
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2620

Abstract—An important structuring mechanism for knowledge
bases is building clusters based on the content of their knowledge
objects. The objects are clustered based on the principle of
maximizing the intraclass similarity and minimizing the interclass
similarity. Clustering can also facilitate taxonomy formation, that
is, the organization of observations into a hierarchy of classes that
group similar events together. Hierarchical representation allows
us to easily manage the complexity of knowledge, to view the
knowledge at different levels of details, and to focus our attention
on the interesting aspects only. One of such efficient and easy to
understand systems is Hierarchical Production rule (HPRs) system.
A HPR, a standard production rule augmented with generality and
specificity information, is of the following form
Decision If < condition>
 Generality <general information>
 Specificity <specific information>. HPRs systems
are capable of handling taxonomical structures inherent in the
knowledge about the real world. In this paper, a set of related
HPRs is called a cluster and is represented by a HPR-tree. This
paper discusses an algorithm based on cumulative learning
scenario for dynamic structuring of clusters. The proposed scheme
incrementally incorporates new knowledge into the set of clusters
from the previous episodes and also maintains summary of clusters
as Synopsis to be used in the future episodes. Examples are given
to demonstrate the behaviour of the proposed scheme. The
suggested incremental structuring of clusters would be useful in
mining data streams.

Keywords—Cumulative learning, clustering, data mining,
hierarchical production rules.

I. INTRODUCTION
HE goal of the learner in conventional learning methods
is to capture the inherent meaning of concepts meaning

by observing concept examples, which can be given at
once(batch learning) and incrementally. This paradigm
works well for knowledge-based system applications which
do not change in time. But many of the real life application
are characterized by change of data. Even concepts are not
static; they evolve over time. Applications such as dynamic
knowledge-bases, intelligent agents and active vision
systems violate many of the traditional assumptions of
concept leaning. All training examples are not available at
any given time; training examples are distributed over time.

Kamal K.Bharadwaj is a Professor at School of Computer and System
Sciences (SC&SS), Jawaharlal Nehru University (JNU), New Delhi-
110067, India (phone:91-9810196636; e-mail: kbharadwaj@gmail.com).

Rekha Kandwal is a Ph.D scholar at SC&SS, JNU, New Delhi, India
(phone: 91-9811529226; email: rekha.kandwal@gmail.com).

Consequently, the system must not only learn over time, but
it may also learn a changing concept.[5]

The predominant representation of the discovered
knowledge is the if-then rules because of its many
advantages. However this representation often severely
fragments the knowledge that exists in the data, thereby
resulting in a large number of rules. The fragmentation also
makes the discovered rules hard to understand and to use.
Also the discovered knowledge is represented only at a
single level of detail. This flat representation is not suitable
for human consumption because we are more used to
hierarchical representation of knowledge. Hierarchical
representation allows us to easily manage the complexity of
knowledge, to view the knowledge at different levels of
details, and to focus our attention on the interesting aspects.
A more efficient and easy-to-understand representation is in
the form of Hierarchical Censored Production rules which
has numerous applications in situations where decision must
be taken in real time and with uncertain information. This
representation is simple and intuitive, and also has a natural
way of organizing the knowledge in a hierarchical fashion,
which facilitates human analysis and understanding. Several
extensions/generalizations of the system have been
proposed (incorporating Fuzzy Logic [8],[13], DST [11],
Genetic Algorithms [9] and Neural Networks [12]).

In this paper an attempt is made to exploit the inherent
structural properties of HPRs, a form of HCPR where
censors are completely neglected due to time constraint, to
accommodate cumulative learning scenario. A dynamic
system which comprehends the knowledge with each
episode is developed. Results on the behaviour of the
proposed scheme are also included.

