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Abstract—A cyclostationary Gaussian linearization method is 

formulated for investigating the time average response of nonlinear 

system under sinusoidal signal and white noise excitation. The 

quantitative measure of cyclostationary mean, variance, spectrum of 

mean amplitude, and mean power spectral density of noise are 

analyzed. The qualitative response behavior of stochastic jump and 

bifurcation are investigated. The validity of the present approach in 

predicting the quantitative and qualitative statistical responses is 

supported by utilizing Monte Carlo simulations. The present analysis 

without imposing restrictive analytical conditions can be directly 

derived by solving non-linear algebraic equations. The analytical 

solution gives reliable quantitative and qualitative prediction of mean 

and noise response for the Duffing system subjected to both sinusoidal 

signal and white noise excitation. 

 

Keywords—Cyclostationary, Duffing system, Gaussian 

linearization, sinusoidal signal and white noise. 

I. INTRODUCTION 

HE investigation of the dynamic behavior of stochastic 

nonlinear systems has attracted numerous researchers in 

different fields of science and engineering [1], [2]. For a 

nonlinear system subjected to the combined sinusoidal signal 

and white noise excitation, the long-time asymptotic statistics 

of stable response is cyclostationary [2]. A cyclostationary 

process is a non-stationary process; however, the statistical 

properties are periodic in time. Cyclostationary processes have 

many important applications in systems science and 

engineering, for example, response of rotating machines 

subjected to randomly fluctuating flow velocity [3], floating 

crane oscillation subjected to sea wave excitation [4], and 

signal processing in engineering systems [5]. For a nonlinear 

system subjected to both sinusoidal signal and white noise 

excitation, in principle, the associated cyclostationary density 

response can be obtained by solving the 

Fokker-Planck-Kolmogorov equation. However, in practice, no 

known exact density has been derived so far for the dynamic 

response. Therefore, for finding the non-stationary solution, it 

strongly depends on approximate methods and numerical 

methods. There are several approximate analytical methods 

including Gaussian linearization (Closure) method [4], [6]-[9], 

perturbation method [10], [11], stochastic averaging method 

[12]-[14], eigenfunction expansion method [1], etc., which 
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have developed and extended for obtaining the response 

behavior. In numerical methods, there are several schemes 

including Monte Carlo simulation, Cell mapping methods, path 

integral method, etc [15]-[17]. A literature survey on the 

research problem shows that the existing analytical methods, 

mostly applied to Duffing oscillator, usually require restrictive 

conditions on the order of magnitude of parameters and/or 

excitation in applications. For example, stochastic averaging 

method is usually applied to lightly damped system. A 

second-order closure method is developed for the random 

response which is small compared with the mean response [9]. 

Adiabatic approximation method is developed for density 

response under slowly external sinusoidal excitation [2]. The 

restrictive conditions make the publishing results of more 

interest to qualitative interpretation of physical phenomenon 

than quantitative engineering applications. 

In engineering applications, Gaussian linearization method, 

among the approximation methods, has been the mostly 

employed for analyzing the response behavior of general 

non-linear stochastic systems [18], [19]. Despite of some subtle 

differences [19], stochastic linearization, statistical 

linearization, equivalent linearization, or stochastic equivalent 

linearization have been used in agreement as a standard method 

to utilize Gaussian density in analyzing statistical response of 

non-linear dynamic systems subjected to stochastic external 

excitation. Recently, a two-stage optimal Gaussian 

linearization method to incorporate the merits of standard 

method and SPEC-alternative was proposed [19]. In analyzing 

variance response of different nonlinear oscillators by the 

improved Gaussian linearization method, the improvement of 

accuracy has been investigated. For the Duffing oscillator 

subjected to sinusoidal signal and stochastic excitation, the 

standard Gaussian linearization approach has been extended for 

analyzing statistical response [6]-[9]. By employing the 

Gaussian linearization method, the sinusoidal mean and 

time-varying variance response can be obtained numerically by 

solving differential equations. However, the accuracy in the 

analyzing of long-time asymptotic cyclostationary response has 

not been focused and investigated. Moreover, an effective 

analytical method has not been developed for analyzing certain 

important response properties such as stochastic jump and 

bifurcation. 

