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Abstract—This paper presents a comparative analysis of 

continuously stirred tank reactor (CSTR) control based on adaptive 
control and optimal tuning of PID control based on particle swarm 

optimization. In the design of adaptive control, Model reference 

adaptive control (MRAC) scheme is used, in which the adaptation 

law have been developed by MIT rule & Lyapunov’s rule. In PSO 
control parameters of PID controller is tuned by using the concept of 

particle swarm optimization to get optimized operating point for 

minimum integral square error (ISE) condition. The results show the 
adjustment of PID parameters converting into the optimal operating 

point and the good control response can be obtained by the PSO 

technique. 

 

Keywords—Model reference adaptive control (MRAC), optimal 

control, particle swarm optimization (PSO). 

I. INTRODUCTION 

URING the past decades, there has been a great 

advancement in the process control. Various control 

methods such as Adaptive control, neural control, fuzzy 

control and optimal control have been studied. In this paper 

two methods i.e. adaptive control and optimal control by using 

PSO has been discussed. 

An adaptive controller is a mechanism of some system 

identification to obtain a model and then design a controller. 

Adaptive controller can be apply for modify its behavior in 

response to the changing dynamics of the process and the 

character of the disturbances. The base element of all the 

approaches is that they have the ability to adapt the controller 

to accommodate changes in the process. This permits the 

controller to maintain a required level of performance in spite 

of any noise, nonlinearity or fluctuation in the process. An 

adaptive system has maximum application when the plant 

undergoes transitions or exhibits non-linear behavior and 

when the structure of the plant is unknown. Adaptive is called 

a control system, which can adjust its parameter automatically 

to compensate for variations in the characteristics of the 

process it control. 

Particle Swarm Optimization (PSO), first introduced by 

Kennedy and Eberhart, is one of the modern heuristic 

algorithms. It was developed through simulation of a 

simplified social system. It has been found to be robust in 

solving continuous nonlinear optimization problems. The PSO 

technique is used to generate a high-quality solution within 

shorter calculation time and stable convergence characteristic 

than other stochastic methods. PSO method is an excellent 
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optimization methodology and a promising approach for 

solving the optimal PID controller parameters. Therefore, this 

study develops the PSO-PID [1], [10]. 

II. DEVELOPMENT OF MATHEMATICAL MODELING 

A perfectly mixed continuously stirred tank reactor (CSTR) 

as shown in Fig. 1 with first order exothermic irreversible 

reaction A B is considered. In this a fluid stream is 

continuously fed to the reactor and other fluid stream is 

continuously removed from the reactor. A jacket surrounding 

the reactor has in feed and exit streams. The jacket is assumed 

to be perfectly mixed and at lower temperature than the 

reactor [4]-[6]. 

 

 

Fig. 1 Continuously Stirred Tank Reactor 

 

Following assumptions has been made for CSTR: 

• Perfect mixing (product stream values are the same as the 

bulk reactor fluid) 

• Constant volume  

• Constant parameter values 

A. State Variable form of Dynamic Equations 

In state variable form equations can be written as: 

 �����, �� 	 	��
�� 		 �� ���� � ��� � �                  (1) 

      �����, �� 	 	���� 		 �� ��� � �� �	��∆����  � � 		 !����� �� � �"�  (2) 

 

The reaction rate per unit volume (Arrhenius expression) is: 

 

r = #$exp%�∆&'� ( �� 

 

where it is assumed that the reaction is first-order [5]. 

B.  Steady-State Solution 

The steady-state solution is obtained when 
��
�� 	 0	and

��*+ 	0, that is: 
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The linear model of the system is obtained as:  	
X= 2� �� � #3 ���3#34�∆���� #3 � �� � !����� � ��∆����  ��3#345 6

�7� 8+9 0!�����: ;�"<  (3) 