II. BACKGROUND
The concept of CPR as suggested by Michalski and

Winston has the following form:

 If P {premises/preconditions}
 Then D {actions/decision}
 Unless C {censor conditions}
A censor is a low likelihood condition when hold will block
the rule. So when the system is having low resources, it can
skip checking the censor conditions. If the resources are
available, the censor conditions are examined, increasing the
certainty factor of making a high speed decision or
reversing the decision itself. The above concept of CPR has
been extended to HCPR to incorporate both aspects of
precision namely certainty and specificity. Two new

Cumulative Learning based on Dynamic
Clustering of Hierarchical Production Rules

(HPRs)
Kamal K.Bharadwaj, and Rekha Kandwal

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2621

operator added to CPR and we have the concept of HCPR
having the general form as follows:

 D {decision/concept/action}
 If P [p1,p2,p3,…,pn] {preconditions}
 Unless C [c1,c2,…,cn] {censor conditions}
 Generality [G%] {general information}
 Specificity S [s1,s2,…,sk]
 {mutually exclusive set of specific information}
As a special case, dropping the unless operator due to time
constraint, HPR takes the form
D{decision/concept/action}
 If P[p1,p2,…,pn] {preconditions}
 Generality [G%] {general information}
 Specificity S [s1,s2,…,sk]
 {mutually exclusive set of specific information}
Here is an example set of related HPRs.
{level 0}
Is_in_city(X,Y):
 If [Lives_in_city(X,Y)]
 Generality []
 Specificty[Is_at_home(X),Is_outside_home(X)]
{level 1}
Is_at_home(X):
 If [Lives_in_city(X, Y), Time (night)]
 Generality [Is_in_city(X, Y)]
 Specificty[]
Is_outside_home(X):
 If [Lives_in_city(X, Y), Time (day)]
 Generality [Is_in_city(X, Y)]
 Specificty[Is_working_outdoor(X)
 ,Is_entertaining_outdoor(X)]
{level 2}
 Is_working_outdoor(X):
 If [Lives_in_city(X, Y), Time (day), Day (working)]
 Generality [Is_outside_home(X)]
 Specificty[]
 Is_entertaining_outdoor(X)]:
 If [Lives_in_city(X, Y), Time (day), Day (Sunday)]
 Generality [Is_outside_home(X)]
 Specificty[]

In the following discussion a set of related HPRs is called
a cluster and is represented as HPR tree. The cluster formed
by the above HPRs is represented as HPR-tree in Fig.1.
Now onwards instead of writing the set of HCPRs in a
cluster i, only the HPR-treei will be given.

The root represents the most general concept in a HPR
tree and any child in tree is more specific case of its parent.
As the concept becomes more specific, the number of
elements in its precondition part will increase obviously.
However it is not required to list all such elements because
total inheritance is an inherent feature of the HPRs tree
structure; each HPR inherits the entire preconditions set of
its parent HPR, and thus of all of its ancestors. So the
redundancy is minimized in the listing of preconditions in
the child node. HPR system collect fragmented knowledge
and represent these as collective one and hence significantly
reducing the knowledge base. This representation scheme
reduces the complexity of the discovered knowledge
substantially, makes knowledge base easy to understand and
efficient for future processing.

 Jain and Bharadwaj [4] used the term “fusion” for
merging two related HCPR trees. Two related HCPR trees
can be merged into one if there are some common properties
in the preconditions set of the roots of these two HCPR tree.
The trees merged may not remain in their original form but
the hierarchy of each tree is maintained .Fusion algorithm
works as follows:

Fusion(X,Y):Merges two HCPR trees having roots X and Y
/* In the following discussion, IF(X) denotes the set of
preconditions for the decision X*/
1. if (IF(X) ∩ IF(Y))=φ)
 then printf (“ No fusion possible”)
2. if (IF(X) ⊂ IF(Y))
 { then { X will be the root of the new combined tree}
 T1 ← X
 T2 ← Y
 }
 else if (IF(Y) ⊂ IF(X))
 { then { Y will be the root of the new combined tree}
 T1 ← Y
 T2 ← X
 }
 else
 {{A new root is created for new combined tree}
 IF(new_root) ← {(IF(X) ∩ IF(Y)}
 Specificity(new_root) ← {X,Y}
 IF(X) ← IF(X)-IF(new_root)
 IF(Y) ← IF(Y)-IF(new_root)
 Generality(X) ← [new_root]
 Generality(Y) ← [new_root]
 }
3. Find where tree T2 would be attached in the tree with
root T1 and attach it there.

Two related HCPR tree and their merging by Fusion
algorithm is shown in Fig. 2.