In this paper, an extension of Gaussian linearization for the 

prediction of cyclostationary response of nonlinear system is 

proposed. Firstly, a Gaussian linearization model is derived for 

nonlinear system. Next, a cyclostationary formulation of the 
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Gaussian linearization model is developed. Then, 

time-invariant algebraic equations are derived for the 

time-domain cyclostationary formulation. For analyzing 

spectrum response, the frequency-domain formulations of 

sinusoidal signal and noise responses are derived. Duffing 

system is employed for the numerical comparison of the 

analytical solution and Monte Carlo simulation. Finally, the 

applications and performance of the present approach are 

concluded. 

II.  GAUSSIAN LINEARIZATION OF NONLINEAR SYSTEM 

Consider a stable nonlinear system under sinusoidal signal 

and white noise excitation is given by; 

 

( )1 2

0

2 1 1 1 2 2

0 0
sin( ) ,

1

       
= + +       − − −       

ɺ

ɺ
N n

x x
t w t

x b x b x b x a
ω      (1a) 

 

where b1, b2, and b
N
 are constants, n= 3,5,7.., and w(t) is a 

zero-mean Gaussian white noise process with intensity 
 

[ ( ) ( )] 2 ( ).E w t w s q t sδ= −                        
 (1b) 

 

For the application of Gaussian linearization on the nonlinear 

system, the evaluation of expectation by utilizing Gaussian 

density is defined as [ ].GE ⋅  The mean and covariance of states, 

utilizing Gaussian density, can be expressed, respectively, as

( ) [ ]i G im t E x= and ( ) [( ( ))( ( ))],ij G i i j jh t E x m t x m t= − −  for i=1, 

2. In employing the standard Gaussian linearization approach, 

it is noted that the Gaussian density is assumed to be 

independent of the linearization coefficients. By following the 

standard Gaussian linearization approach [18], [19], the 

nonlinear function in (1a) can be approximated by a linear 

function through the minimization of mean-square error to 

yield; 

 

1 1 1( ) ( )( ( )),= + −n
x c t d t x m t

                   (2a)
 

 

where 

1( ) [ ]= n

Gc t E x                                  (2b)
 

 

and  
1

1( ) [ ].−= n

Gd t nE x                              (2c)
 

 

Thus, the Gaussian linearization model of (1) is derived to 

yield; 
 

1 1

1

1 1 22 2

1

1 1 1

0

0 1

( [ ])

0
           

[ ] ( [ ]) ( )

0 0
           sin( ) ( ).

1

−

−

    
= +    − − −    

 
+ − + 

   
+   

   

ɺ

ɺ
N n

G

N n N n

G G

x x

b b nE x bx x

b E x b nE x m t

t w t
a

ω
             

(3)

 

 

By performing ensemble average of (3), a mean propagation 

equation can be derived as; 
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By subtracting (4) from (3) and defining , ,n i i ix x m= −  a 

linearization model of noise response is given as; 
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By forming a covariance matrix and utilizing (5), a 

covariance propagation equation is derived to yield; 
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         (6) 

 

For the nonlinear system, the Gaussian linearization model 

has been derived as given by (3), (4), and (6). The 

non-stationary mean and covariance response can be obtained 

by numerical solution of the simultaneous ordinary differential 

equations. In order to investigate the important behavior of 

cyclostationary response, one needs to derive a cyclostationary 

formulation of Gaussian linearization model. 

III.  CYCLOSTATIONARY FORMULATION  

The response of the nonlinear system in general includes 

subharmic and superharmonic oscillations. For obtaining the 

cyclostationary formulation, the dominant cyclostationary 

response of states is assumed to be a sinusoidal function. Thus, 

the dominant mean response can be expressed as a sinusoidal 

function of input signal frequency, 
 

0

0( ) sin( ),i i im t m tw q= +                            (7) 

 

where 0

im  are amplitudes of means and 
iq  are phases of means. 

For the cyclostationary response of covariance, the ( )ijh t can be 

expressed as a combination of mean of covariance and residue 

oscillation, 
 

( ) ( ) ( ),
ij

r

ij ijh t h t h t= +
                          

 (8) 

 

where × is a time average operation. By assuming that the 

amplitude of residue oscillation is smaller than the mean of 

variance, the cyclostationary covariance ( )ijh t can be 

approximated as ( ) .ijh t   

In order to specify cyclostationary derivations, the 

evaluation of expected value [ ]GE ×  is denoted as [ ].Gc sE - ×  By 

utilizing (7) in (4), the cyclostationary mean response is derived 

to yield; 
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The formulation of time average of cyclostationary 

covariance response can be derived with notation ( )ii ih t h=  and 

with 12 21 0h h= = in (6) to yield; 

 
1

2 1 1 1 1

2 2

( ( [ ])) 0

2 2 0.

