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 
Abstract—In this paper, the Differential Transform Method 

(DTM) is employed to predict and to analysis the non-local critical 
buckling loads of carbon nanotubes with various end conditions and 
the non-local Timoshenko beam described by single differential 
equation. The equation differential of buckling of the nanobeams is 
derived via a non-local theory and the solution for non-local critical 
buckling loads is finding by the DTM. The DTM is introduced 
briefly. It can easily be applied to linear or nonlinear problems and it 
reduces the size of computational work. Influence of boundary 
conditions, the chirality of carbon nanotube and aspect ratio on non-
local critical buckling loads are studied and discussed. Effects of 
nonlocal parameter, ratios L/d, the chirality of single-walled carbon 
nanotube, as well as the boundary conditions on buckling of CNT are 
investigated. 
 

Keywords—Boundary conditions, buckling, non-local, the 
differential transform method.  

I. INTRODUCTION 

N most structures and nanostructures, the displacements 
increase gradually with increased applied load. If the 

applied load is too large (particularly for compressive 
structures); a small increase in applied load can lead to a 
sudden large increase in the displacements. Buckling refers to 
this transition to large, often catastrophic displacements also 
leading to the sudden failure of a mechanical component and 
structural instability, which is often called buckling. Buckling 
can occur due to thermal or mechanical loads. Sometimes this 
abrupt behavior can be exploited for useful purposes. But 
currently, carbon nanotubes (CNTs) have a wide application 
eventuality with the potential advantages on mechanical and 
thermal properties [1]-[4]. The first investigation by Iijima [5], 
[6] was single-walled carbon nanotube (SWNT) and multi-
walled carbon nanotube (MWNT). Varieties of experimental, 
theoretical, and computer simulation approaches indicate that 
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CNTs can be used in nanocomposite [7], nanoelectronics, and 
nanodevices [8]. 

Many investigators have applied the continuum mechanics 
theory with successfully for analysis the behaviour of CNTs 
under different loading which are treated as beams, thin shells 
or solids in cylindrical shapes [9]-[14]. Based on the theory of 
nonlocal continuum mechanics, Xie et al. [15] investigated the 
effect of small size-scale on the buckling pressure of a simply 
supported MWNT. To study the responses of micro and 
nanostructures, the approach of continuum mechanics has 
been widely used for example the buckling and thermo-
mechanical analysis of CNTs [16]-[18], the static and dynamic 
[19], [21], Recently, Bensattalah et al. [22] and Zidour et al. 
[23] have used the nonlocal elasticity constitutive equations to 
study vibration and buckling of CNTs. 

Such study of buckling analysis of CNTs is of interest for 
better understanding of mechanical responses of CNTs. Sudak 
[24] carried out buckling analysis of multi-walled CNTs. Sears 
and Batra [25] investigated the buckling behavior and critical 
axial pressure of single walled and multi-walled CNTs by 
continuum mechanics models and molecular mechanics 
simulations. Semmah et al. [26] used the nonlocal continuum 
theory for the analysis of the effect of the chirality on critical 
buckling temperature of zigzag SWCNTs. Ranjbartoreh et al. 
[27] studied the buckling behaviour and critical axial pressure 
of the DWCNT. Kocaturk et al. [28] study the post-buckling 
analysis of Timoshenko beams with various boundary 
conditions under non-uniform thermal loading.  

In the past 50 years, linear and nonlinear problems which 
appeared in physical, chemistry, mechanics, engineering 
applications, and various scientific areas are modeled and they 
are investigated by using so many approximating methods. 
Some of these numerical methods are DTM. This method was 
first proposed by Zhou [29] in solving linear and non-linear 
initial value problems in electrical circuit analysis. Several 
researchers have applied DTM method [30]-[34] applied DTM 
to obtain numerical solution of differential equations. 

There are three types of SWCNTs used in this study which 
are armchair, zigzag and chiral tubules. The Young’s moduli 
are calculated by Xing et al. [35] based on molecular 
dynamics (MD) simulation. Their results are in good 
agreement with the existing experimental ones [36], [37]. This 
present analysis is concerned with the use of the non-local 
Timoshenko beam model to analyse the non-local critical 
buckling loads of CNTs with various end conditions via the 
DTM. The influence of the chirality of CNT, aspect ratio of 
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the SWCNTs and various end conditions are studied and 
discussed.  

