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Abstract—This paper presents verification of a modeling and 

simulation for a Spacecraft (SC) attitude and orbit control system. 

Detailed formulation of coupled SC orbital and attitude equations of 

motion is performed in order to achieve accepted accuracy to meet the 

requirements of multitargets tracking and orbit correction complex 

modes. Correction of the target parameter based on the estimated state 

vector during shooting time to enhance pointing accuracy is 

considered. Time-optimal nonlinear feedback control technique was 

used in order to take full advantage of the maximum torques that the 

controller can deliver. This simulation provides options for visualizing 

SC trajectory and attitude in a 3D environment by including an 

interface with V-Realm Builder and VR Sink in Simulink/MATLAB. 

Verification data confirms the simulation results, ensuring that the 

model and the proposed control law can be used successfully for large 

and fast tracking and is robust enough to keep the pointing accuracy 

within the desired limits with considerable uncertainty in inertia and 

control torque. 

 

Keywords—Attitude and orbit control, time-optimal nonlinear 

feedback control, modeling and simulation, pointing accuracy, 

maximum torques.  

I. INTRODUCTION 

ODELING and simulation are essential steps for SC 

Attitude and Orbit Control (AOC) iterative designing 

process, off nominal situation analyses, new techniques/future 

missions testing or control ground stations (CGS) operational 

control actions creation. All SCs obey the basic physical laws 

of celestial mechanics. With these basic laws it is possible to 

precalculate the position of a body in its orbit. Mathematics of 

SC orbits start with the basics of Newton’s laws and the original 

Keplerian orbit model. Using classic orbital elements, the 

required calculations needed to describe the orbit can be 

derived. The fundamental laws of physics upon which the 

theory of orbital mechanics is based are Newton’s law of 

universal gravitation and Newton’s law of motion [1], [2]. The 

fundamental properties of orbits are summarized in Kepler’s 

three laws of planetary motion [3]. The six Keplerian elements 

are different integration constants which specify completely the 

properties of an elliptical orbit. These elements include semi-

major axis a, Eccentricity e which describe the orbit shape, 

Inclination i, Right ascension of ascending node and Argument 

of Perigee ω which describe the orbit orientation and Epoch t0 

that describes the time of Perigee. When the gravitational force, 
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as assumed by Newton’s law, is acting on the SC the first five 

parameters will be constant and the orbit is an ideal Keplerian 

orbit. Only the true anomaly of the SC changes its value due to 

the undisturbed movement in the orbit. If disturbance forces are 

present, the motion becomes an osculating orbit. Due to the 

disturbance forces the shape and the orientation of the orbit will 

change and the Keplerian elements become time-variant [3]. 

NASA and the US Space Command derived the Simplified 

General Perturbation models (SGPs) for precise orbit 

calculations [4], [5]. The work in this paper aims to build a 

simulator from one side to maintain the freedom to reconfigure 

itself according to different SC, missions, guidance strategies, 

control algorithms, complex/orientation modes or hardware in 

used, and from another side, can use the required module from 

available predetermined modules, e.g. MATLAB/Simulink 

modules or result data of available analytical propagators, 

which are documented for general use, e.g. SGPs. Orbit 

propagation, was created by the integration of equations of 

motion or by imports of the SC state vector using the Two Line 

Element (TLE) set and (SGP4) Version 4. The simulation 

results represented in Earth Centered Earth Fixed (ECEF) and 

Earth Centered Inertial (ECI) frames. The dominant disturbance 

torques effect on the SC in its working orbit was taken into 

consideration. The attitude control system specifications were 

selected based on the transient response and steady state 

requirements. Based on quaternion feedback control [6]. The 

feedback gains were selected to confirm the global stability 

conditions. The effect of the actuator saturation limit and 

maximum slew rate was discussed. For better sense, the attitude 

representations were converted from quaternion to Euler 

angles.  

