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 
Abstract—In the last years, the crashworthiness of an automotive 

body structure can be improved, since the beginning of the design 
stage, thanks to the development of specific optimization tools. It is 
well known how the finite element codes can help the designer to 
investigate the crashing performance of structures under dynamic 
impact. Therefore, by coupling nonlinear mathematical programming 
procedure and statistical techniques with FE simulations, it is 
possible to optimize the design with reduced number of analytical 
evaluations. In engineering applications, many optimization methods 
which are based on statistical techniques and utilize estimated 
models, called meta-models, are quickly spreading. A meta-model is 
an approximation of a detailed simulation model based on a dataset 
of input, identified by the design of experiments (DOE); the number 
of simulations needed to build it depends on the number of variables. 
Among the various types of meta-modeling techniques, Kriging 
method seems to be excellent in accuracy, robustness and efficiency 
compared to other ones when applied to crashworthiness 
optimization. Therefore the application of such meta-model was used 
in this work, in order to improve the structural optimization of a 
bumper for a racing car in composite material subjected to frontal 
impact. The specific energy absorption represents the objective 
function to maximize and the geometrical parameters subjected to 
some design constraints are the design variables. LS-DYNA codes 
were interfaced with LS-OPT tool in order to find the optimized 
solution, through the use of a domain reduction strategy. With the use 
of the Kriging meta-model the crashworthiness characteristic of the 
composite bumper was improved.  
 

Keywords—Composite material, crashworthiness, finite element 
analysis, optimization.  

I. INTRODUCTION 

N engineering, structural design problems usually require 
real experiments or numerical simulation to evaluate the 

performances of the designed components. Given the high 
costs of the real tests, it is becoming common practice to 
reduce them by coupling finite element simulations with 
mathematical procedures and statistical techniques, in order to 
optimize the structural component. An optimization problem 
is usually defined by objective and constraint functions and 
aims to find a solution which, at the same time, does not 
violate any constraint and optimizes the objective function. 
For many real world problems, however, a single simulation 
can require thousands or even millions of evaluations and this 
results in an analysis that is impossible to handle [1]. One way 
of getting around this difficulty is to substitute the 
computationally expensive direct optimization with an 
iterative process able to create, optimize and update a 
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surrogate model (or meta-model) that, being faster to run, can 
be used to achieve many more evaluations during the 
optimization procedure. Constructing a surrogate means to 
find an approximationf(x) of the function f(x), living in some 
black box, through the evaluation of a set of samples (x(i), y(i)), 
for i = 1,…, n. The black box hides the physics that converts 
the input vector x into the scalar output y and it can stand for 
either a physical or computer experiment. The construction of 
a surrogate model comprises three major phases that can be 
interleaved iteratively: selection of the sample points and 
choice of the modeling approach, parameter estimation and 
testing the surrogate accuracy. In the recent times, these 
approximation models gained popularity due to the fact that 
they are able to carry out an optimization procedure without 
any gradient or sensitivity knowledge. Therefore, they turn out 
to be very flexible and adapt many applications, included the 
ones which are characterized by heavy noisiness, strong 
nonlinearities, several local extrema and discontinuities, such 
as crashworthiness.  