 
TABLE I 

REACTOR PARAMETERS 

Reactor Parameter Description Values 

F/V( hr-1) Flow rate*reactor volume of tank 1 

Ko( hr-1) Exponential factor 10e15=�� 

-∆H (kcal/kmol) Heat of reaction 6000 

E(kcal/kmol) Activation energy 12189 

ρCP (BTU/ ft3) Density*heat capacity 500 

Tf( ̊K) Feed temperature 312 

CAf(lbmol/ft3) Concentration of feed stream 10 >7-  
Overall heat transfer coefficient/reactor 

volume 
1451 

Tj(K) Coolant Temperature 300 

III. MODEL REFERENCE ADAPTIVE CONTROL 

Model reference adaptive system is an important adaptive 

controller. It can be considered as an adaptive servo system in 

which the desired performance is expressed in terms of a 

reference model, which gives the desired response to a 

command signal as shown in Fig. 2. The system has two 

loops. One is normal feedback loop which consist of the 

process and the controller and other is parameter adjustment 

loop that changes the controller parameters. The parameters 

are changed on the basis of feedback from error, which is the 

difference between the output of system and the output of 

reference model [2]. The ordinary feedback loop is called the 

inner loop and the parameter adjustment loop is called the 

outer loop. The mechanism for adjusting the parameters in a 

model reference adaptive system can be obtained in two ways 

by using a gradient method or by applying Lyapunov stability 

theory [3]. MRAC is composed of four parts: a plant 

containing unknown parameters, a reference model for 

compactly specifying the desired output of control system, a 

feedback control law containing adjustable parameters [1], [3]. 

A. MIT Rule 

The MIT rule, also known as the gradient method, changes 

the parameters based upon the gradient of the error, with 

respect to that parameter. The parameters are changed in the 

direction of the negative gradient of the error. This means that 

if the error, with respect to a specified parameter, is increasing 

then by the MIT rule the value of that parameter will be 

decreased. This control system consists of a reference model, 

an adjustment mechanism and a controller. The reference 

model describes the desired input/output dynamics of the 

closed loop. The controller derives the control signal so that 

the plant’s closed-loop characteristics from the command 

signal to the plant output are the same as the dynamics of the 

reference model. The convergence of the modeling error to 

zero for any given command signal is assured when plant 

output exactly follows the output of the model. 

 

 

Fig. 2 Model Reference Adaptive Control 

 

The modeling error e is given by: 

 

YmYe −=  (4) 

 

The controller parameters are adjusted with the loss 

function J (θ): 
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To minimize J, the parameters can be changed in the 

direction of negative gradient of J. The rate of change of 

controller parameters (θ) with respect to time is defined by (5) 

where the adaptation gain is defined by γ [2], [3], [6], [7]. 
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A. Lyapunov Rule 

An alternative approach to the MIT rule is to use a 

Lyapunov based method, which avoids the stability problems 

present in the gradient approaches. In order to derive an 

update law using Lyapunov theory, the following Lyapunov 

function is defined as: 
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The time derivative of V can be found as: 
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(7) 

 

Moreover, its negative definiteness would guarantee that the 

tracking error converge to zero along the system trajectories 

[6], [7]. 

B. Adaption Law 

The adaption law attempts to find a set of parameters that 

minimize the error between the plant and the reference model 

outputs. For this purpose the parameters of the controller are 

inclemently adjusted until the error has reduced to zero. In this 
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paper MIT rule approach and Lyapunov rule approaches have 

been used [6], [7]. 

 

 

Fig. 3 Block diagram of MIT Rule 

 

 

Fig. 4 Block diagram of MRAC based on Lyapunov Theory 

IV. PARTICLE SWARM OPTIMIZATION (PSO) 

Particle swarm optimization (PSO) is a computational 

algorithm technique based on swarm intelligence. This method 

is motivated by the observation of social interaction and 

animal behaviors such as fish schooling and bird flocking. It 

mimics the way they find food by the cooperation and 

competition among the entire population [13]. A swarm 

consists of individuals, called particles, each of which 

represents a different possible set of the unknown parameters 

to be optimized. The “swarm” is initialized with a population 

of random solutions [14]. In a PSO system, particles fly 

around in a multi-dimensional search space adjusting its 

position according to its own experience and the experience of 

its neighboring particle. The goal is to efficiently search the 

solution space by swarming the particles towards the best 

fitting solution encountered in previous iterations with the 

intention of encountering better solutions through the course 

of the process and eventually converging on a single minimum 

or maximum solution [15]. The performance of each particle 

is measured according to a pre-defined fitness function, which 

is related to the problem being solved. The use of PSO has 

been reported in many of the recent works [16] in this field. 

PSO has been regarded as a promising optimization algorithm 

due to its simplicity, low computational cost and good 

performance [12]. The model of the process under study is 

very important for its tuning as the accuracy of the tuned 

controller parameters is greatly dependent on the degree of 

accuracy of the system model with that of the real system. As 

per the fundamentals it is possible to approximate the actual 

input-output mathematical model of a very-high-order, 

complex dynamic process with a simple model consisting of a 

first or second order process combined with a dead-time 

element [16]. 

