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Abstract—Power flow (PF) study, which is performed to 

determine the power system static states (voltage magnitudes and 
voltage angles) at each bus to find the steady state operating 
condition of a system, is very important and is the most frequently 
carried out study by power utilities for power system planning, 
operation and control. In this paper, a counterpropagation neural 
network (CPNN) is proposed to solve power flow problem under 
different loading/contingency conditions for computing bus voltage 
magnitudes and angles of the power system. The counterpropagation 
network uses a different mapping strategy namely 
counterpropagation and provides a practical approach for 
implementing a pattern mapping task, since learning is fast in this 
network. The composition of the input variables for the proposed 
neural network has been selected to emulate the solution process of a 
conventional power flow program. The effectiveness of the proposed 
CPNN based approach for solving power flow is demonstrated by 
computation of bus voltage magnitudes and voltage angles for 
different loading conditions and single line-outage contingencies in 
IEEE 14-bus system. 
 

Keywords—Admittance matrix, counterpropagation neural 
network, line outage contingency, power flow 

I. INTRODUCTION 

OWER flow or load flow analysis is performed to 
determine the steady state operating condition of a power 

system, by solving the static load flow equations (SLFE) for a 
given network. The main objective of power flow (PF) studies 
is to determine the bus voltage magnitude with its angle at all 
the buses, real and reactive power flows (line flows) in 
different lines and the transmission losses occurring in a 
power system. Power flow study is the most frequently carried 
out study performed by power utilities and it is required to be 
performed at almost all the stages of power system planning, 
optimization, operation and control. 

Fast security assessment is of paramount importance in a 
modern power system to provide reliable and secure 
electricity supply to its consumers. To perform the 
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contingency screening, which is one of the most CPU time-
consuming tasks for on-line security assessment, the 
computation of the operating state in every few minutes is 
required simulating the occurrence of several contingencies 
and different loading conditions [1].   

During last four decades, almost all the known methods of 
numerical analysis for solving a set of non-linear algebraic 
equations have been applied in solving power flow problems 
[2], [3]. The desirable features to compare the different PF 
methods can be the speed of solution, memory storage 
requirement, accuracy of solution and the reliability of 
convergence depending on a given situation. Though, 
robustness or reliability of convergence of the method is 
required for all types of application, the speed of solution is 
more important for on-line applications compared to the off-
line studies. 

For contingency selection, fast non-iterative approximate 
power flow methods such as DC power flow method, 
linearised AC power flow or decoupled power flow or fast 
decoupled power flow methods are used, which provides 
results having high inaccuracies. Full AC power flow methods 
are accurate but become unacceptable for on-line 
implementation due to high computational time requirements. 

With the advent of artificial intelligence, in recent years, 
expert systems, pattern recognition, decision tree, neural 
networks and fuzzy logic methodologies have been applied to 
the security assessment problem [4]-[10], and other power 
system problems [11]-[13]. Amongst these approaches, the 
applications of artificial neural networks (ANNs) have shown 
great promise in power system engineering due to their ability 
to synthesize complex mappings accurately and rapidly.  Most 
of the published work in this area utilizes multi-layer 
perceptron (MLP) model based on back propagation (BP) 
algorithm, which usually suffers from local minima and over-
fitting problems [7], [10], [14]. Its ability to generalise a 
pattern depends on the learning rate and the number of units in 
hidden layer. In reference [15], a neural network load flow 
using an ANN-based minimisation model is proposed. A 
separate MLP model based on Levenberg-Marquardt second 
order training method has been used for computation for bus 
voltage magnitude and for angle at each bus of power system 
in [16]. As the number of neural networks required to solve 
power flow problem are large, it may not be applicable to a 
practical power system having huge number of buses. 

A feed-forward counterpropagation neural network 
(CPNN) is proposed in this paper, which uses a different 
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mapping strategy namely counterpropagation. The CPNN 
provides a practical approach for implementing a pattern 
mapping task, since learning is fast in this network [17], [19].  

The effectiveness of the proposed CPNN based approach is 
demonstrated by computation of bus voltage magnitudes and 
angles following different single line-outage contingency at 
different loading conditions on IEEE 14-bus system [20]. 