II. BASIC STRUCTURE OF CNT 

Fig. 1 shows the structure of CNTs. Tokio [38] defined the 
diameter of the tube of CNTs by the mathematical expression; 
this diameter d is related to m and n as  

 

/)nmmn(3ad 22                             (1) 
 
where a  is the length of the carbon–carbon bond which is 

A 42.1 . 
With the values m and n, CNT can be classified into zigzag 

((n or m) =0), armchair (n =m) and chiral (n≠m). 
 

 

Fig. 1 SWCNT 

III. NONLOCAL TIMOSHENKO BEAM THEORY AND BOUNDARY 

CONDITIONS FOR BUCKLING OF SWCNTS 

The principle of virtual displacements states that if a body is 
in equilibrium, the total virtual work done,  

 

    VUW                                      (2) 
 

where W , U  and V  are the total virtual work, virtual 
variation of the strain energy and the virtual potential energy 
of the axial load.  

Firstly, the expression of the virtual strain energy is: 
 

 dAdxU
L

0
A

xzxzxxxx                         (3) 

 

where xx is the normal stress, xz the transverse shear stress, 

L the length and A the cross-sectional area of the CNT. 
The strain–displacement relations are given by Wang [39]: 
 

dx

dw
,

dx

d
z xzxx                                  (4) 

 
By substituting (4) into (3), the virtual strain energy may be 

expressed as: 
 

dx
dx

wd
Q

dx

d
MU

L

0 



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








 

                  (5) 

where M and Q are the bending moment and shear force, 
respectively, 

 

      dAQ,zdAM
A

xz

A

xx                         (6) 

 

where 109  is the shear correction factor of the 

Timoshenko beam theory [39].  
Assuming that the nanotube is subjected to an axial 

compressive load P, the virtual potential energy δV of the 
axial external load is given by 

 

dx
dx

wd

dx

dw
PV

L

0
                                (7) 

 
The total virtual work done, VUW   , must 

disappear. Thus, in view of (5) and (7), by performing 

integration by parts of equation 0W , one obtains 
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In 0 < x < L, δφ and δw are arbitrary, and we obtain the 

following two equilibrium equations: 
 

0Q
dx

dM
                                    (9) 

 

0
dx

wd
P

dx

dQ
2

2

                               (10) 

 
The boundary conditions of the nonlocal Timoshenko beam 

theory are of the form 
 

 0w  or 0
dx

dw
PQ                               (11) 

 
0 or 0M                                       (12) 

 
The stress at a reference point in the nonlocal continuum 

elasticity theory is considered to be a functional of the strain 
field at every point in the body. The classical theory of 
elasticity is obtained when the effects of strains at every point 
other than x are neglected. For homogeneous and isotropic 
elastic solids, this approach is given by Eringen [40] and has 
been widely used in various types of nanostructures (nano 
FGM structures, nanotube, etc.) such as the buckling [41] and 
free vibration by Zhao et al. [42].  

Non-local relations for present nano-beams can be 
approximated to a one-dimensional form as 
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    xx2
xx

2
2

xx E
x

a0e 


 



                         (13) 

 

    xzxz G                                             (14) 
 

where xzxxxx ,,   and xz are the normal stress, the normal 

strain, the transverse shear stress and the transverse shear 
strain, respectively. E and G are the Young’s and shear 
modulus. The coefficient e0a represents the nonlocal 
parameter. 

The bending moment M  and the shear force T  for the 
non-local model can be expressed based on (4), (10), (11), 
(13) and (14): 
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





 

dx

dw
AGQ                                     (16) 

 
where A  is the cross-section area of the beam, ( 

A

2dAzI ) is 

the moment of inertia.  
It can obtain the following differential equation of a non-

local Timoshenko beam theory by substituting (15) and (16) 
into (10) and (11).  
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TABLE I 

THE ASSOCIATED BOUNDARY CONDITIONS 

Simply supported ends 
 
 

Clamped ends 
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The dimensionless elastic buckling of nonlocal Timoshenko 

may be as shown:  
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where  

Lx,Lww                                    (20) 
 

The associated boundary conditions handled in this paper 
are given in Table I. The non-dimensional boundary 
conditions are given in Table II. 