PSO is derived from the social-psychological theory, and 

has been found to be robust in complex systems. In PSO Each 

particle is considered as a valueless particle in g-dimensional 

search space, and keeps track of its coordinates in the problem 

space associated with the best evaluating value and this value 

is called pbest. The overall best value and its location obtained 

so far by any particle in the group is tracked by the global 

version of the particle swarm optimizer gbest. The PSO 

concept consists of changing the velocity of each particle 

toward its pbest and gbest locations at each time step. for 

example, the jth particle is represented as xj= (x j.1, x j.2, . . ., 

xj.g) in the g-dimensional space. The best previous position of 

the jth particle is recorded and represented as pbestj= (pbestj.1, 

pbestj.2. . . pbestj.g). The index of best particle among all 

particles in the group is represented by the gbestg. The rate the 

position change (velocity) for particle j is represented as vj= (v 

j.1, v j.2 . . . v j.g). The modified velocity and position of each 

particle can be calculated using the current velocity and 

distance from pbestj.g to gbest g as: 

 ?".A��B��
 =w.?".A��� +c1*rand ( )*(Pbestj.g- C".A��� ) +c2 *rand ( )*(gbestg-C".A���)  

 		C".A��B��
= C".A��� + ?".A��B��

 

 

j=1, 2…... n 

g=1, 2... m 
 

where n: number of particles in a group; m: number of 

members in a particle; t pointer of iterations (generations); v 

j.g
(t) 

velocity of particle j at iteration t, W inertia weight 

factor;c1, c2acceleration constant; rand ( ) random number 

between 0 and 1;x j.g
(t) 

current position of particle j at iteration 

t; pbestj pbest of particle j; gbest gbest of the group. 

The parameter vg
max 

determined the resolution, or fitness, 

with which regions were searched between the present 

position and the target position. If vg
max

 is too high, particles 

might fly past good solutions but if vg
max

 is too low, particles 

may not explore sufficiently beyond local solutions. 

The constant c1 and c2 represent the weighting of the 

stochastic acceleration terms that pull each particle toward 

pbest and gbest. c1 and c2 has been set to be 2.0. This is done 

because low values allow particle to fly far from the target 

region before being tugged back while high values result in 
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abrupt movement toward or past target regions. Generally, the 

inertia weight w is set according to (8): 

 

w=
DEFGHDIJKL�MNIOP  * Q+=�																			  (8) 

 

Suitable selection of w provides a balance between global 

and local explorations, thus it requires less iteration on 

average to find a sufficiently optimal solution where itermaxis 

the maximum number of iterations or generations and iteris 

the current number of iterations. 
It is a very simple concept, and paradigms can be 

implemented in a few lines of computer code. It requires only 

primitive mathematical operators, and is computationally 

inexpensive in terms of both memory requirements and speed. 

Early testing has found the implementation to be effective 

with several kinds of problems [8]-[10], [13]-[16]. 

A. Optimal Tuning of PID Controller Using PSO 

 

Fig. 5 Block diagram of optimal PID controllers with PSO for CSTR 

 

The parameters of PID controller are tuned by PSO to get 

optimal PID parameters and by applying PSO-PID controller 

an excellent output response can be obtained. 

Performance characteristic of evaluation function includes 

overshoot, rise time, settling time and static error time. The 

evaluation function is defined by (9), to compute the 

evaluation value of each particle in swarm according to 

control performance. 

The sequence of steps to study the PSO-PID controller for 

the CSTR system is given below: 

Step 1. Specify the lower and upper bounds of Kp, Ki, and Kd 

also randomly initialize the particles of the swarm 

including swarm size, iteration, acceleration constant, 

inertia weight factor, the position matrix xj and the 

velocity matrix vj and so on. 

Step 2. Calculate the evaluation value of each particle using 

the evaluation function given in 9. 

Step 3. Compare each particle's new fitness value with its 

personal best position fitness value, and update the 

personal best position pbest. 

Step 4. Search for the best position among all particles 

personal best position, and denote the best position as 

gbest· 

Step 5. Update the velocity viof each particle according to (6), 

and update the particle position matrix according to (7). 

Step 6. Update control parameter. 

Step 7. If the number of iterations reaches the maximum, then 

stop. The latest gbest is regarded as the optimal PID 

controller parameter. Otherwise, go to step 2 [11], [12]. 