II. METHODOLOGY  
Fig.1 shows the architecture of the proposed 

counterpropagation neural network. The composition of the 
input variables for the proposed neural network has been 
selected to emulate the solution process of a conventional 
power flow program.  

                                        
                                                                  

 
Fig. 1 Proposed CPNN Architecture 

 
The input consists of the electric network parameters 

represented by the diagonal elements of the bus conductance 
and susceptance matrix, voltage magnitudes Vg of generation 
and slack buses, the active power generations Pg of PV buses. 
In order to speed up the neural network training, the 
conductance and susceptance are normalised between 0.1 and 
0.9. For this CPNN based power flow model, the system 
loads, active and reactive power components are represented 
like constant admittance and they are included into the 
diagonal of the bus admittance matrix [Y]=[G]+j[B], where 
[G] and [B] are the bus conductance and susceptance matrices 
respectively.   

A. Power Flow Problem 
The objective of power flow study is to determine the 

voltage and its angle at each bus, real and reactive power flow 
in each line and line losses in the power system for specified 
bus or terminal conditions. The power flow studies are 
conducted for the purpose of planning (viz. short, medium and 
long range planning), operation and control. For the purpose 
of power flow studies, it is assumed that the three-phase 
power system is balanced and also mutual coupling between 
elements is neglected. Variable associated with each bus of 
the power system include four quantities viz. voltage 
magnitude Vi, its phase angle δi , real power Pi and reactive 
power Qi total 4n variable for n buses system. At every bus 

two variables are specified, the remaining two can be found 
by solving the 2n power flow equations. Out of these four 
quantities only two are generally specified at a few bus and 
depending upon which two are specified, we have three 
categories of buses, namely Swing Bus or Reference Bus, 
Generator Bus or PV Bus and Load Bus or PQ Bus. 

From the nodal current equations, the total current entering 
the ith bus of m bus system is given by  

∑
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where Yik is the admittance of the line between buses i and k 
and Vk is the voltage at bus k.   
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Here δ is the angle of the bus voltage and θik is bus admittance 
angle. At ith bus, complex conjugate power will be                          

                         iiiii IVjQPS ** =−=                            (2) 

                                            = ∑
=

m

k
kiki VYV

1

* )(                   (3)                  

or            [ ]∑
=

−+−=−
m

k

j
kikiii

kiikeVYVjQP
1

)( δδθ               (4)                        

The real power at ith bus will be 
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Similarly, the reactive power at ith bus will be  
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Equations (6) and (8) are known as Static Power Flow 
Equation (SPFE). 

The power flow equations used in this method for 
computation of voltage corrections are given as,    
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 where H, N, J and L are the sub-matrices of the Jacobian. 
Eq (9) may be written as 
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The solution of Eq (10) provides the correction vector i.e. 
∆δ’s for all the PV and PQ type buses and ∆V’s for all the PQ 
type buses, which are used to update the earlier estimates of 
δ’s and V’s. This iterative process is continued till the 
mismatch vector i.e. ∆P’s for all the PV and PQ type buses 
and ∆Q’s for all the PQ buses become less than a pre-assigned 
tolerance value ε. As can be observed form Eqs (9) and (10), 
during each iteration, Jacobian elements are to be calculated 
and its inverse is also required. Due to this fact, the Newton-
Raphson method requires more time per iteration. However, 
this method provides accurate results and is the most reliable 
AC power flow method. To get accuracy in power flow 
solution, the NR power flow program has been developed in 
this paper and run to generate several training / testing 
patterns. 

B. Counterpropagation Neural Network  
The counterpropagation neural network is a hybrid of 

Kohonen clustering network and a Grossberg outstar. The 
CPNN model (Fig. 2) involves both supervised and 
unsupervised learning.  

The Kohonen network implements the winner-take-all 
(competitive) strategy for the weights from the units in the 
input layer to the units in the hidden layer, and the Grossberg 
outstar maps the winning neuron into the desired output.  The 
unsupervised and supervised training are applied to train the 
CPNN model. Since the PF problem demands a solution with 
high precision, the neural networks have to be trained 
considering a very small stopping criterion. 