 
TABLE II 

NON-DIMENSIONAL BOUNDARY CONDITIONS 

Simply supported ends 
2

2
0

d W
W

d
 

at  = 0, 1 

Clamped ends 0
dW

W
d

 
 at  = 0, 1 

Cantilever 

0
dW

W
d

 
 at  = 0 

2 3

2 3 0
d W d W

d d 
 

 at =1 

IV. DIFFERENTIAL TRANSFORMATION METHOD 

The DTM is an iterative process aims to find the solution of 
differential equations. Several authors [30]–[34] have applied 
DTM in different mechanical and physical problems. Using 
differential transformation technique, the ordinary and partial 
differential equations can be transformed into algebraic 
equations. In this method, certain transformation rules are 
used to both the governing differential equations of motion 
and the boundary conditions of the system in order to 
transform them into a set of algebraic equations as presented 
in Tables I and II. 

Based on these works [30]–[34], the differential transform 
of the function  xf  is given by 

 

    0
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                             (21) 
 

where  xf  is the original function and  kF  is the 

transformed function. 
As in these works [30]–[34], the inverse transformation is 

defined as 
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By substituting (21) into (22), we have  
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Based on finite series (23) can be written as follows: 
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and (23) implies that  
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is neglected as it is small. Usually, the values of m  are 
decided by a convergence of the results. 

As in works [34], the theorems that are frequently used in 
the transformation of the differential equations and the 
boundary conditions are introduced in Tables III and IV, 
respectively.  

 
TABLE III 

TRANSFORMED FUNCTION BY DTM [34] 

Original Function Transformed Function 

     xhxgxf 
 

   xgxf 
 

     xhxgxf 
 

   
n

n

dx

xgd
xf 

 

  nxxf 
 

( ) ( ) ( )F k G k H k   
( ) ( )F k G k  

0

( ) ( ) ( )
k

l

F k G l H k l


 
 

 !
( ) ( )

!

k n
F k G k n

k


 

 

 
0

( )
1

if k n
F k k n

if k n



   

 
TABLE IV 

TRANSFORMED OF ORIGINALS BOUNDARY CONDITIONS BASED ON DTM [34] 

0x  1x  
Original B.C. Transformed B.C. Original B.C. Transformed B.C. 
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V. DTM FORMULATION AND SOLUTION PROCEDURE 

According to the basic transformation operations of 
originals functions introduced in Table III using DTM, the 
transformed form of the governing (19) may be obtained as: 

 

       
        432101

221
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2


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
kkkkEIPaeAGP

kWkkEIPL
kW

  
(25) 

 
The buckling load of the local Euler beam model  

( 00,  ae ), local Timoshenko beam model  
( 00,109  ae ), nonlocal Euler beam model  
( 00,  ae ) and nonlocal Timoshenko beam model  
( 00,109  ae ). 

The transformed form of boundary conditions is presented 
in Table IV. The buckling load may be derived by 
incorporating the transformed boundary conditions in (25): 

        0cPAcPA 2
n
2j1

n
1j    n,..3,2,1j                   (26) 

 

Here, sA  are polynomials in terms of P  corresponding to 
thn  term. Solving (26) in matrix form and studying the 

Existence condition of the non-trivial solutions yield the 
following characteristic determinant: 

       PA,PA n
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n
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 are polynomials corresponding to thn term.  

When (26) is written in matrix form, we get 
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The eigenvalue equation is obtained from (27) as  
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Solving (28), we get  n
jPP   where n,..3,2,1j  . The 

value of n  is obtained by: 
 

        1n
j

n
j PP                                     (29) 

 
where ε is the tolerance parameter.  

If (29) is satisfied, then we have thj  eigenvalue  n
jP . In 

this study, the value of n= 50 was enough. 

VI. NUMERICAL RESULTS AND DISCUSSIONS 

Based on MD simulation the Young’s moduli used in this 
study of three types of SWCNTs, armchair, zigzag and chiral 
tubules, are calculated by Xing et al. [30] (Table V).  

The parameters used to investigate the effect of boundary 
conditions on the critical buckling loads of SWCNTs are given 
as follows: the effective thickness of CNTs taken to be 0.285 
nm, and the Poisson’s ratio υ=0.19. 

