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 
Abstract—The generalized wave equation models various 

problems in sciences and engineering. In this paper, a new three-time 
level implicit approach based on cubic trigonometric B-spline for the 
approximate solution of wave equation is developed. The usual finite 
difference approach is used to discretize the time derivative while 
cubic trigonometric B-spline is applied as an interpolating function in 
the space dimension. Von Neumann stability analysis is used to 
analyze the proposed method. Two problems are discussed to exhibit 
the feasibility and capability of the method. The absolute errors and 
maximum error are computed to assess the performance of the 
proposed method. The results were found to be in good agreement 
with known solutions and with existing schemes in literature.  
 

Keywords—Collocation method, Cubic trigonometric B-spline, 
Finite difference, Wave equation. 

I. INTRODUCTION 

ONSIDER a wave equation in the form of [1] 
 

 ,tt xxu u q x t                                  (1) 
 

with a x b   and 0 t T   subject to the initial conditions 
 

   1,0 ,u x x a x b             (2a) 
 

   2,0 ,tu x x a x b             (2b) 
 

and the boundary conditions 
 

                            1, , 0u a t t t T                 (3a) 
 

                          2, , 0
b

a
u x t t t T             (3b) 

 

where ( , ),q x t  1( ),x  2 ( ),x  1( )x  and 2 ( )x  are known 

function.  
In past few years, a number of papers have been focused on 

solving this hyperbolic partial differential equation 
numerically. Dehghan presented numerical techniques based 
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on the three-level explicit finite difference schemes for solving 
this problem [2]. Ang solved the same problem using a 
scheme based on an integro-differential equation and local 
interpolating functions [3]. Then, B-spline functions were 
found to be an efficient method for solving wave equation. 
Dehghan et al [4], Khury et al. [5] and Goh et al. [6] proposed 
numerical methods based on cubic B-spline approach. 

In this work, a new three-time level implicit approach based 
on B-spline will be presented for the approximate solution of 
wave equation. Central finite difference approach is used to 
discretize the time derivative and cubic trigonometric B-spline 
basis function are considered to interpolate the solution in 
space dimension. The stability of the proposed method is 
analyzed using von Neumann stability analysis. Two problems 
are solved to verify the proposed method. 

II. TEMPORAL DISCRETIZATION 

Consider a grid points ( , )j kx t  to discretize the grid region 

[ , ] [0, ]a b T    with jx a jh   and kt k t   where 

0,1, 2,...,j n  and 0,1, 2,3,..., .k N  h  and t  denote mesh 

space size and time step size, respectively. An approximation 
of the wave equation at 1thkt   time level is given as follows 

[2]  
 

                   1
1 ,

k k k

tt xx xx j kj j j
u u u q x t                 (4) 

 
The time derivative term in (4) is discretized by central 
difference approach. Thus,  
 

 
    

1 1
1

2

2
1

k k k
k kj j j k

xx xx jj j

u u u
u u q

t
 

 
 

   
     (5) 

 
In order for (5) to become half implicit and half explicit 

scheme, the value of   is chosen to be 0.5. After 
simplification, the following scheme is produced 

 

   

     

2 11

2 2 1

0.5

        2 0.5

kk
j xx j

kk k k
j xx j jj

u t u

u t u t q u





 

                (6) 
 
which is evaluated for 0,1, ,j n   at each time level k. 

Equation (6) is known as Crank-Nicolson scheme. The scheme 
is solved numerically by substituting cubic trigonometric B-
spline function discussed in the following section.  
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III. COLLOCATION METHOD 

In this section, the approximate solution of wave equation is 
considered to be the following cubic trigonometric B-spline 
function  

 

     
1

4,
3

,
n

j j
j

u x t C t T x




 
         (7) 

 

( )jC t  is time dependent unknowns to be determined and 

4, ( )jT x  is cubic trigonometric B-spline basis function of order 

4 given as 
 

 

 
   
     
   

   
     
   

 

3
1

2
2

3 1 1 2

4 1

4, 2
3

4 1 3 2 3

2
4 2

3
4 3 4

[ , ]

[ , ]

1

[ , ]

[ , ]

j j j

j j

j j j j j

j j

j

j j

j j j j j

j j

j j j

x x x x

x x

x x x x x x

x x
T x

x x

x x x x x x

x x

x x x x



 

  

 

  

  

 







   

 



    

 

  

 



 

 


 