II. SC COMBINED NONLINEAR MODEL 

A. Coordinate Systems 

In order to build a SC motion control system, the following 

right-handed coordinate systems are used: 

• Body coordinates system (BCS): Principal inertia 

coordinate system centered in the SC mass center. 
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Fig. 1 Simulator block diagram 

 

• Inertial coordinates system (ICS): Inertial equatorial 

coordinate system, related to mean equator and equilibrium 

in standard epoch of J2000 Center of coordinate system is 

situated in the center of the Earth. In this coordinate 

system, the coordinates of stars of onboard catalog are 

saved: 

− +X axis directed to the point of spring mean equilibrium, 

− +Z axis directed to the northern pole of the world. 

• Earth Centered Earth Fixed (ECEF) coordinates system 

(Geographic/geodesic coordinates system (WGS84)) in 

which: 

− +X axis lies in the plane of geographic equator and is 

defined by the reference-meridian of international Earth 

rotation service, 

− +Z axis is directed to the reference-pole of international 

Earth rotation service and perpendicular to the plane of the 

geographic equator, and 

− +Y axis completes the right hand coordinate system and 

lies in plane of geographic equator. 

• Orbital coordinates system (OCS): Coordinate system 

centered in the SC mass center: 

− +Y axis is directed along the radius-vector to the center of 

the Earth, and 

− +X coincides with the vector of orbital angular rate. 

• Target coordinates system (OCS-N): Coordinate system 

centered in the SC mass center: 

− +Y axis is directed to the object of shooting, and projection 

of axis 

− -Z is the acute angle with the direction of the vector of 

orbital angular rater (angle between axis -Z and orbit plane 

is equal to the required additional turn angle in yaw to 

prevent a smeared picture). 

• Inertial Coordinates System of Strap-down Inertial 

Navigation System (SINS ICS): Computational 

Coordinates System equivalent to gyro-stabilized platform. 

• Device coordinates systems for orientation sensors (DCS 

OS): Correspond to the position of measuring axes of 

orientation sensors. 

B. Orbit Propagation via Integration of Equations of Motion 

Orbit propagation is carried out by the integration of the 

equation of motion from the initial state vectors �� and �� at 

time �� to the final state vectors � and � at time �� using Runge-

Kutta4 method with the step up to 20 sec for one revolution 

prediction and up to 100 sec for one day prediction. Prediction 

is carried out using geo-potential function, to describe the 

biggest source of error which is due to the fact that the Earth is 

not perfectly circular. The deformation can be described by 

using the zonal harmonic coefficients �� for 	th deformations 

order. The orbital equations of motion in ECEF (Greenwich) 

are described as [1]: 
 �
� = ��
 �
� = ���  �
� = ���  �
�� = −�μ ��⁄ ��� + �3 2⁄ ��� ��� � �!�⁄ ���1 − 5$�� ��⁄ �+ %���� + 2%���� �
�� = −�μ ��⁄ ��� + �3 2⁄ ��� ��� � �!�⁄ ���1 − 5$�� ��⁄ �+ %���� − 2%���� �
�� = −�μ ��⁄ ��� + �3 2⁄ ��� ��� � �!�⁄ ���3 − 5$�� ��⁄ �  

(1) 

 

where � = &��� + ��� + ���, � is the Earth’s gravitational field 

constant, �  is the equatorial radius of the Earth,  ω( is the 

Earth’s rotation angular velocity, �� is the second zonal 

harmonic of geo-potential expansion into a series in the 

spherical functions, it is a dimensionless parameter quantifies 

the major effects of oblateness on orbits, it is not a universal 

constant. Each planet has its own values of oblateness and  ��. 

For Earth, oblateness is equal 0.003353 and �� is equal 1.08263�10-�. Prediction accuracy increases if all terms of the 

perturbations are included and the acceleration of the SC is 

calculated including dominant effects like the effects of the 

Earth, Moon, Sun gravity fields and lesser effects like tides, 

atmospheric drag, light pressure and relative disturbance 

acceleration. Orbit Propagation via this method generates an 

increasing error of nearly 3 km per orbit and increases of nearly 

8 km per day. 
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Fig. 2 Reference coordinate systems 

 

 

Fig. 3 Quaternions representation 
 

TABLE I 

QUATERNIONS REPRESENTATION 

Quaternion Description 

A Quaternion of transition from ICS to BCS  

B Quaternion of transition from strap-down inertial navigation 

system SINS ICS to BCS.  
C Target quaternion, Quaternion of transition from ICS to target. 