−
−− + − =

− + =

N n

Gc sh b h h b nE x

b h q
                (10) 

 

For deriving explicit formulation, without loss of generality, 

n is assigned to 3 to form a Duffing system. The cyclostationary 

mean response of (9) is simplified to a scalar equation as; 
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0 1 0 1 1 1 0 1 2 0 1 0 1

0 3 0

1 0 1 1 0 1 1 0

sin( ) sin( ) cos( )

                  (( sin( )) 3 sin( ) ) sin .
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By utilizing (7) in (10), a nonlinear algebraic equation of 

variance response is obtained as; 

 
0 2

2 1 1 0 1 1 1/ ( (3(( sin( )) )) 0.− + + + =N
q b b b m t h hω θ

       
(12) 

 

The cyclostationary formulations of mean response (11) and 

variance response (12) are derived as time-varying algebraic 

equations. For the effective analysis of cyclostationary 

response, one needs to further derive time-invariant 

formulations of mean and variance response. 

IV. TIME AVERAGE OF CYCLOSTATIONARY RESPONSE 

For the cyclostationary formulations of (11) and (12), these 

formulations include functions of 
0 1sin( )tw q+ and 

0 1cos( ).tw q+  
On multiplying (11) by

0 1sin( )tω θ+ and 0 1 cos( )+tω θ
 
and carrying 

out the time average over a finite period, two time-invariant 

algebraic equations are derived, respectively, to yield; 

 

2 0 0 0 3

0 1 1 1 1 1 1

1 1 3
( 3 )( ) ( ) cos ,

2 2 8 2

N N a
m b b h m b mω θ− = − − − +

  
 (13) 

0

2 1 0 1

1
0 sin .

2 2

a
b m ω θ= − −                           (14) 

 

From (13) and (14), the amplitude gain and phase angle are 

obtained as; 
 

0
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By carrying out the time average of variance equation (12) 

over a finite period, the amplitude response is derived to yield; 

 

2
0 2 2 1 1 1
1

1

2 / 2 6
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N
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q b b h b h
m

b h

− −
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 (17) 

 

From (15) and (17), two unknown 0

1
m and 1

h can be solved 

and consequently, 1θ  can be derived from (16).  

The dominant mean amplitude and phase of sinusoidal 

response and the time average response of cyclostationary 

variance have been derived from time-domain formulation. The 

cyclostationary response in frequency domain will be derived 

in the following section.  

V.  FREQUENCY-DOMAIN FORMULATION 

For the investigation of frequency response, the response of 

noise spectrum will be first derived. From the noise 

propagation equation of (5), a scalar form of input-output 

model for n=3 can be expressed as; 
 

2

2 1 11 1(3 ( ) 3 ( ) ) ( ).N

n n n nx b x b x b h t m t x w tɺɺ ɺ+ + + + =     (18) 

 

By employing 11 1
( ) ,h t h= 0

1 1 0 1
( ) sin( )m t m tω φ= + and 

substituting them into (18), one has; 

 
0 2

2 1 1 1 0 1(3 3( sin( )) ) ( ).N

n n n nx b x b x b h m t x w tɺɺ ɺ ω θ+ + + + + =
   

(19) 

 

For deriving a frequency response formulation of input 

frequency, the frequency of input sinusoidal signal 0ω  is 

replaced by a variable ω  in (19). By taking the time average of 
2

1(sin( ))tω θ+  over a finite period and through Fourier 

transform, the response of power spectral density is obtained 

as; 

 

2 0 2 2 2

2 1 1 1

2
( ) .

( ) ( 3 3 ( ) / 2 )
x N N

q
S

b b b h b m
ω

ω ω
=

+ + + −
  

  (20) 

 

The response spectrum of (20) is considered as the time 

average of power spectral density. The mathematical power 

spectral density ( )xS ω  is equivalent to physical power spectral 

density ( )xG ω  by utilizing ( ) 2 ( ) ,  for 0.x xG Sω ω ω= ≥  By 

substituting (17) into (20), the time average response of 

physical power spectral density of noise is expresses as; 

 

2 2 2

2 2 1

2
( ) 2 .