Crashworthiness is generally defined as the ability of a 
structure to resist the effects of an impact with another object. 
In automotive industry, it aims to ensure the vehicle structural 
integrity and its ability to absorb crash energy with minimal 
diminution of survival space. In general, the best knowledge 
of the safety features of a vehicle is stored by the car 
manufacturers. Since their products have to respect strict 
regulations to be brought to the market, hundreds of tests are 
performed on each of the developed models. Since automotive 
physical experiments are characterized by prohibitive times 
and costs, driven by the challenge of coupling vehicle safety 
and sustainability (low fuel consumption and CO2 emission 
reduction), the automotive industry has to put substantial 
effort into the project and design phase of its products. 
Crashworthiness design is an evolving discipline that 
combines vehicle crash simulation and design synthesis. The 
main objective is to assure vehicles’ occupant safety as well as 
reduce manufacturing and material costs. In order to generate 
designs that perform well in terms of energy absorption while 
demonstrating fidelity for safety regulations, the method of 
trial-and-error (i.e. where the shape design is modified and 
simulated iteratively until the target performances are 
satisfied) is commonly used in engineering. Using this 
approach, however, the resulting design is frequently not 
optimal and time costs increase due to the need for redesign of 
the components. Therefore, numerical simulations using finite 
element software and optimization techniques combined with 
statistical tools have to be used to design better solutions 
reducing analytical evaluations [2]. The methods related to 
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meta-models and their applications in crashworthiness 
optimization have been extensively investigated over the years 
[3]-[7]. Among the various types of meta-modeling techniques 
used for crashworthiness optimization, Kriging method seems 
to be the best one. For this reason, in this study such meta-
model was used in order to improve the crashworthiness 
effects of a bumper of a racing car in composite material 
subjected to frontal impact. The bumper systems, in fact, play 
an important role in the energy management of vehicles during 
accidents. The objective function is the maximization of the 
specific energy absorption and the design variables are 
geometrical parameters subjected to some design constraints. 
The optimized solution was obtained with the application of 
LS-OPT tool using LS-DYNA as solver and a domain 
reduction strategy. 

II.  KRIGING METAMODEL 

In crashworthiness optimization, direct coupling method 
may be inefficient and sometimes impossible since iterative 
non-linear FEA during optimization usually require enormous 
computational efforts and take the high risk of premature 
simulation failure prior to a proper convergence. As a result, 
surrogate models or metamodels are more often used as an 
alternative for formulating the design criteria in terms of an 
explicit function of design variables in advance of 
optimization, which has proven an effective and sometimes a 
unique approach [8]-[10]. In this study Kriging metamodel 
was applied using Space Filling DOE; approximated functions 
were created using seven simulation points and fifteen 
iterations with sequential domain reduction strategy [11].  

Kriging was first used in geology and named by Matheron 
[12] after Danie G. Krige, the South African mining engineer 
who first developed the method. It became well known in the 
engineering design field after the works by Sacks et al. [13] 
and Jones et al. [14]. This method is particularly important in 
surrogate based optimization and attracted the interest of many 
researchers due to the great quantity of information that makes 
available, e.g. the estimate of the potential error in the 
approximation, the benefits of which are described later [15]-
[19]. Starting from a set of sample data X =x(1), x(2),…,x(n) 
with observed responses y = y(1), y(2),…, y(n), the aim is to 
predict the objective function value at the location x. Below, a 
brief description of the Kriging surrogate technique is 
presented, considering its two main phases: the model 
construction and the response value prediction. 

A. Model Construction 

One of the main features of the Kriging model is that it can 
demonstrate interpolative as well as regressive characteristics. 
The model characterization that follows is given under the 
assumption of the interpolative case. The detailed description 
of the regressing Kriging definition was given by Forrester et 
al. [1]. At first, let the training data be seen as results of a 
stochastic process, which is described with use of a set of 
random vectors of the following form 
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with mean 1, where 1 is an nx1 column vector of ones. 
Moreover, let the correlation between each couple of random 
variables be described using a basis function expression 
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The  vector allows the width of the basis function to differ 
from variable to variable, while p, varying for each dimension, 
controls the smoothness of the approximation in the proximity 
of the given sample points. Fig. 1 shows how the choice of 
these two parameters affects the correlation between variables. 

 

 

(a) 
 

 

(b) 

Fig. 1 Correlation with varying p (a) and  (b) 
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From equation (2), it is possible to construct the correlation 
matrix of all the observed data as 
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together with the covariance matrix  

 

  2Cov , Y Y Ψ  (4) 

 
It can be observed that the correlations depend on the 

absolute distance between the sample points and on the 
parameters pj and j that have to be estimated. One way to 
choose  and p is by means of the maximization of the 
likelihood of the predicted data y. Since the model interpolates 
the data, the likelihood function is defined as 
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which can be expressed in terms of the sample data as 

 
1( ) ( )

22
1/ 22 / 2| |

1
L

(2 )