A large number of load patterns are generated randomly by 
perturbing the load at all the buses in wide range, voltage 
magnitude at PV and slack buses and real power generation at 
PV buses and transformer tap setting. Single line outages are 
considered as contingencies. Newton-Raphson (NR) power 
flow program is used to generate training / testing patterns for 
different load scenarios and for all the single-line outage 
contingencies.  

 
   

 
Fig. 2 Feed-forward Counterpropagation Network 

 
 
CPNN is trained in a two-phase process. In the first phase, 

the Kohonen layer neuron weights are adjusted to match the 
input. The second training phase helps to adjust the Grossberg 
weights in order to fit the desired neuron output. To reduce 
the training time, the input vectors are normalized by dividing 
each component of an input vector by that vector’s length and 
also the initial randomized weights for Kohonen’ layer are 
normalized. 

 Two counterpropagation neural networks are developed in 
this work, one (CPNN1) for computation of bus voltage 
magnitudes at all the PQ type buses, while the other (CPNN2) 
for computation of bus voltage angles at PV type and PQ type 
buses. After training, the knowledge about the voltage 
magnitudes at all the PQ buses and voltage angle at different 
PV and PQ buses for various contingencies under different 
system operating conditions (training patterns) are stored in 
the structured memory by the trained CPNNs. 

C. Solution Algorithm 
The solution algorithm for power flow problem using 

CPNN is as follows: 
(i) A large number of load patterns are generated randomly 

by perturbing the load at all the buses, real power 
generation at the generator buses, voltage magnitudes at 
PV & slack buses and transformer tap settings. 

(ii) AC power flow (NR) programs are run for all the load 
patterns and also for contingency cases to calculate bus 
voltage magnitudes at all the PQ type buses and voltage 
angle at all the PV and PQ type buses except the slack 
bus. 

(iii) The diagonal elements of the bus conductance and 
susceptance matrix(active and reactive loads added to it), 
voltage magnitudes at PV and slack buses and real 
power generations at PV buses are selected as input 
features. 

(iv) All the input vectors and the initial randomized weights 
for Kohonen’ layer are normalized before applying to 
the counterpropagation network. 

(v) Train the Kohonen clustering network by applying it to 
the CPNN competitive layer. Set iteration count C =1. 

(vi) Determine the unit (neuron) that wins the competition by 
determining the unit k whose vector wk is closest to the 
given input. 
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(vii) Update the winning unit’s weight vector as 
    ))(()()1( CwxCwCw kikk −+=+ η  
(viii) Repeat Steps (v) through (vii) until all input vectors are 

applied.  
(ix) Increase the iteration count by one (C = C+1) and 

repeat Steps (v) through (viii) until all input vectors are 
grouped properly by applying the training vectors 
several times. 

(x) After training the kohonen’s layer, apply a normalized 
input vector xi to the input layer and the corresponding 
desired output vector yi to the output layer. 

(xi) Determine the winning neuron k in the competitive 
layer. 

(xii) Update the weights on the connections from the 
winning competitive unit to the output units 

    ))(()()1( CvxCvCv kikk −+=+ η  
(xiii) Repeat Steps (x) through (xiii) until all the input-output 

pairs in the training data are mapped satisfactorily 

III. TEST RESULT 
The IEEE-14 bus system, which is composed of 14 buses 

and 20 lines, has been used to test the proposed methodology. 
The data for IEEE-14-bus system were taken from [20] with 
buses renumbered to make bus-1 as slack bus having pre-
specified voltage as 1.06∠0° p.u., buses 2-5 as PV buses and 
buses 6-14 as load (PQ) buses. One CPNN model (CPNN1) 
was trained to provide bus voltage magnitude at all the PQ 
buses, while the other neural network (CPNN2) was trained to 
compute the bus voltage angles at all the PV and PQ type 
buses.    