( ) ( / )
x

q
G

b q b h
ω

ω ω
=

+ −
              (21) 

 

Here, it is observed that if the sinusoidal signal is absent, the 

1h in (21) is obtained from (12) by assigning 
0

1
0.m = Then, the 

response spectrum of (21) reduces to the same result as 

obtained by utilizing the standard Gaussian linearization. By 

taking the derivative of (21) with respect to 2ω  and setting it to 

zero, one has peak frequency: 
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.
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p n

p n

bq

b h
ω = −

                         

 (22) 

 

The requirement of positive value in the right hand side of 

(22) gives the existence condition of peak in the response of 

noise spectrum. From (22), it is observed that the peak 

frequency is a function of 1 ,
( ) .

p n
h  The 1 ,( ) p nh  can be derived by 

substituting (17) into (15) and utilizing 2

,p nω  for 2

0ω and 1 , ( ) p nh for 

1h . 

For deriving the frequency response of mean amplitude, the 

frequency of input sinusoidal signal 
0ω  is replaced by a variable 

ω  and (15) is expanded to give a polynomial of ω  as; 
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where; 
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From (23a), one derives: 
 

2 2

1 1 22 .z z zω = ± −                                   (24) 
 

Equation (24) gives the relationship between mean 

amplitude and input frequency. Here, it is noted that (24) 

reduces to the same result as obtained by utilizing harmonic 

balance when the noise excitation is absent, i.e. 1 0.h = For 

investigating the behavior of peak response, the peak frequency 

and the corresponding peak of mean amplitude can be derived 

from (24). By setting the square root in the right hand side of 

(24) to zero, one has: 

 

2 0

1 1 1(( ) , ( ) ),p p pz m hω =                        (25a) 
0 2 0

1 1 1 2 1 1( (( ) , ( ) )) 2 (( ) , ( ) ) 0.p p p pz m h z m h− =               (25b) 

 

By substituting (17) into (25a), one derives: 
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2 1 2

1

2 1

3
( ) .

2 2 22 ( )

N

p p

p

b bq
b h

b h
ω = + + −

                

 (26) 

 

The requirement of positive value in the right hand side of 

(26) gives the condition of existence of peak in the response of 

signal spectrum. The peak of mean amplitude can be derived by 

substituting (17) into (25b) to yield: 

 

4 2 4 2 2 2 2

2 1 1 2 2 1 1 2 20 2

1 2

2

( 4( 3 ( ) ) ( 4( 3 ( ) ) 48
( ) .

6

N N N

p p

p N

b b b h b b b b h b b b a
m

b b

− + + − + +
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It is observed from (26) and (27) that the peak frequency and 

the corresponding peak of mean amplitude are functions of 

1( ) .ph  The 
1( ) ph  can be solved by substituting (17) into (15) and 

utilizing 2

p
ω  for 2

0ω and 1 ,
 ( )

p n
h for 1h . 

The formulations of frequency response of sinusoidal signal 

and white-noise excitation have been derived. The existence 

conditions and the corresponding frequencies in the spectra of 

peak amplitude of mean and noise response are also derived. In 

the next section, the validity in the application of the present 

time-domain and frequency-domain formulations will be 

numerically simulated. 

VI. NUMERICAL SIMULATIONS 

Since it is lack of exact solution for the nonlinear response, 

Monte Carlo simulations are employed for validation. In the 

numerical results, only the response of Duffing system (n= 3) is 

simulated. The validity of utilizing the Gaussian linearization 

method in analyzing the cyclostationary response of the 

Duffing system under sinusoidal signal and white noise 

excitation is first investigated. By choosing system parameters 

1 21,  1,  =1= = N
b b b  to form a Duffing system, and assigning 

input signal amplitude 1,a = input signal frequency 0.2 Hz and 

input noise intensity 2q=5, the cyclostationary mean and 

variance response, respectively, by employing the Gaussian 

linearization of (3), (4), and (6) and Monte Carlo method are 

simulated as shown in Figs. 1 and 2.  

 

 

Fig. 1 Cyclostationary mean response of state x1 

 

In the Monte Carlo simulation, the sample response is passed 

through a narrow band filter which is designed with central 

frequency of sinusoidal input frequency and quality factor of 

10. From Fig. 1, it is shown that the Gaussian linearization 

method gives very accurate cyclostationary mean response. 