Ty y

n
e

 





 




1 Ψ 1

Ψ

 (6) 

 
Now, to simplify the maximization of the likelihood, the 

logarithm of the previous quantity can be considered 
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Finally, differentiating equation (7) and setting the 

derivatives to zero, the maximum likelihood estimates (MLEs) 
for  and 2 are obtained as 
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If (8) and (9) are then substituted into (7) and the constant 

terms removed, one can get the concentrated ln-likelihood 
function 
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whose value depends on the unknown parameters  and p, 
which can be found by maximizing equation (10). Since 
Equation (10) cannot be differentiated, a numerical 
optimization technique such as a genetic algorithm or 
simulated annealing has to be used. 

B. Prediction 

The model correlation can be now used to predict new 
values based on the observed data. Let y be the output vector 
andy a prediction related to a new input x. It is also 
convenient to define the vector w = yT,yT . Moreover, let  
be the vector of correlations between the observed data and 
the new prediction defined as 
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Given the augmented correlation matrix 
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The ln-likelihood of the augmented data is defined as 
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where only the last term of this depends ony. Finally, by the 
substitution of the expressions for w and in (13) and the 
maximization of the last term, after few algebraic 
computations, the MLE fory is obtained as 

 
1( ) ( )Ty x     Ψ y 1  (14) 

 
From (14) it can be noted that constructing the model in this 

way guarantees that the prediction would go through all the 
data points (i.e. the data are interpolated). In fact, computing 
the value of the predictiony on a training point, one would 
obtainy(x(i)) = y(i). Moreover, the most important benefit of 
Kriging is the provision of an estimated error in its 
predictions. The estimated mean squared error for a Kriging 
model has been derived by Sacks et al. [20] and it takes the 
following form 
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The error estimate is one of the major advantages of the 

Kriging surrogate model. Indeed, this information can be used 
to further explore the areas of the domain characterized by a 
very low accuracy of the approximation model. 

III. BUMPER SUBSYSTEM OPTIMIZATION STUDY 

To illustrate the methodology described in the section 
above, an optimization study on an automotive CAD bumper 
system for a race car was performed. 

The bumper geometry was taken from an automotive design 
practice with a mesh density that is both acceptable for the 
predictions of interest and also feasible in terms of 
computational effort. The geometry consists of a cross-section 
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made of a one chamber that represents the transverse bumper 
and two longitudinal crash boxes (Fig. 2). Given the symmetry 
of the system respect to y-axis, only half structure was 
modelled constraining the right degrees of freedom in the 
reflection plane. Moreover the right end of the longitudinal 
crash box is rigidly fixed to the frame. 

 

 

Fig. 2 CAD assembly of the bumper system 

As regards the initial condition, instead of IIHS low 
velocity impact [21], Allianz crash repair test and the impact 
to pole test [22], a full width front impact against a flat rigid 
barrier at a speed of 56 km/h was used. In such case, in fact, 
the bumper system, designed for a race car, must be able to 
absorb all the kinetic energy during a frontal collision. 

From the literature [21], a cross section profile for the 
bumper with a series of internal hinges seems to be the best 
one thanks to a progressive and controlled deformation. 
Therefore, such modified configuration was taken into account 
together with the original one. 

A. Optimization Definition 

The optimization process was conducted through three 
different approaches. Firstly, a change into the beam curvature 
was analyzed. Secondly, an optimized cross section of the 
transverse beam was identified and finally, the best 
configuration was used for an iterative model in LS-OPT (Fig. 
3) using the Kriging metamodel. 

 

 

 

Fig. 3 Iterative model in LS-OPT 
 

B. Beam Curvature Optimization 

At first, beam curvature optimization was conducted. In 
particular the modified profile was tested into three different 
cases: straight, medium radius and maximum one (Fig. 4). 

 

 

Fig. 4 Beam curvature cases: (a) straight, (b) medium radius, (c) 
maximum radius 

 

Fig. 5 shows the force trends vs. displacement for the three 
configurations. Moreover, in Table I the respective values of 
maximum and average deceleration, maximum stroke and 
SEA were compared. 