    (8) 
 

where   sin ,
2

j
j

x x
x

 
  

 
   sin

2
j

j

x x
x

 
  

 
 and 

1 2 3     with 1 sin ,
2

h    
 

 2 sin( ),h   3

3
sin

2

h    
 

 

and 4 sin(2 ).h   

Due to local support properties of B-spline basis function, 
there are only three nonzero basis functions are included for 
evaluation at each jx  namely 4, 3 ( ),jT x  4, 2 ( )jT x  and 

4, 1( ).jT x  Thus, the approximate solution, ( , )j ku x t  and the 

derivatives with respect to x  can be obtained as follows 
 

1 3 2 2 1 1
k k k k
j j j ju C C C               (9) 

 

  3 3 3 1

k k k
x j jj

u C C            (10) 
 

  4 3 5 2 4 1

k k k k
xx j j jj

u C C C      
      (11) 

 

for 0,1,j n   where 

2
1

1
2 3

,



 


 

1
2

3

2
,







 3
3

3
,

4






 

2
1

4
2 3

6 9

4




 



 and 

 2
4 1 2

5
1 2 3

3 2
.

4

  


  

 


 

Solution to (1) is obtained by substituting (9)–(11) into (6). 

Initially, time dependent unknowns 0C  are calculated and 

shown in the next section. Then, the following initial condition 

is substituted into the last term of (6) for computing 1C  
 

1 1
22 ( )j ju u t x             (12) 

 

Subsequently, the time dependent unknowns, kC  for 1k   
are calculated. The each system obtained consists 1n  linear 
equations with 3n  unknowns, namely 

3 2 1 1( , , , , )k k k k
nC C C C   kC   for 1.k   Hence, the following 

two additional equation from the boundary conditions given in 
(3a) and (3b) are needed for calculation. 

i.  1 1 1
1 3 2 2 1 1 1 1

k k k
kC C C t     

       

ii. 1 1 1 1
3 3 3 1 3 3 3 1

k k k k
n nC C C C      
         2 1 1,  

b

k ka
t q x t dx  

    

Thus, a    3 3n n    tridiagonal matrix system as below 

is obtained. 
 

M N P Q  k+1 k k-1C C C        (13) 
 

System (13) are solved using the Thomas Algorithm 
repeatedly for 0,1, , .k N   

IV. INITIAL STATES 

Time dependent unknown 0C  is calculated from the initial 
condition and boundary values of the derivatives of the initial 
condition as follows [7], [8]: 

i. 0
1( ) ( )x j ju x   for 0j   

0 0
3 3 3 1 1 0( )C C x   

   

ii. 0
1( )j ju x  for 0,1, 2,...,j n  

0 0 0
1 3 2 2 1 1 1( )j j j jC C C x         

iii. 0
1( ) ( )x j ju x   for j n  

0 0
3 3 3 1 1 ( )n n nC C x   

   

This yields a ( 3) ( 3)n n    matrix system as  
 

0AC = B           (14) 
 
where 

3 3

1 2 1

1 2 1

1 2 1

1 2 1

3 3

0 0 0 0 0 0

0 0

0 0

,

0 0

0 0

0 0 0 0 0 0

 
  

  

  
  
 

 
 
 
 
 

  
 
 
 
  

A



  


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

 
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  
 
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 
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 

0C   and 

 
 

 
 

1 0

1 0

1

1

.

n

n

x

x

x

x









 
 
 
 
 
 
 
 
  

B   

 
The solution of (14) can be obtained by using the Thomas 

Algorithm. 

V. STABILITY ANALYSIS 

In this section, von Neumann stability analysis is applied 
for analyzing the stability of the proposed scheme. The growth 
of error in single Fourier mode is considered as 

 
k k i jh
jC e            (15) 

 

where 1i    and   is the mode number. It is known that 

this method can be used to analyze the stability of linear 
scheme. Thus, ( , )q x t  in (1) is assumed to be 0 and the 

approximation is given by 
 

        2 1 21 12 1
k kk k k

j xx j xx jj j
u t u u t u u           (16) 

 
Substituting (9)-(11) into (16) gives 
 

1 1 1
1 3 2 2 1 1

1 1 1
3 3 4 2 3 1 1 3 2 2 1 1      

k k k
j j j

k k k k k k
j j j j j j

p C p C p C

p C p C p C C C C  

  
  

  
     

 

       (17) 
 

 

where  2

1 1 4 ,p t       2

2 2 5 ,p t       

  2

3 1 42 1p t       and   2

4 2 52 1 .p t       In 

order to analyze the stability of the present scheme, (15) is 
inserted into (17). After simplification, it can be written as 
 

2 0A B C              (18) 
 

where  1 2cos ,A p h p      3 4cosB p h p     and 

 1 2cos .C h       Based on Routh-Hurwitz criterion, the 

transformation, 1

1

v

v
 



 is applied to (18) [9]. Then, the 

equation becomes 
 

     2 2 0A B C v A C v A B C           (19) 
 

The necessary and sufficient condition for 1   are 

0,A B C    0A C   and 0.A B C    Thus, the 

following terms have been proved. 