Fig. 2 reveals that the response of variance includes the 

components of twice signal frequency and other harmonic 

frequencies. By employing the Gaussian linearization for 

variance response, the predicted cyclostationary variance is 
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underestimated. The error of time average of variance response 

is about 9.75%. From the results of Gaussian linearization, the 

variance response can be expressed as 

11 0( ) 0.722 0.044sin(2 ).h t tw f= + +  The sinusoidal amplitude of 

variance is 6% of the time average of the variance response. As 

a result, the variance response of Fig. 2 supports the analytical 

assumption of utilizing 
11 11 1( ) ( )h t h t h= =  in the present 

formulation. 

 

 

Fig. 2 Cyclostationary variance response of state x1 

 

Next, the applications of the present approach for analyzing 

the time-domain cyclostationary response are investigated. By 

employing the same parameters as in simulating Figs. 1 and 2 

but varying input noise intensities, the amplitude of mean 

response at input sinusoidal frequency and the time average of 

variance response are simulated by utilizing the Monte Carlo 

method, Gaussian linearization, and present formulation as 

shown in Figs. 3 and 4.  
 

 

Fig. 3 Cyclostationary amplitude of mean response by different 

approaches 

 

The simulated figures reveal that the present formulation of 

(15) and (17) with cyclostationary approximations in the 

Gaussian linearization predicts accurate cyclostationary 

amplitude of mean response and time average of variance 

response as those obtained by employing standard Gaussian 

linearization approach. In comparing with Monte Carlo results, 

Fig. 3 shows that the present approach gives higher error in the 

amplitude of mean response for either weaker or higher noise 

intensity. For the time average of variance response as shown in 

Fig. 4, the Gaussian linearization approaches give an 

underestimation error about 10%. The numerical results in 

Figs. 3 and 4 reveal that the present algebraic approach can be 

employed for analyzing the time-domain statistical response.  
 

 

Fig. 4 Cyclostationary time average of variance response obtained by 

different approaches 

 

In the investigation of signal frequency response, the same 

system parameters as those in simulating the time-domain 

response are utilized. With different input noise intensities, the 

frequency response of mean amplitude by (24) is simulated as 

shown in Fig. 5. For the simulated Duffing system, the 

frequency response reveals single-valued amplitude for the 

noise intensity ranging from 1 to 10. When the noise intensity 

increases, the peak amplitude decreases and the associated peak 

frequency shifts to higher frequency.  
 

 

Fig. 5 Frequency response of amplitude of mean with different noise 

intensities 

 

For the sinusoidal response with 2q=5, the amplitude 

spectrum of mean response obtained by the present approach is 

compared with that obtained by Monte Calo simulation as 

shown in Fig. 6. The present predicted peak frequency is 

0.267Hz that is the same frequency as obtained by emloying 

(26). The present predicted peak frequency is higher than the 
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frequency by Monte Carlo simulation with an error about 9%. 

The peak frequency of amplitude of mean response with 

varying noise intensity is simulated and compared with the 

results by Monte Calo simulation as shown in Fig. 7. From the 

simulated results with 2q from 0.5 to 10, the error of peak 

frequency predicted by the present formulation is about 10%. 

 

 

Fig. 6 Amplitude spectrum of mean response with 2q=5 by the present 

approach and Monte Calo simulation 

 

 

Fig. 7 Peak frequency of amplitude of mean response with varying 

input noise intensity by the present approach and Monte Calo 

simulation 

 

For the frequency response of noise spectrum, the mean 

physical power spectral density under unit-amplitude 

sinusoidal signal of 0.2 Hz and white-noise excitation with 

2q=5 by the Monte Calo, Gaussian linearization, and present 

approach are simulated as shown in Fig. 8. In Fig. 8, the power 

spectral density by the Monte Calo simulation is obtained 

through periodic time average of response spectra. The power 

spectral density by the Gaussian linearization approach is 

obtained by simulating (19) and through Welch spectrum 

estimator. From Fig. 8, it is observed that the present approach 

by (21) which utilizes cyclostationary approximations in the 

Gaussian linearization predicts almost the same mean power 

spectral density as that obtained by standard Gaussian 

linearization approach. By utilizing the peak frequency to 

divide the whole frequency range into a high frequency range 

and a low frequency range, the present approach predicts 

accurate magnitude of spectrum in the high frequency range but 

lower magnitude of spectrum in the low frequency range. For 

the present approach as simulated in Fig. 8, the predicted peak 

frequency in the power spectral density is 0.272Hz. The peak 

frequency is the same as that obtained by emloying (22). The 

present predicted peak frequency is higher than that by Monte 

Carlo simulation with an error about 26%. 