In the present study, Fig. 2 depicts the influence of scale 
coefficients on the dimensionless critical buckling loads for 
pinned end beam of Zigzag nanotube (14, 0). The nonlocal 
parameter (e0a) values of SWCNT were taken in the range of 
0–2 nm. From Fig. 2, it is observed that there is a significant 
influence of small scale parameter on the critical buckling 
loads of zigzag nanotube (14, 0) beam pinned end. 
Considering that nonlocal model is always smaller than the 
local (classical) model implies that the employment of the 
local model for SWCNT analysis would lead to an 
overprediction if the small length scale effects between the 
individual carbon atoms are neglected. Further, with increase 
in aspect ratio values, the critical buckling loads obtained 
become smaller compared to local model. 

To analyse the difference between the nonlocal Euler 
(NEB) and nonlocal Timoshenko (NTB) beam model, with 
respect to length-to-diameter ratio loads ratios (PE/PT) of 
three types of SWCNTs, armchair, zigzag and chiral tubules 
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are illustrated in Fig. 3. Fig. 3 shows that if L/d > 40 then the 
shear effect is negligible and if L/d < 40 then the shear effect 
is significant on the ratio (PE/PT). 

The effect of the boundary conditions, on the non-local 
critical buckling load for different chirality of SWCNTs, 
armchair, zigzag and chiral is presented in figures 4-6. The 
ratio of the length to the diameter (L/d), is taken as 5 and 60 
and small scale effects are considered (e0a=2 nm). It is clearly 
seen from the figures that the ranges of the critical buckling 
loads for these boundary conditions of SWCNTs are quite 
different, the range is the largest for clamped end beam, but 
the range is the smallest for clamped-free beam. it can be 
clearly seen that the boundary conditions effect reduces the 
buckling loads. 

There are three types of SWCNTs is used in this analyses 
which are, armchair(20,20), zigzag(14,0) and chiral(16,8), the 
ranges of the non-local critical buckling loads for these 
chirality obtained of SWCNTs are also quite different. The 
reason for this difference perhaps is attributed to the 
increasing or decreasing of CNT diameter.   

TABLE V 
THE VALUES OF YOUNG’S MODULUS OF SINGLE CNT FOR DIFFERENT 

CHIRALITY’S [35] 

(n,m) 
Young’s modulus 

(SWNT) (GPa) [35] 
(n,m) 

Young’s modulus 
(SWNT) (GPa) [35] 

Armchair Zigzag 

(8,8) 934.960 (14,0) 939.032 

(10,10) 935.470 (17,0) 938.553 

(12,12) 935.462 (21,0) 936.936 

(14,14) 935.454 (24,0) 934.201 

(16,16) 939.515 (28,0) 932.626 

(18,18) 934.727 (31,0) 932.598 

(20,20) 935.048 (35,0) 933.061 

 Chiral  

 

(12,6) 
(14,6) 
(16,8) 
(18,9) 

(20,12) 
(24,11) 
(30,8) 

927.671 
921.616 
928.013 
927.113 
904.353 
910.605 
908.792 
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Fig. 2 Relation between the values of dimensionless critical buckling loads and the aspect ratio (L/d) for pinned end beam of Zigzag nanotube 
(14,0) with different scale coefficients 
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Fig. 4 Effect of chirality’s and the aspect ratio (L/d) on the dimensionless critical buckling loads for clamped-free beam 
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Fig. 5 Effect of chirality’s and the aspect ratio (L/d) on the dimensionless critical buckling loads for clamped end beam 
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Fig. 6 Effect of chirality’s and the aspect ratio (L/d) on the dimensionless critical buckling loads for pinned end beam 
 
The variation of dimensionless critical buckling loads of 

SWCNTs armchair, chiral and zigzag chirality with different 
length-to-diameter ratios and different boundary conditions 

from e0a =2 nm based on the non-local Timoshenko beam 
model are listed in Tables VI-VIII. Their results show the 
dependence of the different chirality’s of CNT, aspect ratio 
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and, effect of boundary conditions on the non-local critical 
buckling loads.   