 
TABLE I 

CRASH CHARACTERISTICS FOR THE THREE CONFIGURATIONS 

Configuration 
Max 

deceleration 
(g) 

Average 
deceleration (g) 

Max 
stroke 
(mm) 

SEA 
(kJ/kg) 

Straight 108.77 29.89 340.87 15.50 

Medium radius 57.74 17.10 526.75 15.23 

Maximum radius 65.36 16.69 487.26 15.09 
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Fig. 5 Force vs. Displacement for the three beam curvatures 
 

Even if the straight configuration reaches a value of SEA 
greater than the others, the best behavior seems to be reached 
by the medium radius. From Fig. 5 it is in fact evident how, 
unlike other cases, the first configuration generates a sequence 
of high peak loads due to the contact with a larger area since 
the beginning of impact and involves only a small portion of 
the longitudinal crash box in the absorption. Fig. 6 shows the 
diagrams of velocity and deceleration versus stroke for the 
beam with the medium curvature and also the final 
deformation of the longitudinal crash box at the impact end. In 
terms of deformation trend, deceleration values and specific 
energy absorption the medium radius has the best data and 
therefore, for the next optimization procedure, the bumper 
with the medium curvature will be considered varying cross 
section. 

 

 

(a) 
 

 

(b) 

Fig. 6 Results for medium radius: (a) velocity and deceleration vs. 
stroke, (b) final deformation of the longitudinal crash box 

C. Section Profile Optimization 

Another analyzed change was the profile, varying the cross 
section of the transverse beam. The modified configuration 
(Fig. 7 (b)) was compared with the basic CAD model (Fig. 7) 
in order to identify the best configuration to adopt in terms of 
section. 

 

 

(a)           (b) 

Fig. 7 Profile geometries taken into account: (a) basic and (b) 
modified 

 
Fig. 8 shows the force trends vs. displacement for both 

configurations. Moreover, in Table II the respective values of 
maximum and average deceleration, maximum stroke and 
specific energy absorption (SEA) were compared. 

 

 

Fig. 8 Force vs. Displacement for both section profiles 
 

TABLE II 
CRASH CHARACTERISTICS FOR BOTH CONFIGURATIONS 

Configuration 
Max 

deceleration 
(g) 

Average 
deceleration (g) 

Max 
stroke 
(mm) 

SEA 
(kJ/kg) 

Basic 63.51 17.23 493.01 17.35 

Modified 52.74 17.10 526.75 15.23 

 
As mentioned in previous research [21], the modified 

profile, with a series of hinges, is able to reduce the peak value 
and guarantee a more stable and progressive deformation, 
even if it tends to weigh more than the basic profile. Therefore 
from the point of view of SEA the basic configuration seems 
to be more competitive than the other one. 

D. Beam Curvature Optimization 

Nowadays, with the increasing awareness of the 
environmental footprint of the vehicle, mass reduction of the 
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different vehicle subcomponents is mandatory. Meanwhile, a 
high level of energy absorption must be guaranteed 
maintaining a deformation level as close as possible to an 
ideal absorber, without high peaks of deceleration. Therefore, 
the goal of the optimization process is to obtain an optimized 
bumper profile in terms of SEA, while satisfying a set of 
design constraints [23].  

In order to optimize the bumper, three parameters were 
considered that correspond to the shell thickness values of the 
three parts (red, green and blue) in which the bumper 
subsystem was divided (Fig. 9). The parameter ranges and the 
nominal values are represented in Table III. From previous 
numerical simulations, it was noted that the subdivision, in 
terms of shell thickness, of the longitudinal crash box into two 
parts is able to guarantee a reduction of the load peak and the 
introduction of some alternated holes allows to obtain a 
progressive and controlled deformation during crushing. 
Therefore, the mathematical model for the structural 
optimization is as: 

 

2

2

max ( 1, 2, 3)

Max_acceleration<80m/s

subject to Average_acceleration<25m/s

Max_stroke<600 mm

SEA t t t







 (16) 

 
As mentioned before, such optimization procedure was 

implemented in LS-OPT using the Kriging metamodel. At 
each iteration step, considering the previous DOE 
experiments, the metamodel gets to the best solution until 
converge. 
 