 

 

Fig. 8 Mean physical power spectral density of noise response under 

unit-amplitude sinusoidal signal of 0.2 Hz and white-noise excitation 

with 2q=5 by different approaches 

 

Finally, the qualitative response behavior of stochastic jump 

in the Duffing system will be investigated. The parameters of 

the Duffing system are selected to afford a lightly damped 

oscillator with weak noise excitation. By choosing 

1 21,  0.1,  =0.3,  0.2,  2 0.008,Nb b b a q= = = = a triple-valued 

frequency response of amplitude of mean can be obtained as 

shown in Fig. 9. Fig. 9 reveals that in a frequency range 

between point a, at 0.1997Hz, and point b, at 0.1878Hz, two 

stable and one unstable stationary solution are coexistent. The 

unstable solution is indicated by a dash line connecting points a 

and b. The stochastic jump between two stationary stable 

solutions such as points 2 and 3, which are at the same input 

frequency, implies the existence of bimodal probability density 

function in stationary response [10], [12]. For single-valued 

stable solutions in other frequency range such as point 1, at 

0.1751 Hz, and point 4, at 0.2069 Hz, the probability density 

response is a single peak distribution. The effectiveness of 

employing the present Gaussian linearization in predicting 

frequency response of mean is further investigated. The 

frequency response of phase of mean versus amplitude of mean 

is simulated as shown in Fig. 10. The numbers 1, 2, 3, 4 and 

alphabets a, b indicated in Fig. 10 are corresponding to those in 

Fig. 9 under the same input frequency. For those points 1, 2, 3, 

and 4 with frequencies specified in Fig. 9, the corresponding 

probability density responses are simulated by Monte Carlo 

method. From the simulated density functions, the phases of 

mean and amplitudes of mean of the probability-density peaks 

are indicated in Fig. 10. For the point 1 and point 4 in Fig. 10, 

the existence of single density peak and the associated 

coordinates of density peak can be reliably inferred by 
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employing the phase of mean and amplitude of mean as 

supported by the Monte Carlo simulation. For points 2 and 3 at 

the same input frequency in Fig. 10, the coexistence of two 

phases of mean and amplitudes of mean at the same frequency 

gives the evidence of the existence of bimodal probability 

density function in stationary response. By considering the 

predicted phases and amplitudes in the mean response as 

estimations of coordinates of two peaks in bimodal probability 

density, the phases of mean and amplitudes of mean on the 

coordinates of those two peaks can be reliably predicted as 

supported by Monte Carlo simulation. By employing the 

present method for estimating the coordinates of two peaks in 

bimodal probability density, the prediction is reliable for weak 

noise excitation since the stochastic jumps under combined 

sinusoidal and white noise excitation can be regarded as 

random spread of the deterministic jump of the Duffing system. 

 

 

Fig. 9 Multi-valued frequency response of amplitude of mean 

VII. CONCLUSION  

An algebraic formulation is developed for predicting the 

time-average of cyclostationary response of nonlinear system 

subjected to sinusoidal signal and white noise excitation. 

Duffing system is selected for validating the validity of the 

present approach in analyzing nonlinear response. The present 

formulated algebraic equation predicts accurate time-average 

of cyclostationary responses as those obtained by numerical 

solution of differential equations in the standard Gaussian 

linearization method. For the simulated numerical example, 

higher error in the amplitude of mean response appears in a 

region of either weaker or higher noise intensity. For the time 

average of variance response, the present approach gives an 

underestimation error about 10%. 

For the frequency response, algebraic formulations of the 

existence conditions of peaks and the corresponding peak 

frequencies in both spectra of amplitude of mean and noise 

response are derived and verified. The peak frequencies of 

amplitude spectrum of mean response and power spectral 

density of noise response are overestimated with error about 

9%, and 26%, respectively. The present approach has been 

applied for investigating the stochastic jumps of a lightly 

damped oscillator with weak noise excitation. By analyzing the 

frequency response of amplitude of mean, the stationary 

probability density response in either single peak or bimodal 

distribution under different input sinusoidal signal frequencies 

can be effectively predicted. The present algebraic solution 

gives reliable quantitative and qualitative prediction of mean 

and noise response for the Duffing system subjected to 

sinusoidal signal and white noise excitation. 

 

 

Fig. 10 Frequency response of phase of mean versus amplitude of 

mean 
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