 

 1 2cos 0h               (20) 
 

 4 5cos 0h                  (21) 
 

Hence, the scheme is concluded to be is unconditionally 
stable. 

VI. NUMERICAL EXPERIMENTS 

A. Problem 1 

The wave equation is considered as [6], [10] 
 

0, 0 1, 0tt xxu u x t T       
 
subject to the initial and boundary conditions 
 

       

   
1

0

,0 cos 0, cos

,0 0 , 0t

u x x u t t

u x u x t dx

  

   
 
The analytical solution is given by 

      1
, cos cos .

2
u x t x t x t            The space-time plot 

for this analytical solution and approximate solution obtained 
with 0.02h   and 0.1t   are shown in Figs. 1 and 2, 
respectively. The accuracy of the present method is tested by 
calculating the absolute error of the problem. Fig. 3 depicts the 
absolute error of Problem 1 at different time level with 

0.02h   and 0.01.t   It can be seen that the errors decrease 
as time increases. Numerically, the absolute errors of this 
problem are listed in Table I. At 5,t   the table shows that the 

present method gives smaller absolute error compare with [6]. 
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Fig. 1 Space-time graph of analytical solution of Problem 1 with 
0.02h   and 0.1t   
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Fig. 2 Space-time graph of approximate solution for Problem 1 with 
0.02h   and 0.1t   
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Fig. 3 Absolute error  of Problem 1 with 0.02h   and 0.1t   

B. Problem 2 

The following one-dimensional wave equation is considered 
[3], [5], [10] 

 

 2 2
1

sin , 0 1, 0
4

t

tt xxu u e x x t T 
        

   
 
with the initial and boundary conditions  
 

       

     
1

2

0

,0 sin 0, cos

1 2
,0 sin ,

2

t

t

u x x u t t

u x x u x t dx e

 






 

  
 

 
The analytical solution of this problem is given as 

   2, sin .tu x t e x  Figs. 4 and 5 show the space-time plot 

of the analytical solution and the approximate solution with 
0.02,h t    respectively. Fig. 6 depicts absolute error of 

Problem 2 at different time level with 0.02.h t    The 
figure shows the errors increase when time increases. Table II 
lists the maximum error obtained from present method and 
Dehghan & Shokri method [10] at 0.5t   and 1t   with 

0.01h   and 0.0001.t   The comparison show the present 
method give better results. 

 
 
 
 

TABLE I 

ABSOLUTE ERROR OF PROBLEM 1 AT 5t   WITH 0.01h   AND 0.1t   

x [6] Present Method 

0.2 1.21 10-4 1.12 10-4 
0.3 1.15 10-4 1.07 10-4 
0.4 6.88 10-5 6.40 10-5 

0.5 2.03 10-13 5.05 10-15 
0.6 6.88 10-5 6.40 10-5 
0.7 1.15 10-4 1.07 10-4 
0.8 1.21 10-4 1.12 10-4 
0.9 7.97 10-5 7.39 10-5 
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Fig. 4 Space-time graph of approximate solution for Problem 2 
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Fig. 5 Space-time graph of approximate solution for Problem 2 
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Fig. 6 Absolute error of Problem 2 using 0.02h t    
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TABLE II 

MAXIMUM ERROR OF PROBLEM 2 AT 0.5t   AND 1t   WITH 

0.01h   AND 0.0001t   

t MQ – RBF  [10] Present Method 
0.5 1.3371 10-3 3.9515 10-5

1.0 2.3794 10-3 2.008 10-4

VII. CONCLUSION 

In this work, a numerical method incorporating finite 
difference approach with cubic trigonometric B-spline had 
been developed to solve one-dimensional wave equation. B-
spline function had been used to interpolate the solution in x-
direction and finite difference approach had been applied to 
discretize the time derivative. Based on von Neumann stability 
analysis, this approach is proved to be unconditionally stable. 
Two problems were tested. It was found that the solutions are 
approximated very well. Tables I and II show the errors 
obtained from present method are less than the errors obtained 
from the method proposed in literature. Hence, we conclude 
that this present method approximates the solution very well.  
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