 X is_in_city Y
{Lives_in_city(X, Y)}

 X is_at_home
{Time(night)
}

 X is_outside_home
 {Time (day)}

 X is working_outdoor
 {Day(working)} X is entertraing_outdoor

 {Day (Sunday)}

Fig. 1 HPR-tree- Cluster of related HPRs

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2622

III. HPRS CLUSTERS AND CUMULATIVE LEARNING
Clustering is the process of grouping the data into groups

so that objects within a cluster have high similarity to each
other and have dissimilarity to objects in other clusters. The
objects here are grouped on the principle of maximizing the
intraclass similarity and minimizing the interclass similarity.
Representing data by a few clusters loses certain fine details
but achieves simplification. Arranging voluminous data into
few cluster is a challenging task as it is to be done using a
limited memory. Clustering is a dynamic field of research in
data mining. Many clustering algorithms have been
developed. These can be categorized into partitioning
methods, hierarchical methods, density-based methods,
grid-based methods, and model-based methods.

The basic idea of Cumulative Learning in general is to
have the agent solve a series of related tasks in some
sequence, and then, while solving the tasks, speed up
learning a particular task by using information or knowledge
obtained solving from previous tasks. One way to look at
Cumulative Learning is as a way to set bias for a new task
using knowledge accumulated from solving previous tasks.
Since the performance (in terms of no. of examples required
to learn) of a learning agent depends to a large extent on the
bias given to it in the beginning, Cumulative Learning helps
speed up learning. Inherent properties of HPRs can be
exploited to implement cumulative learning scenario in this
system

Our focus is on the monitoring of cluster formation
process so as to have deeper insight into the changing trend
of data i.e. the comparison of clusters formed at different
instances of time with the new piece of knowledge mined,
and then adjusting cumulatively this new knowledge
appropriately in one of the clusters or forming a brand new
cluster of knowledge. The objective is online, dynamic
detection and summarization on interesting changes, to
know how well the model constructed from the previous
data fits the new data or we can say that by how much the
old model misrepresents the new data. An algorithm is
proposed that accommodate the new piece of knowledge

appropriately in one of the clusters of previous episode or
forming an absolutely new cluster. All clusters of this new
episode will act as the knowledge of previous episode.[10].

IV. PROPOSED METHODOLOGY
The new piece of knowledge obtained in each episode is

compared with the previous clusters, a correspondence
needs to be established between old and new clusters that is
which new cluster is to be compared with which old cluster.
After the clustering for an episode is done, a synopsis of the
clustering is stored and is used for obtaining cumulative
clustering as further stream arrives. The synopsis reflects
the trends of the historical data. Once clusters are obtained
and finalized in an episode, the comparison parameters are
also calculated and stored in the synopsis. Here Synopsis is
the set of clusters from previous episodes. The attribute of a
particular cluster is its root_property, shown with bold face,
is the information at the root node of the corresponding
HPR tree. For any clusters C1and C2, we define a boolean
function, compare_attribute (C1,C2) as:
 1 if root_property(C1)∩ root_property(C2) ≠ φ
 and 0 otherwise.

The whole process is depicted in Fig. 3.

 ….

Algorithm: Cumulative Clustering Scheme
Input: A set of current clusters and Synopsis
Output: Updated Synopsis

1. IF compare_attribute (Cj, Ci)=1 for any cluster Ci, Cj,
where Cj is cluster from current episode and Ci is the cluster
from previous episode then

a. Fusion(Cj, Ci) → Ci′
 The root_property of a cluster gets updated as per
the following if-else statement:

 if (root_property (Ci) ⊂ root_property(Cj))
 then root_property(Ci′)= root_property(Ci)
 else if(root_property(C) ⊂ root_property(C))
 then root_property(Ci′)= root_property(Cj)
 else
 root_property(Ci′)= root_property(Cj) ∩
 root_property(Ci)
 b. Add cluster new Cj′ to the synopsis and delete cluster
 Ci from the synopsis, delete Cj from current set of
 cluster .
2. ELSE add CJ to the synopsis, delete Cj from current set
of cluster .

