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Abstract In this paper the Differential Quadrature Method
(DQM) is employed to study the coupled lateral-torsional free
vibration behavior of the laminated composite beams. In such
structures due to the fiber orientations in various layers, the lateral
displacement leads to a twisting moment. The coupling of lateral
and torsional vibrations is modeled by the bending-twisting material
coupling rigidity. In the present study, in addition to the material
coupling, the effects of shear deformation and rotary inertia are
taken into account in the definition of the potential and kinetic
energies of the beam. The governing differential equations of motion
which form a system of three coupled PDEs are solved numerically
using DQ procedure under different boundary conditions consist of
the combinations of simply, clamped, free and other end conditions.
The resulting natural frequencies and mode shapes for cantilever
beam are compared with similar results in the literature and good
agreement is achieved.

Keywords Differential Quadrature Method, Free vibration,
Laminated composite beam, Material coupling.

I. INTRODUCTION

OMPOSITE structures like beams, panels and plates are
extensively used in various fields of engineering such as

aerospace, mechanical, civil and mining engineering.
Mechanical properties like as high strength/stiffness to
weight ratio and excellent fatigue strength of composite
materials have increased their applications in the construction
of several structures. Therefore, the vibrational behavior of
composite structures has been studied by many researchers in
recent years. Free vibration analysis of the simple laminated
composite beams started by Abarcar [1], Mansfield [2] and

deformation and rotary inertia in their studies. It is known
that when the cross-sectional dimensions of the beam are
large or higher frequencies of the beam are studied, the
effects of shear deformation and rotary inertia must be taken
into account similar to the Timoshenko beam theory.
Furthermore, low shear moduli of fibrous composites that
results in low shear stiffness of the beam, intensifies this
requirement. Also in composite beams, because of the ply
orientation and stacking sequence of the fibers imbedded in
continuous resin media, the effect of bending-torsion material
coupling should be considered [1,4,5].
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This effect adds some additional terms and an additional
equation to the equations of motion of the metallic
Timoshenko beam and so they become more complicated to
solve. Using some numerical approaches, the vibrational
behavior of composite beams based on the Timoshenko beam
theory was studied [6, 7]. Bank and Kao [8] studied the free
and forced vibrations of the thin-walled fiber-reinforced
composite material beams using the Timoshenko beam
theory. Williams and Banerjee [9] and Banerjee [10]
developed the dynamic stiffness matrix method for the
problems of free vibration of composite Timoshenko beam
and axially loaded composite Timoshenko beam, respectively.
Moreover the later is analyzed by Kaya and Ozdemir
Ozgumus [11] using the differential transform method
(DTM).

Among the various numerical methods the differential
quadrature method (DQM) which was introduced by Bellman
and Casti [12] is a powerful method for solving initial and
boundary value problems. This method needs less
computational efforts as compared with the other numerical
methods such as finite element method and finite difference
method. One of the advantages of this method is the use of
less grid points with acceptable accurate solutions of the
differential equations. The method firstly used by Bert et al
[13] for solving problems in structural mechanics and then
has been widely used for static and free vibration analysis of
beams and plates in various problems. Its early development
and some of its application can be found in review papers by
Bert and Malik [14, 15].

In this paper the DQ procedure is developed for free
vibration analysis of coupled lateral-torsional vibrations of
laminated composite beam according to the Timoshenko
beam theory. This paper is organized as follows. Firstly the
equations of motion and the boundary conditions are derived.
Then the differential quadrature method is used to discretize
the equations of motion as well as the boundary conditions.
Using this procedure an eigenvalue problem is obtained that
its solution represents the natural frequencies and mode
shapes of the beam under the corresponding boundary
conditions. Then the acquired results for cantilever beam are
compared with the presenting results in literature where they
are in good agreement. Also the convergence of the solutions
is studied in order to examine the accuracy of the method
where it can be seen that the results rapidly converge
together. The free vibration analysis of the beam under the
other boundary conditions is investigated and the numerical
results are presented.
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II. FORMULATION 
The differential equations of motion for free vibrations of a 

laminated composite beam can be easily derived using 
Hamilto principle the 
integration of the Lagrangian of a dynamical system on any 
arbitrary interval of time is stationary, i.e. 
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where Uk and Up are the kinetic and the potential energies, 
respectively. Considering w as transverse deflection,  as 
bending rotation and  as twist angle of the beam, the total 
kinetic energy Uk of the beam is given by 
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and the total potential energy of the beam is 
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where,  is the density of the material, A is the cross-
sectional area, I  is the polar mass moment of inertia per unit 
length, I is the second moment of area of the beam cross-
section, EI is the bending rigidity, GJ is torsional rigidity, K 
is bending-torsion coupling rigidity, L is the length of the 
beam and AG  is shear rigidity of the material (includes 
shear correction factor) and differentiation with respect to 
space and time are shown by indices x and t respectively. 
Substituting Eqs. (2,3) into Eq. (1), using integration by parts 
and simplifying the results, the equations of motion for the 
laminated composite beam are derived in the following form 
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Beside the above coupled PDEs, geometric and natural BCs 
must be taken into account. Notice that natural BCs include 
the values of shear force S , bending moment M  and 
twisting torque T  at the boundaries. These quantities are 
represented by the following expressions 
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Now, assuming synchronous motion in which the general 