L Calculated orbital quaternion of transition from ICS to OCS, 
calculated by navigation state vector.  

M Quaternion of transition from SINS ICS to ICS, mismatch 

quaternion between ICS & SINS ICS 
N Control quaternion; Mismatch quaternion between desired 

(calculated) orientation and current BCS orientation; calculated 

according to mode. 
LC Target quaternion, Quaternion of transition from OCS to target. 

C. The NORAD Orbit Propagation 

For precise orbit calculations, other forces beyond the 

Earth’s gravitation which cause perturbations must be taken 

into account. In order to avoid such errors in the propagation of 

SCs, the North American Aerospace Defense (NORAD) 

command maintain general information about the perturbation 

on all space objects and a SGP developed by Hilton and 

Kuhlman [5], [4]. The Russians developed a series of analytical 

propagators, each tuned for a specific SC regime. The narrower 

focus permits additional attention to detail, and higher resulting 

accuracy. But none of these analytical routines can eventually 

be documented for general use in the same manner as SGPs. 

SGPs 

Given the Keplerian elements for a single point in time, the 

estimation of the future position becomes straight forward [2]. 

Reference [2] describes the SGP model and how the Kepler’s 

calculations are contained in this model (see also [5]). The 

SGP4 model was an extension of the SGP model in order to get 

a more precise estimation, the atmospheric drag could be 

estimated by using the ballistic coefficient B* and a term for the 

perturbations due to solar radiation are included (for details see 

[7]). Perturbations can be classified according to their effects 

on the orbital elements as [7]: 

Periodic perturbations cause a sinusoidal variation in orbital 

elements over time and consist of: 

1) Short-term periodic perturbations have a period less than 

the orbit period.  

2) Long-term periodic perturbations have a period greater 

than one orbit period.  

Secular perturbations cause secular variation. Its long-term 

non-periodic variation does not depend on time. If it has a linear 

long-term trend, it is called secular drift. Secular variation in 

centuries may be part of a periodic variation in millions of 

years.  

NORAD Two-Line Orbital Element Set (TLE) 

A Two-Line Element (TLE) set is a format that is used to 

describe the position of a SC at a particular instant of time [8]. 

This format consists of two lines of 69 characters of data 

containing the mean orbital element; the first line contains 

various identification data sets and also the perturbation 

influences by the geopotential and the drag forces. The second 

line contains the Keplerian elements to describe the orbital 

plane. The only parameter which is missing is the semi-major 

axis (a), but this parameter can be determined by the mean 

motion [2]. The NORAD TLEs consists of mean orbital 

elements that average out these perturbation effects in a specific 

manner [4]. The right ascension and declination data of a SC is 

taken, via observing the SC through an optical or radio 

telescope, SLR technique or other advanced observing 

techniques, for a short time period. These data are then passed 

through computer software that generates mean orbital element 

sets and other necessary parameters needed for the TLEs. 

D. Orbit Representation in Different Coordinate Systems 

SC orbits are more easily interpreted as circular or elliptical 

when plotted in ECI. Figs. 4 and 5 are used to illustrate the 
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difference between the orbits representation in ECEF and ECI 

frames. The orbital period of the SC is 92 minutes; so the SC 

completes 15.6 revolutions per day. In Figs. 4 and 5, the SC 

orbits are plotted for the duration of one day, so there are 15.6 

orbits in each figure. These orbital passes are generated by the 

SGP4 propagator that includes the perturbations effects on the 

SC like Earth's gravity and atmospheric drag. This perturbation 

effect is more clearly viewed in Fig. 5, where the plotted points 

do not overlap on each revolution. If the perturbation effects are 

excluded the points should coincide on each revolution. 