 A
[P1]

 A1
 [P2,P3]

 A2
[P4,P5,P6]

 A3
 [P7,P8]

 B
[P1,P9,P10]
 B1
 [P11,P12]

(a)

 A
[P1]

 A1
 [P2,P3]

 A2
[P4,P5,P6]

 A3
 [P7,P8]

 B
[P9,P10]

 B1
 [P11,P12]

(b)

Fig. 2 (a) HCPR trees before fusion (b) Final tree after fusion

Stream Processing
 Engine

Updated
 clusters

Data Stream

 Synopsis:
Clusters from previous episodes

Fig. 3 Proposed Cumulative clustering approach

Current episode

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2623

3. Repeat step 1-2 for remaining Cj, Ci where Ci∈Synopsis
and Cj ∈current set of clusters.

The Output, updated synopsis will be the Synopsis for
the next episodes.

V. EXPERIMENTAL RESULTS

The algorithm is tested on a real life data and synthetic
data.
Example 1: Suppose the following HPR tree is obtained in
the current episode, depicting HPR cluster of plane figures.
The synopsis is initialized with cluster C1, that is
Synopsis={C1}

Suppose the cluster obtained in second episode, say C2 is
depicting the concept of Food items.
 Now compare_attribute(C2,C1)=0, so a new cluster is
added to synopsis. Synopsis={ C2,C1 }

Assuming that in the third episode,cluster C3 is obtained
depicting the concept of non polygon figures.

Now compare_attribute(C3,C2)=0 so Fusion(C3,C1) not
possible and compare_attribute(C3,C1)=1 so C3 gets merged

in C1 producing a more refined cluster C1′ for future
episodes.

 At this stage, Synopsis={ C1′,C2}

Example 2: Consider Fig. 4 as the synopsis from the
previous episode, contains two clusters C1 & C2. The
synopsis obtained after two episode is shown in Fig. 5.

 Now compare_attribute(C1*, C1)=1 so
 Fusion(C1*, C1) → C1′

Add C1′ to the synopsis. delete C1 from there. Delete C1*
from current set of clusters.
 compare_attribute(C2*, C2)=0 so no Fusion.
compare_attribute(C2*, C1′)=0 so no Fusion .
Add C2* to the synopsis. Delete C2* from current set of
clusters.

 •Plane_figure
 [2_dim,closed_fig]

 • Non_polygon
[atleast_one_edge_is_not_straight]

 •Polygon
[each_edge_is_straight]

 •Triangle
 [3 vertices]

 • Square
[4_vertices,all_edges_equal,

all_angles_equal]

 •Non_polygon
 [2_dim,closed_fig ,
 atleast_one_edge_not_straight]

 •Ellipse
[non_equidistant_from_centre]

 •Circle
[equidistant_from_centre]

Episode 1:

Current set of clusters

•D2
[p1,p2,p3]

 •D1″[p1″,p2″]

 •D2″[p3″]

C2* C1*

 •D1
[p1,p2]

 •D1′ [p1′,p2′]

•D2′[p4′] D3′[p3′]

C1 C2

Fig. 4 Synopsis from previous episode

 •D1
 [p1,p2]

 •D2
 [p3]

C1′

 •food
 [edible]

 • Meat
[animal_product] •Vegetable

[plant_product]
 •Beans
 [leguminous]

 • Carrots
[tapering_root, sweet]

 •Dessert
 [sweet,
 eaten_after_main_meal]

 •Plane_figure
 [2_dim,closed_fig]

 • Non_polygon
[atleast_one_edge_is_not_straight] •Polygon

[each_edge_is_straight]

 •Triangle
 […]

 •Square
 […]

 •Ellipse
 […]

 •Circle
 […]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2624

 This will act as a synopsis for next episode.

 Synopsis after first episode:

 •D1′ [p1′,p2′]

 •D2′[p4’] D3′[p3′]

C1’ C2

 •D1
 [p1,p2]

 •D2
 [p3]

 •D1″[p1″,p2″]

 •D2″[p3″]

C2*

After second episode

•D3[p1]

 •D4[p4]

•D3
[p1]

•D3[p1]

 •D5[p4,p5]

Episode 2:

Current set of clusters : {C1,C2,C3}
C3C2 C1

Fig. 5 Synopsis after two episode

C1′

C2

No Change

 Updated cluster
No change

C2*

 •D1′[p1′,p2′]

•D2′[p3′] •D3′[p4′]

 •D3[p1]

•D4[p4] •D1[p2]

•D5[p5] •D2[p3]

 •D1″[p1″,p2″]

 •D2”[p3”]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2625

VI. CONCLUSION
The paper has discussed a novel cumulative learning

methodology based on dynamic structuring of
Hierarchical Production Rules (HPRs) clusters. The main
advantage of the method is the high comprehensibility of
the knowledge representation used and the employment
of a symbolic learning approach Fusion [4] that allows
incorporation of new knowledge into the knowledge
gained during previous episodes. The proposed system
restructures clusters with each episode and maintains a
summary of clusters with minimum redundancy for future
episodes. The proposed methodology would be useful in
mining data streams and in the development of dynamic
knowledge based systems.

