the starting point

for the current cluster

2) Expand the current cluster according to the threshold

until no point can be added to it.

3) Start new cluster and repeat steps 1 and 2 until all points

are clustered.

4) (Optional) cluster outliers by assigning each point to the

nearest cluster.

Step 2 of clustering process is a middle ground between the

single link and DBSCAN, since in single link two points are

merged in each step, but here all points at distance from the

current point satisfy the threshold are assigned to the current

cluster. On the other hand we do not consider how many

points satisfy the threshold as in DBSCAN. So our proposed

algorithm can discover clusters having different shapes, sizes

and densities. Our algorithm is presented in Figure 4.

1) Time Complexity: As we have seen before, the algorithm

build canopies that cover all data space, say m canopies are

required, suppose the data points are uniformly distributed, so

each canopy will contain n
m

points; where n is the size of the

input dataset. The canopies creation process require O(mn),
m is very small compared by n. To get the k-nearest neighbors
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Fig. 4. DCBOR algorithm.

for a point, this requires distance calculation between this

point and the other points shared the same canopy which

present small portion of the data set, this process requires

O(h); where h = n
m

, h is very small compared with the

dataset size. For each point we keep the distances to the 10 th

nearest neighbors and only we use the 5th nearest neighbors

to compute the density of it. To remove the outliers point

this requires O(n). To get the highest density point we check

the density for each point in O(n). To perform clustering

process this requires O(n). And the overall complexity of the

algorithm is O(nm + nh + n + n).

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of DCBOR.

We implemented this algorithm in C++. We have used the syn-

thetic datasets that used in [10] to test our proposed algorithm.

We experimented with four different data sets containing

points in two dimensions whose geometric shape are shown in

Figure 5. The first data set, DS1, has six clusters of different

size, shape, and orientation, as well as random noise points and

special artifacts such as streaks running across clusters. The

second data set, DS2, has nine clusters of different shape, size,

and orientation, some of which are inside the space enclosed

by other clusters. Moreover, DS2 also contains random noise

and special artifacts, such as a collection of points forming

vertical streaks. The third data set, DS3, has eight clusters

of different shape, size, density, and orientation, as well as

Fig. 5. The data sets used in our experiments.

Fig. 6. The data sets after determining the outliers.

random noise. A particularly challenging feature of this data

set is that clusters are very close to each other and they

have different densities. Finally, the fourth data set, DS4, has

six clusters of different shape connected by density chain of

points. The size of these data sets ranges from 8000 to 10000

points, and their exact size is indicated in Figure 5

At the first stage of DCBOR, it determines the outliers from

the dataset. Figure 6 shows the datasets from Figure 5 after

determining the outliers (the gray points). Figure 7 shows the

clusters discovered in each data set.

The following table 1 presents the execution time of DC-

BOR with and without the canopy data structure.

TABLE I
EXECUTION TIME OF DCBOR ALGORITHM

Dataset Canopy count Time in sec Time in sec without canopy

DS1 148 1 18

DS2 151 2 28

DS3 158 1 18

DS4 79 2 18
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Fig. 7. The final results of DCBOR algorithm.

V. CONCLUSION

In this paper we have presented a clustering algorithm, that

introduces a middle ground between the hierarchical cluster-

ing and density clustering, this algorithm called DCBOR. It

removes the outliers from the data set based on the density

notion, and applies the clustering process based on the idea

of single link and growing cluster in all possible direction as

in density clustering algorithm like DBSCAN. This algorithm

discovers clusters with different shapes, sizes and densities.

Our experimental results demonstrated the efficiency of this

algorithm from two direction; the first from the quality of

clusters, the second from the high speed of producing (dis-

covering) the clusters.
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