Figs. 4 and 5 clarify that the SC orbits is more clearly seen as 

circular in the ECI system. The orbital state vectors in the ECI 

system generated by SGP4 can be converted to the ECEF 

system by using the following matrix equation [9]: 

 .r01023 = .4�53.r0163 (2) 

 

where .4�53 is the transformation matrix given as:  

 

A�5 = 8 cosθ� sinθ� 0−sinθ� cosθ� 00 0 1? (3) 

 

where θ� , as illustrated in Fig. 2, denotes the Greenwich 

sidereal time at a specific epoch: 

 θ� = θ�� + %  � (4) 

Here, θ�� indicates the Greenwich sidereal time at 00:00:00 

UT, %  denotes the inertial rotation rate of the Earth, and � is 

the time duration since 0 hours UT. 

The SC travels in prograde orbit. It has an orbital inclination 

of less than 90° and travels in the same direction as the rotation 

of the Earth around its own axis i.e. from the West to East 

direction. Fig. 6 illustrates the prograde orbit having an 

inclination of 52°, which is less than 90°. 
 

 

Fig. 4 SC orbit in the ECEF system 

 

Fig. 5 SC orbit in the ECI system 

 

 

Fig. 6 Ground track of SC plotted in ECEF system 

E. SC Attitude Dynamics and Kinematics 

Recall from [10], the equations represent the basis for 

dynamic attitude modeling, and also form the so-called Euler 

equations of motion: 

 

MJJ +×−= )( ωωωɺ  (5) 

)))((1 MJJ +Ω−=
−

ωωωɺ  (6) @ = A + BC (7) 

 

where J  is the SC inertia matrix, @ is the projection of the total 

applied moments on the principal central axes of the SC 

ellipsoid of inertia, A are the control torques, BC is the 

disturbance torques, % = %D5 = .%E, %�, %�3G is the SC 

absolute angular velocity (relative to the inertial reference 

frame) projected into the SC body coordinate system and 

measured by rate gyros, Ω�%� is a skew-symmetric matrix 

defined by: 

 

Ω�ω� = .%I3 = 8 0 −%� %�%� 0 −%E−%� %E 0 ? (8) 

 

Descriptions of SC attitude can be via various attitude 

parameters, e.g., quaternion or Euler angles parameters. Given 

Euler angles, a unique orientation is defined. Given the 

orientation, non-unique Euler angles can be determined due to 
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singularity. Euler angles representation is best for the analytical 

and attitude control design process. Quaternion representation 

is free from trigonometric components and singularity. It is 

computationally robust and ideal for digital control 

implementation. SC orientation via quaternion representation 

does not appear easily without professional reading or 

transformation to Euler angles. So, the existence of both 

representation (Euler angles and quaternion) at input/output of 

this simulation and the facility of transformation between them 

were considered. The kinematic equation is derived from 

observation of the attitude matrix change over time. For a 

kinematic consideration, attitude change is observed without 

the existence of the torque triggers. This change as a relation 

between the attitude and angular velocity of the body is given 

as: 

 J
K L = −�1/2�ΩJK L + �1 2⁄ �JN% J
N = −�1 2⁄ �%GJK L  
 (9) 

 

The parameterization of the quaternions q is done as: 

  JE = O� sin�∅ 2⁄ �  J� = O� sin�∅ 2⁄ �  J� = O� sin�∅ 2⁄ � JN = cos�∅ 2⁄ � 

(10) 

 

where O�, O� , O� are the components of the Euler axis unit vector 

in the reference frame, and ∅ is the rotation angle around the 

Euler axis. Using (10), it is clear that the quaternion 

components satisfy the following constraint: 

 JE� + J�� + J�� + JN� = 1 (11) 

 

where J =  JQLRS  +  JK L; JQLRS  =  JN is the scalar part of the 

quaternion J, JK L = .JE, J�, J�3G is the vector part of the 

quaternion J. 