REFERENCES
[1] Han, J., Kamber, M. “Data mining: Concepts and Techniques”

Academic Press (2001).
[2] Adriaan, P., Zantingre, D. “Data Mining”, Addison Wesley, 1999.
[3] Ryszard S. Michalski, Pavel Brazdil: Introduction, Special Issue

on Multistrategy learning, Machine Learning, vol 50, pp 219-222,
2003.

[4] Jain, N.K. ,Bharadwaj, K.K.,: Some Learning Techniques in
Hierarchical Censored Production Rules(HCPRs) System,
International Journal of intelligent systems, John Wiley & sons,
Inc.,vol. 13,pp 319-344,1997.

[5] Marcus A.Maloof and Ryszard S. Michalski : “Learning Evolving
Concepts Using Partial-Memory Approach”, Working Notes of the
1995 AAAI Fall Symposium on Active Learning, 1995.

[6] Bharadwaj, K.K., Jain, N.K.: Hierarchical Censored Production
Rules (HCPRs) System, Data and Knowledge Engineering, vol.8
(North Holland), 1992.

[7] Fadl M.Ba-Alwi and K.K.Bharadwaj: “Automated discovery of
hierarchical ripple-down rules(HRDRs)”, In the Proc of Twenty-
thirdIASTED International Conference on Artificial Intelligence
and Applications(AIA 2005),Innsbruck,Austria,February 14-
16,2005.

[8] Fadl M.Ba-Alwi and Bharadwaj, Kamal.K::“Discovery of
Production Rules with Fuzzy Hierarchy”,ENFORMATIKA ,vol 1
,2005 ISBN 975-98458-3-0.

[9] Basheer M. Al-Maqaleh and Kamal.K.Bharadwaj::“Genetic
Programming Approach to Hierarchical Production Rule
Discovery”,ENFORMATIKA ,vol 6,2005 ISBN 975-98458-5-7.

[10] Rekha Kandwal and Kamal.K.Bharadwaj: “ AA CCuummuullaattiivvee
LLeeaarrnniinngg AApppprrooaacchh ttoo DDaattaa MMiinniinngg EEmmppllooyyiinngg CCeennssoorreedd
PPrroodduuccttiioonn RRuulleess ((CCPPRRss))”,to appear in the Proc of 5th International
Enformatika Conference, Prague, Czech Republic, August 26-28,
2005.

[11] Bharadwaj, K.K., Neerja, Goel, G.C.: Hierarchical Censored
Production Rules (HCPRs) Systems Employing the Dampster-
Shafer Uncertainty Calculus, Information and Software
technology, Butterworth-Heinemann Ltd. (U.K.) Vol. 36 No., 155-
164, 1994.

[12] Jose Demisio Simoes da Silva, Bharadwaj K.K., "Integration of
Hierarchical Censored Production Rules (HCRPs) System and
Neural Networks" , SBRN’98, Proceedings of IEEE Computer
Society, Los Alamitos, California, USA, pp73-78, Dec 1998.

[13] Neerja , Bharadwaj K.K., "Fuzzy Hierarchical Censored
Production Rules System" Int. Journal of Intelligent Systems ,
John wiley & sons (New York), vol 11, No.1,pp 1-26 (1996).

[14] Brian Babcock, Shivnath Babu, Mayur data, Rajeev Motwani, and
Jennifer Widom: Models and Issues in data Stream Systems,
Proceeding of 21st ACM Symposium on Principles of Database
Systems (PODS 2002).

[15] Guozhu Dong, Jiawei Han, laks V.S. Lakshmanan, Jian Pei,
Haixun Wang, Philip S. Yu: Online Mining of changes from data
Streams: Research Problems and Preliminary Results, In
Proceedings of the 2003 ACM SIGMOID Workshop on
Management and Processing of data Streams.