 

Fig. 9 Bumper parameters 
 
 
 
 
 
 
 
 

TABLE III 
DESIGN PARAMETERS 

Parameter t1 t2 t3 

Min (mm) 1 1 3 

Max (mm) 6 6 6 

Nom (mm) 1 3 5 

IV. RESULTS AND DISCUSSION 

Table IV shows the optimal values of wall thickness for the 
metamodel. In terms of objective and constraints values, it is 
possible to note how the metamodel is able to improve the 
basic configuration giving a feasible solution. 

 
TABLE IV 

OPTIMAL RESULTS 

 Basic Kriging 

t1 1 1 

t2 3 5.3 

t3 5 4.7 

SEA (kJ/kg) 27.01 28.82 

Max_acc (g) 239.77 79.12 

Average_acc (g) 23.19 20.09 

Max_stroke (mm) 656.15 598.32 

 
The optimization histories for variables and objective at 

various iteration steps are shown in Fig. 10. Because the 
domain reduction strategy was adopted, the domain for each 
thickness tends to reduce in time up to arrive to convergence 
with the optimal solution. Moreover the SEA value tends to 
approach to a value of about 28 kJ/kg, considering a mass 
value equal to 2.5 kg.  

The importance of the design variables can be determined 
through a sensitivity analysis. LS-OPT allows to use two 
sensitivity measures: Linear ANOVA and GSA/Sobol. The 
first measure depicts positive or negative influence of a 
variable, while the second one just shows the normalized 
absolute value and guarantees an easier comprehension (Fig. 
11). It is evident how the t3 variable, that depicts the wall 
thickness of the last zone of the longitudinal crash box, is the 
most influential parameter for each response except for SEA, 
where the thickness of the transversal beam becomes very 
significant and cannot be neglected.  

Fig. 12 represents the response surfaces in 3D 
representation achieved from the Kriging model and the 
simulation points for the SEA objective and mass response vs. 
two design variables, respectively. It is evident how for the 
SEA response surface the DOE experiments tend to 
concentrate on the maximum values of the quadratic surface, 
while an opposite behavior is evident for mass one where the 
trend is linear (green, red and purple points correspond to 
feasible, unfeasible and predicted optimum solutions, 
respectively). 
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Fig. 10 Optimization history for the design variables and objective 
 

 

Fig. 11 Sobol values for multiple responses 
 

 

(a) 
 

 

(b) 

Fig. 12 Response surfaces of (a) SEA and (b) mass 
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V. CONCLUSION 

This paper presents the application of the Kriging 
metamodel in the context of crashworthiness. In particular the 
work is dedicated to the development of a front race car 
bumper subsystem made of composite material with the aim to 
improve its energy absorption capability. At first the beam 
curvature and the section profile were considered separately in 
order to identify the most promising structure. Only after, the 
chosen solution was analyzed with an optimization process 
using LS-OPT tool, by considering as design variables the 
wall thicknesses of the beam and of the longitudinal crash 
boxes. For this objective, numerical simulations were 
conducted through explicit solver LS-DYNA and structural 
results for the bumper were compared. The following 
conclusions can be drawn: 
 After the initial deformation, where the only bumper is 

involved, the energy absorption is guaranteed from the 
longitudinal crash boxes and therefore it seems suitable to 
divide such structure at least in two zones at different 
thicknesses and insert some hole to reduce the peaks and 
guarantee a progressive and controlled deformation. 

 It is not convenient to realize a bumper using a straight 
curvature, because it generates higher peak loads and 
involves only a small portion of the longitudinal crash box 
in the absorption. 

 The adoption of a bumper with internal folds into the 
profile seems to be best in terms of progressive 
deformation, even if this implies a higher weight and a 
lower SEA value. 

 Implementation of an optimization process through 
Kriging method demonstrated that it is possible to 
improve the crushing performance of the bumper system 
adopting a feasible solution.  
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