shape of the beam does not change with time. 
Mathematically, this implies that the unknown functions w , 

 and  are separable in space and time 
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Substituting these functions into Eqs. (4-6) leads to 
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which shows a harmonic motion and the following coupled 

ODEs 
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These ODEs have the following non-dimensional form 
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where the non-dimensional parameters are defined as 
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Consequently, the non-dimensional shear force, bending 

moment and twisting torque are 
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III. DQ-DISCRETIZATION 
According to the differential quadrature method, the length 

of the beam is discretized into a set of N discrete grid points. 
In DQ method, the partial derivative of a function with 
respect to the space variable at a given discrete point is 
approximately expressed by a weighted linear sum of the 
function values at all discrete points. Consider a one-
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dimensional function f(x), the approximate value of the n-th 
derivative of f(x) at the i-th discrete point is given by [16] 
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where n is the order of derivative, x is the independent 
variable, xj are the positions of the discrete grid points, f(xj) 
are the values of the function at the grid points and )(n

ijA  are 

the elements of the weighting coefficient matrix attached to 
these function values. 

In order to determine the weighting coefficients, a set of 
test functions should be used in equation (18). For the 
polynomial basis function of DQ, a set of Lagrange 
polynomials are employed as the test function. The weighting 
coefficients for the first-order derivative in x-direction are 
thus determined as 
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The off-diagonal elements of the weighting coefficient 

matrix for the second and higher order derivatives are 
obtained through the following recurrence relation 
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and their diagonal elements are given by 
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In the present study the Chebyshev-Gauss-Lobotto 

quadrature points in x-direction are used as 
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where L is the length of the beam. Substituting Eq.18 into 
Eqs.13, 14 and 15 leads to these discrete domain equations 
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In a similar manner, the DQ-discretization of shear force S, 

bending moment M and twisting torque T at each point on the 
beam can be stated as 
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In order to create the eigenvalue system of equations, the 

degrees of freedom are separated into the domain and 
boundary the degrees of freedom as  
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where the subscripts d and b denotes the values at domain 
and boundary grid points, respectively. The discretized form 
of equations of motion and boundary conditions can be 
rearranged in an assembled form as follows 
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0db UBUB 21  (31)
 

where the components of the coefficient matrices [A1] and 
[A2] are obtained from Eqs.(25-27) and the components of the 
coefficient matrices [B1] and [B2] are obtained from the 
discretized form of the boundary conditions. The vectors {Ub} 
and {Ud}  are defined as 
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For eliminating {Ub} from Eq. (30), first it should be 

obtained from Eq. (31), that is  
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1
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Substituting Eq. (34) into Eq. (30), the eigenvalue system 

of equations is obtained as 
 

dd UUC 2][  (35) 
 
in which  
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Solving the eigenvalue system of equations (35) leads to 

the natural frequencies as well as mode shapes of the beam 
under consideration. 

IV. CANTILEVER BEAM 
There are three boundary conditions at each end of the 

beam. These BCs are any triple proper-combinations of the 
geometric or natural end conditions. By a simple calculation 
the total number of possible BCs is thirty six. In this paper, 
among these possible BCs only a few cases are studied and 
the complete procedure to find the natural frequencies and 
mode shapes is briefly explained for a cantilever beam (the 
same route is applicable for other cases). In the case of the 
cantilever beam the boundary conditions at the clamped edge 
are given by 
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and the boundary conditions at the free end are as 
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Based on these equations the coefficient matrices in the Eq. 

(31) are determined easily and the eigenvalue problem is 
constructed as discussed above. 

 

V. NUMERICAL RESULTS 
The coupled lateral-torsional free vibration of the 

laminated composite cantilever beam was analyzed by 
Banerjee [17]. To validate and confirm the accuracy of 
solution procedure, the numerical results are calculated for 
the glass-epoxy composite beam with the data used in Ref. 
[17] where its physical and geometric properties are 
represented in TABLE I. The natural frequencies of the 
cantilever beam are presented in TABLE II where their 
comparison with the results of the Ref. [17] shows a good 
agreement. Also the convergence of the solutions is shown in 
TABLE III for various boundary conditions. It can be seen 
that the numerical results have converged rapidly and this 
table truly illustrates the effectiveness of the method. The first 
four natural frequencies of the beam under various boundary 
conditions are presented in TABLE IV. Also the first three 
normalized mode shapes of the cantilever beam are shown in 
figure (1). Furthermore the same figures are presented for the 
beam with different types of boundary conditions include free-
free, clamped-clamped and pseudo-simply supported. 