Any vector in the reference frame (I) can be transformed to 

body coordinates by the transformation matrix 4D5 , which can 

be written in terms of quaternion components as [9]: 

 

4D5 = TJE� − J�� − J�� + JN� 2�JEJ� + J�JN� 2�JEJ� − J�JN�2�JEJ� − J�JN� −JE� + J�� − J�� + JN� 2�J�J� + JEJN�2�JEJ� + J�JN� 2�J�J� − JEJN� −JE� − J�� + J�� + JN�
U (12) 

 

Equation (12) can be represented by using various attitude 

parameters. 

F. Disturbance Torques on a SC 

In order to model the attitude dynamics of the SC, the 

disturbance torques VTXY (internal and external) acting on the 

SC have to be considered. Internal disturbance torques are 

usually generated from movable mechanisms (generally not 

desired, e.g. fuel sloshing, structure mechanisms, solar panels). 

External disturbance torque is generated by the interaction of 

the space environment with the SC. The corresponding 

magnitude of the disturbance torques is mainly related to the 

orbit and attitude of the SC and its physical properties. There 

are number of external torques acting on a SC which disturbs 

the attitude motion. For a SC in the vicinity of the Earth, the 

major disturbance torques are Gravity-gradient torque (Mgrav), 

Magnetic torque (Mmag), Solar radiation pressure torque 

(Msol) and Aerodynamic torque (Maero). The rough ratio of the 

disturbance torques acting on a SC at 1000 km [11] is Mgrav : 

Mmag : Msol : Maero = 1000 : 250 : 2 : 0.5. So, the dominant 

disturbance torques in the case of an altitude of 700 km are 

Gravity-gradient torque and Magnetic torque.  

G. Formulation of Coupled SC Orbital and Attitude 

Equations of Motion 

The SC attitude motion is numerically simulated relative ICS 

under the influence of a gravity-gradient disturbance torque. 

The attitude kinematics is given by (9). It is clear from (9) that 

to solve the formula for determining the quaternion/Euler 

angles, the angular velocity .ω 3 is needed. This is governed by 

the attitude dynamics, as summarized in (6) and (7). The 

dominant part in the disturbance torques TX is the gravity-

gradient torque which is described by:  

 ZT[\ =  3μ r!⁄  Zr]̂\ .J3.r]3 (13) 

 

where � is the Earth’s gravitational constant, .�D3 is the SC’s 

orbital position vector expressed in BCS, .�DI3 a skew-

symmetric matrix from .�D3 and � =  ‖.�D3‖ is the orbital 

radius. From (13), coupling between the SC orbital and attitude 

motion equations is clear and simulation of the SC orbit is 

required, as well as the attitude, in order to be able to 

compute ZBa\. The SC orbit can be simulated to sufficient 

accuracy by either SGP4 or NORAD-TLE set or the integration 

of the equations of motion including the weak effect 

perturbation sources. The SC orbital motion is described in ICS 

coordinates by [12]: 

 .�b 3= − �.�3 ��⁄  + �3���c � 2�!�⁄  Z�5  ��.�G3.$�3�� ���⁄ − 1�.�3− 2�.�G3.$�3�.$�3\ 
(14) 

 

where .$�3 =  .0 0 13, .�3 is the SC’s orbital position 

expressed in ICS, and c  is the Earth’s equatorial radius. Thus, 

the SC orbit is best simulated in the ICS as clarify from Fig. 4 

and Fig. 5. Referring to (13), it is noted that in order to 

compute ZT[\, converting the SC orbital position vector from 

ECI to BCS is required. The required transformation matrix �4D5� is described by (12) and the SC orbital position vector in 

BCS can be determined from: 
 .�D3 =  .4D53.�3 (15) 

 

Equations (6), (7), (9), and (12)-(15) are self-contained, and 

fully describe the coupled SC attitude and orbital motion.  