 

 
TABLE VI 

NON-LOCAL DIMENSIONLESS CRITICAL BUCKLING LOAD FOR DIFFERENT ARMCHAIR CHIRALITY’S 

Armchair 
pinned end beam clamped end beam clamped-free beam 

L/ d =10 L/d =20 L/d =10 L/d =20 L/d =10 L/d =20 

(8,8) 3.943 1.224 8.8577 3.943 1.224 0.326 

(10,10) 6.769 1.969 17.324 6.769 1.969 0.513 

(12,12) 10.29 2.880 28.886 10.29 2.880 0.742 

(14,14) 14.50 3.958 43.455 14.50 3.958 1.012 

(16,16) 19.47 5.225 61.184 19.47 5.225 1.330 

(18,18) 24.92 6.608 81.119 24.92 6.608 1.677 

(20,20) 31.13 8.186 104.123 31.138 8.186 2.073 

 
TABLE VII 

NON-LOCAL DIMENSIONLESS CRITICAL BUCKLING LOAD FOR DIFFERENT CHIRAL CHIRALITY’S 

Chiral Pinned end beam clamped end beam clamped-free beam 

 L/d=10 L/d=20 L/d =10 L/d =20 L/d=10 L/d=20 

(12,6) 5.4576 1.625 13.3004 5.4576 1.624 0.426 

(14,6) 7.0875 2.049 18.3939 7.0875 2.049 0.533 

(16,8) 10.561 2.945 29.8769 10.561 2.945 0.758 

(18,9) 13.814 3.779 41.086 13.814 3.779 0.967 

(20,12 19.166 5.136 60.4167 19.166 5.136 1.307 

(24,11) 23.827 6.3217 77.4401 23.8279 6.3217 1.6050 

(30,8) 30.3705 7.9833 101.5937 30.3705 7.9833 2.0218 

 
TABLE VIII 

NON-LOCAL DIMENSIONLESS CRITICAL BUCKLING LOAD FOR DIFFERENT ZIGZAG CHIRALITY’S 

Zigzag pinned end beam clamped end beam clamped-free beam 

 L/d =10 L/d =20 L/d =10 L/d =20 L/d =10 L/d =20 

(14,0) 4.0635 1.2578 9.1861 4.0635 1.2578 0.3344 

(17,0) 6.4996 1.900 16.4645 6.4996 1.8999 0.4960 

(21,0) 10.5553 2.9476 29.7529 10.5553 2.9476 0.7591 

(24,0) 14.1634 3.8706 42.2553 14.1634 3.8706 0.9907 

(28,0) 19.7653 5.2975 62.3055 19.7653 5.2975 1.3487 

(31,0) 24.5653 6.5173 79.8365 24.5653 6.5173 1.6547 

(35,0) 31.7526 8.3414 106.4312 31.7526 8.3414 2.1122 

 
The critical buckling load increases as one transits from the 

armchair (20,20) to the zigzag (14,0) and then chiral (16,8), 
when the diameter of nanotube is decreasing. This reduction in 
the non-critical buckling load is affected by the diameter or 
long of the nanotube, which results in a more significant 
distortion of (C–C) bonds and low critical loads. In additional, 
the ranges of the critical buckling loads for various boundary 
conditions of SWCNTs are quite different, and this variation is 
pronounced in the larger long and diameter.   

VII. CONCLUSIONS 

This article studies the influence of various boundary 
conditions, the aspect ratio and the chirality of SWCNTs on 
the dimensionless nonlocal critical buckling loads using non-
local Euler Bernoulli and Timoshenko beam theory. The 
different parameters are included in the formulations and the 
governing equations are solved by the DTM and the non-local 
critical buckling loads are obtained.  

For this study, it is observed that the nonlocal critical 
buckling loads increases by increasing the diameter of 

SWCNTs and the variation of boundary conditions. Besides, 
the increasing or decreasing of long of SWCNTs affects the 
critical load. This phenomenon is that a CNT with higher long 
has a larger curvature, so it results in a more significant 
distortion of (C–C) bonds and low critical loads. In additional, 
with increase in aspect ratio values, the non-local critical 
buckling loads decrease and become smaller compared to 
local model. The present study is helpful in the use of 
SWCNTs, as nanoelectronics, nanocomposites and mechanical 
sensors. 
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