 
TABLE I 

PHYSICAL PROPERTIES OF GLASS-EPOXY COMPOSITE BEAM WITH ALL FIBER 
ANGLES SET TO +15  AND CROSS-SECTIONAL DIMENSIONS: THICKNESS (h=3.18 

mm) & WIDTH (b=12.7 mm). 
EI(Nm2) GJ(Nm2) K(Nm2) A(kg/m3) I (kgm) AG(N) L(mm) 
0.2865 0.1891 0.1143 0.0544 0.777×10-6 6343.3 190.5 
 

TABLE II 
COMPARISON OF THE FIRST FOUR NATURAL FREQUENCIES OF THE CANTILEVER 

BEAM WITH THE ANALYTICAL SOLUTION [17] 

BC s 1 (rad/s) 2 (rad/s) 3 (rad/s) 4 (rad/s) 

Exact([17]) 193.19 1192.42 3259.65 4073.21 

DQM 193.1900 1192.4178 3259.6591 4073.1966 

 
For semi-definite system only non-zero mode shapes are 

shown (e.g. in the case of Free-Free ends). 

VI. CONCLUSION 
The coupled lateral-torsional vibrations of laminated 

composite beam were studied using differential quadrature 
method. In the formulation of the problem, the bending-
twisting material coupling, the effects of shear deformation 
and rotary inertia were taken into account. The natural 
frequencies and mode shapes for cantilever beam were 
compared with similar results in the literature and good 
agreement was achieved. Also the convergence of the 
solutions was studied in order to accuracy estimation of the 
solution procedure. The effect of boundary conditions on the 
vibrational phenomena was investigated. The results showed 
that how the torsional motion is affected by the lateral 
vibration. Also, the results for some other BCs were 
presented. Focusing on the data represented here indicates 
that the increase/decrease of the natural frequencies is 
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compatible with the nature of BCs. Based on the solution used
in this study for the beam with rectangular cross-section, the
numerical results for the composite beams with the other
cross-sections such as box or airfoil can be obtained easily.

TABLE III
CONVERGENCE OF THE NATURAL FREQUENCIES OF THE BEAM WITH

VARIOUS BOUNDARY CONDITIONS

BCS
Number
of Nodes 1(rad/s) 2(rad/s)

C-F

8 193.1784 1198.2143
9 193.1886 1192.1616
10 193.1899 1192.2605
11 193.1900 1192.4157
12 193.1900 1192.4203
13 193.1900 1192.4178
14 193.1900 1192.4178

C-C

9 1203.5037 3224.1802
10 1203.5021 3224.0408
11 1203.4998 3224.0012
12 1203.4998 3223.9472
13 1203.4998 3223.9485
14 1203.4998 3223.9495
15 1203.4998 3223.9495

S-S

9 540.7336 2131.8335
10 540.7344 2128.5449
11 540.7359 2128.6151
12 540.7359 2128.7137
13 540.7359 2128.7117
14 540.7359 2128.7098
15 540.7359 2128.7098

TABLE IV
THE FIRST FOUR NATURAL FREQUENCIES OF THE BEAM UNDER VARIOUS

BOUNDARY CONDITIONS
Boundary Conditions 1(rad/s) 2(rad/s) 3(rad/s) 4(rad/s)

C-C 1203.4998 3223.9495 6100.0963 8125.0104
F-F 1220.3711 3300.8862 6262.8823 8183.6200
S-S 540.7359 2128.7098 4669.6608 8030.4573

1203.4877 3224.0146 6100.0627 8129.6383
at =0, 1: w=0, M=0, 602.5455 2116.4747 4715.4566 7304.1033
at =0, 1: S=0, =0, T=0 541.0426 2128.5001 4671.3989 7903.5821

at =0, 1: S=0, M=0, 1339.1478 3262.8299 6406.3464 7497.8193
at =0, 1: S=0, =0, 540.7359 2128.7098 4669.6608 8030.4573
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Fig. 1 Mode shapes of cantilever beam
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Fig. 2 Mode shapes of beam with BCs: at =0, 1: w=0, M=0,
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Fig. 3 Mode shapes of Free-Free beam
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Fig. 4 Mode shapes of clamped-clamped beam
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