Numerical simulation of SC motion involves numerical 

integration of the equations of motion. It is possible to write the 

equation of motion as a first-order differential equation of the 

form: 

 X
 = f�X, t�;  X�t�� =  X� (16) 
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where the state vector X may contain the SC orbital position, 

velocity, attitude variables, angular velocity, and any other state 

variables (for example controller states) required to fully 

describe the SC motion. This is called a state-space 

representation of the system [12]. To numerically simulate the 

SC motion, we need to determine the time history of the state 

vector h��� for � ≥  �� numerically. All numerical integration 

schemes are based upon a discretization of time with sample 

times ��. The difference between subsequent sample times ℎ = �� − ��-E is called the time step and must be sufficiently small. 

In order to write the equations as a first-time derivatives in 

the form of (16), the SC inertial velocity vector k is introduced: 

 .�
3 = .v3 (17) 

Then, the second time-derivative of � becomes the first time-

derivative of k, that is:  
 Zk
 \ = .rb3 (18) 

 

In addition, (14) becomes: 

 Zk
 \ = − �.�3 ��⁄  + �3���c � 2�!�⁄  Z�5  ��.�G3.$�3�� ���⁄− 1�.�3 − 2�.�G3.$�3�.$�3\ (19) 

 

By introducing the inertial velocity vector k, the second-

order differential equation (14) can be replaced by the pair of 

first-order differential equations (17) and (19). The coupled SC 

attitude and orbital motion is therefore fully described by the 

first order differential equations (6), (9), (17), and (19), together 

with (12), (13), and (15). Since the quantities appearing with 

first time-derivatives are ��1, �2, �mn �3� o� J, % , � , and k, 
these equations are in a suitable form to be programmed for use 

with a numerical ODE solver (such as those available in 

MATLAB). It is clear from (16) that the initial condition h�0� 

must be specified. So, the initial Euler angles ��1�0�, �2�0�, �mn �3�0�� or initial quaternion J�0�, the 

initial angular velocity %�0�, the initial orbital ��0�, and the 

initial orbital velocity k�0� are required. 

 

 

Fig. 7 Coupled SC Orbital and Attitude Equations of Motion 

 

III. TIME-OPTIMAL SWITCHING CONTROL LOGIC WITH 

LINEAR RANGE 

In practice, a direct implementation of an ideal time-optimal 

switching control logic results in a chattering problem [13] 

about the origin. This problem is returned back to time delays 

in the control system and various uncertainties in the moment 

of inertia p and actuator dynamics, where the maximum actuator 

torque q is not exactly known. To eliminate this effect, a 

conventional linear control solution will replace the bang-bang 

solution near the origin and any attitude maneuver divided to 

the following two parts: 

A. Time-Optimal Control 

A complete treatment of time-optimal reorientation in space, 

based on optimal control theory, can be found in [14]. Consider 

a rigid SC that is required to maneuver about an inertially fixed 

axis as fast as possible, but not exceeding the specified 

maximum slew rate about that eigenaxis. The following 

saturation control logic provides such a rest-to-rest eigenaxis 

rotation under slew rate constraint: 

r = −�s2t �O� + nu�QRv %w (20) 

 

where e = �eE, e�, e�� is the quaternion-error vector, for 

achieving rapid transient settlings for large attitude-error 

signals, the attitude error saturation limits Lz are determined 

corresponding to [15]  as: 
 {� = �n 2t⁄ �|	m }&4��|O�|, |%�|�R�� (21) 

 

where az = U Jzz⁄  is the maximum control acceleration about the ith control axis and |ωz|��� is the specified as the maximum 

angular rate about each axis. 

B. Linear Quaternion Feedback Control 

The linear state feedback controller of the following form can 

be considered for the real-time implementation of eigenaxis 

rotations in the 2nd part of the maneuver (linear range): 

 A = −�J − �% − �Ω�% (22) 
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Fig. 8 Quaternion Feedback Control 

 

 

Fig. 9 Simulator main layer 

 

The selected feedback controller for eigenaxis rotations 

consists of linear error-quaternion feedback, linear body-rate 

feedback, and a nonlinear body-rate feedback term that can be 

added to counteract the gyroscopic coupling torque. 

Considering � = 1 means that the control torque exactly 

counteracts the gyroscopic coupling torque, while � = 0 means 

that only quaternion feedback and linear rate feedback are used. 