B. Performance Indices 

A performance index is a quantitative measure of the 

performance of the system. A system is considered an optimal 

control system when the system parameters are adjusted so 

that the index reaches an extreme value, commonly a 

minimum value [7]. 

A suitable performance index is the integral of the square of 

the error, ISE, which is defined as: 

 

RST 	 U =�	�+�*+�
V  

 

ISE is more suitable to minimize initial large amount of 

errors. The squared error is mathematically more convenient 

for analytical and computational purposes. 

Another readily instrumented performance criterion is the 

integral of the absolute magnitude of the error, IAE, which is 

written as: 

 

R7T 	 U |=�+�|*+�
V  

 

This index is particularly useful for computer simulation 

studies. To reduce the contribution of the large initial error to 

the value of the performance integral, as well as to emphasize 

errors occurring later in response, the integral of time 

multiplied by absolute error, ITAE has been proposed, which 

is defined as: 

 

R�7T 	 U +|=�+�|*+�
V  

 

Other performance criteria include evaluation of rise time, 

settling-time and peak overshoot [12]. 

V. SIMULATION RESULTS 

A. MIT Rule 

 

Fig. 6 CSTR output with MIT’ rule for different values of adaption 

Gain 
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B. Lyapunov’sRule 

 

Fig. 7 CSTR output with Lyapunov’s for different values of adaption 

Gain 

C. Particle Swarm Optimization 

1. PSO Parameters 

• Weight / Inertia of the system - 0.5. 

• Acceleration constants, Cland C2 - l.5. 

• Swarm population - 100. 

• Dimension of the search-space - 3 (Kp, Ki, Kd) 

2. Calculation of Fitness Function 

A set of good control parameters P,I and D can yield a good 

step response that will result in performance criteria 

minimization in the time domain. These performance criteria 

in the time domain include the overshoot, rise time, settling 

time, and steady-state error. Therefore, the performance 

criterion is defined as: 

 

           X�Y� 	 �1 � =[��\]+T33� � =�[��3 � �N�                            (9) 

 

where K is [P, I, D], and β is the weighting factor. The 

performance criterion W (K) can satisfy the designer 

requirement using the weighting factor β value weighting 

factor is chosen as 1 in this application. 

The fitness function is reciprocal of the performance 

criterion. It can be written as: 

 

F=
�^�_� 

3. Robustness of PSO Algorithm 

To check the robustness of PSO-PID controller, values of 

PID controller is calculated for different iterations and then 

calculate the best fitness function [12], [16].  

 
TABLE II 

OPTIMIZATION OF PID TUNING PARAMETERS OF PSO 

Kp Ki Kd 

.0978 .9075 -.1375 

 

 

Fig. 8 CSTR output with PSO-PID controller 

 

 

Fig. 9 Plot of PSO parameters for different iterations 
 

TABLE III 

COMPARISON OF PERFORMANCE INDICES 

Performance 

specification 

MIT Rule Lyapunov Rule 
PSO γ 	 10 γ 	 50 γ 	 100 γ 	 10 γ 	 50 γ 	 100 

Rise time (sec.) 3.27 2.65 2.78 3.1 2.3 2.6 4.47 

Peak time (sec.) 3.83 3.0 3.01 3.8 2.4 3 17.00 

Maximum 

Overshoot (%) 
17.83 26.7 7.5 20.3 9.6 7.3 0 

Settling time (sec.) 7.0 6.2 4.5 6.4 4 3.9 8.65 

ISE .405 .21 .02 .37 .04 .014 .003 

VI. CONCLUSION 

The proposed adaptive and PSO-PID controller is tested by 

using Matlab Simulink program and their performance is 

compared. It is clear from Table II that a PSO-PID controller 

is best implemented. Also, the PID controller parameters 

obtained from PSO algorithm gives better tuning result as 

compared to MIT rule and Lyapunov’s rule of adaptive 

controller. The major impact of PSO is on integral square error 

and peak overshooting. Both are minimized by PSO-PID 

controller. PSO-PID is a very simple concept, and paradigms 

can be implemented in a few lines of computer code. It 
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requires only primitive mathematical operators, and is 

computationally inexpensive in terms of both memory 

requirements and speed. In future the same problem can be 

solved by adopting other evolutionary algorithms like ant 

colony algorithm, bacteria foraging algorithm etc. 
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