This controller is a time invariant closed loop controller in 

which no reference trajectory is available for the mid-time until 

reaching the required final attitude, and the control at any time 

is calculated as a function of the current measured attitude and 

angular rate without any use of time dependent gains or 

functions. In general, A = .AE, A�, A�3G is the control torque 

vector, where the torques AE, A�, and A�  are applied by the 

actuators about the x, y and z body fixed axes. The gains � and 

� are 3X3 controller gain matrices to be properly determined 

or designed. These gains are selected according to Wie [6] as: 

D = dJ and K = kJ, where d and k are scalars for the eigenaxis 

rotation. J = �JE , J� , J� �G is the attitude error quaternion 

vector which is a part of the attitude error quaternion qe= 

[q1e,q2e,q3e,q4e], which represents the attitude error between the 

current orientation and the desired one, and defined as [10]: 
 

TJE J� J� JN 
U =  T JNL−J�LJ�LJEL

J�LJNL−JELJ�L

−J�LJELJNLJ�L

−JEL−J�L−J�LJNL
U TJEJ�J�JN

U (23) 

 

The equation is the result of successive quaternion rotations 

using the quaternion multiplication and inversion rules: 
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J = J�L ∘ J (24) 

IV. SIMULATION 

The simulator is built using Simulink toolbox/MATLAB 

version 8.5.0.197613 (R2015a). The simulator includes many 

subsystems. The main layer of the simulator is shown in Fig. 9 

and consists of:  

A. Environmental model module 

B. Orbit simulation and navigation modules 

C. Guidance and target parameter preparation modules 

D. Controller module 

E. SC dynamics and kinematics module 

F. Visualization module 

V. DESIGN EXAMPLE 

Consider the three-axis attitude control problem of a rigid SC 

with the following nominal inertia matrix in units of .��. |�3: 
 

� = 8430 −2 4−2 250 34 3 425? (25) 

 

The Two Line Element (TLE) which is used to describe the 

position of a SC: 

 

1 39687U 14021A 15104.17571456 .00000246 

00000-0 10000-3 0 9994 

2 39687 051.6201 336.2611 0000555 110.4498 

249.6507 14.5383753752965 

(26) 

 

Actuator dynamics in each axis is assumed as: 

 A�A�L =  �50���� + 2�0.7��50�� + �50�� (27) 

 

where A�  is the actual control torque acting along the 	th control 

axis of the SC and A�L  is the control torque command with 

maximum torque saturation limits in each channel � =�1,0.5,1�.N. m3. Taking the damping ratio � ≈ 0.9 and the 

natural frequency %� ≈ 0.45 .��n/�3 yield to the positive 

scalars t ≈ 0.4 .�-�3 and n ≈ 0.8.�-E3. The maximum angular 

rate |%�|�R� is assumed to be 85% of the high accuracy range �2 .nO� �⁄ 3� of measuring angular velocity using star trackers. 

The maximum control acceleration in the maneuvers direction ��R��  is chosen to be 60% of �/��� to accommodate the 

actuator dynamics, the nonlinear nature of quaternion-based 

phase-plane dynamics, and control acceleration uncertainty. 

A. Model Verification and Controllers Analysis 

A simulation study of the described time-optimal nonlinear 

three-axis quaternion feedback control logic was performed for 

many closely placed ground targets mission for single imaging 

and stereo imaging. The mission consists of a sequence of three 

maneuvers to achieve the following Euler angles sets; [20; -4; -

18], [-25; -3; -2] and [25; -3; -1] [deg], as shown in Fig. 10. 

Figs. 11 and 12 illustrate the control torque generated using the 

proposed control logic with actuator saturation limit. Fig. 13 

shows the SC angular rates for the proposed control logic. In 

addition, it shows that the SC angular rates during the three 

maneuvers did not reach to saturation speed of the sensor. Fig. 

14 illustrates the SC Euler angles for the proposed control. 

 

 

Fig. 10 SC Euler angles time responses for sequence of three 

maneuvers 

 

 

Fig. 11 Control torque using the simulated control logic 
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Fig. 12 Control torque using the simulated control logic with actuator 

saturation limit 

 

 

Fig. 13 SC angular rates for the simulated control logic 

B. Orbit Simulation Analysis 

Fig. 15 shows the SC position vector predicted using SGP4 

and verified by the position vector obtained from the Satellite 

Tool Kit (STK) application. 

Fig. 16 shows the SC position vector error (difference 

between the predicted position vector using orbit propagation 

via integration of the equation of motion and the extracted 

position vector from verification data) during time interval 

757[s]. Table II illustrates the maximums and the mean values 

of errors in X-axis, Y-axis and Z-axis. 

 

 

Fig. 14 SC Euler angles for the simulated control logic 
 

 

Fig. 15 Position vectors R_SGP4 and R_STK  
 

TABLE II 

MAXIMUM AND MEAN VALUES OF POSITION VECTOR ERROR 

Error |���o�|�R� [Km] Mean value [Km] 

X 7.942 2.607 

Y 5.882 2.054 

Z 5.68 1.332 

 

Fig. 17 illustrates the 3D SC trajectory comparison between 

the results obtained from orbit propagation via integration of 

the equation of motion using (1) in red color and the verification 

data in blue color for three orbits. Fig. 18 illustrates the same 

comparison in 2D for X-axis, Y-axis and Z-axis. 

Fig. 19 shows the SC position vector error (difference 

between the predicted position vector using SGP4 and TLEs 
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and the extracted position vector from the verification data) 

during time interval 600 sec. Table III illustrates the maximums 

and the mean values of errors in X-axis, Y-axis and Z-axis. 

 

 

Fig. 16 Error in orbit prediction using orbit propagation via 

integration of the equation of motion 

 

 

Fig. 17 3D Comparison between the orbit propagation via integration 

of the equation of motion and the verification data 
 

TABLE III 
MAXIMUM AND MEAN VALUES OF POSITION VECTOR ERROR 

Error |���o�|�R� [Km] Mean value [Km] 

X 6.174 1.973 

Y 3.32 1.107 

Z 5.107 0.8877 

 

Fig. 20 illustrates the 3D SC trajectory comparison between 

the results obtained using SGP4 and TLEs in red color and the 

verification data in blue color for three orbits. Fig. 21 illustrates 

the same comparison in 2D for X-axis, Y-axis and Z-axis. 

 

Fig. 18 2D Comparison between the orbit propagation via integration 

of the equation of motion and the verification data 

  

 

Fig. 19 Error in orbit propagation using SGP4 and TLEs 

VI. VISUALIZATION 

This simulation provides options for visualizing SC 

dynamics in a 3D environment; trajectory and attitude, 

including an interface to V-Realm Builder and VR Sink of 

Simulink/MATLAB. The visualization of a SC trajectory and 

attitude appear in Fig. 22. Fig. 23 shows zooming in SC attitude 

visualization. Fig. 24 illustrates the monitoring process to SC 

energy ellipsoid.  
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Fig. 20 3D Comparison between the orbit propagation using SGP4 

and TLEs and the verification data 

 

 

Fig. 21 2D Comparison between the orbit propagation using SGP4 

and TLEs and the verification data 

VII. CONCLUSION  

Acceptable results for the proposed time-optimal nonlinear 

feedback control technique are achieved. The results of the orbit 

simulation achieved the accepted accuracy for the purpose of 

the formulation of coupled SC orbital and attitude equations of 

motion. This coupling becomes valuable when actuators do not 

work, e.g. during communication loss with the SC. The same 

case gives important orbit estimation using SGP4 and TLEs 

because it is dependent on the physical observation to the SC. 

It can give an indication of whether the SC is still in its 

trajectory and how much it may drift from its normal path. 

 

 

Fig. 22 VR Sink and V. Realm Builder 

 

 

Fig. 23 Visualization of SC orientation 

 

 

Fig. 24 Visualization of SC energy ellipsoid 
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