The total number of inputs is 29, including diagonal values 
of G and B, real and reactive loads, real bus power generation 
at bus no. 2, bus voltage magnitudes at 4 PV and the slack 
buses. For training and testing of CPNN, 25 load scenarios 
were generated by perturbing the load at all the buses in the 
range of 50% to 150%, PV bus voltage magnitude between 
0.9 to 1.10, real power generation between 80% to 120%, 
transformer tap setting between 0.9 to 1.10. Single-line 
outages were considered as contingencies. Newton-Raphson 
(NR) power flow program was used to generate training / 
testing patterns for 25 load scenarios and for all the single-line 
outage contingencies. 

The NR method converged for different loading conditions 
and for 19 line outage cases i.e. for 500 cases. Out of 500 
generated patterns, 400 patterns corresponding to 20 load 
scenarios were arbitrarily selected and used for training of the 
CPNN, while 100 patterns corresponding to 5 load scenarios 
were used for testing the performance of the trained counter 
propagation neural networks.  

 Two CPNNs were developed, one for computation of bus 
voltage magnitudes at all the 9 PQ type buses, while the other 
for computation of bus voltage angle at 4 PV type buses and 9 
PQ type buses (total 13). The number of hidden neurons 
(nodes) could be decided using some trial and error method.  

The optimum structures of the neural networks were found 

to be 29-223-9 for CPNN1 and 29-257-13 for CPNN2.Though 
the number of nodes in the Kohonen’s layer seems to be large 
it will not affect the training/ testing time, as for any input 
there will be only one winning neuron and only that will 
participate in the training or testing process. The large number 
of neuron ascertains accuracy of CPNN during testing phase.  
The trained CPNNs were tested for 100 unknown (testing) 
patterns and were found to give accurate and fast computation 
of bus voltage magnitudes and voltage angles. The test results 
for one load scenario for outage of line no.18 (which has 
maximum testing error) are shown in Table I and Table II for 
voltage magnitude computation at 9 PQ buses and voltage 
angle computation at all the 13 buses except slack bus 
respectively. 

 
 
 

TABLE I 
    COMPARISON OF NR AND CPNN1 (29-223-9) OUTPUTS 

 
 
 
 

TABLE II 
COMPARISON OF NR AND CPNN2 (29-257-13) 

OUTPUTS

 
 

 
As can be observed from Table I and Table II, the 

maximum absolute error is approx. 1% for bus voltage 
magnitude and angle computation, which is within acceptable 
limits. Both the trained CPNNs are able to compute voltage 
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magnitudes and voltage angles accurately. The results 
obtained by CPNN1 for voltage magnitude at bus nos. 7 & 11 
and by CPNN2 for voltage angle at bus nos. 4 &13 for all the 
testing patterns are compared in Fig.3, Fig.4, Fig.5 and Fig.6 
respectively.  

From these figures, it is clear that the trained 
counterpropagation neural networks are able to solve power 
flow problem accurately for unknown load patterns. 

 
 
 

 
 

Fig. 3 Voltage magnitude at bus no. 7 
 
 
 
 
 
 

 
             Fig. 4 Voltage magnitude (p.u.) at bus no. 11 
 
 

 
 

Fig. 5 Voltage angle at bus no. 4 
 
 

 
 

Fig. 6 Voltage angle at bus no. 13 
 

IV. CONCLUSION 
Counterpropagation neural networks have been developed 

to solve power flow problem in an efficient manner. In multi-
layer feedforward neural network the training process is slow, 
and its ability to generalize a pattern-mapping task depends on 
the learning rate and the number of neurons in the hidden 
layer. On the other hand training of a counterpropagation 
neural network is very fast, at the same time the generalization 
capability of the CPNN allows it to produce a correct output 
even when it is given an input vector that is partially 
incomplete or partially incomplete or partially incorrect. 

Two CPNNs were trained, one for computation of voltage 
magnitude at all the PQ type buses and other for voltage angle 
at all the PV and PQ buses. The trained CPNNs were able to 
compute bus voltages magnitudes and voltage angles 
accurately for previously unseen patterns having changing 
load / generation conditions of the power system and for 
single-line outage contingencies as well.   
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Full AC power flow takes long time, as it should be run for 
any change in load/ generations and topology. On the other 
hand, once the CPNN models are successfully trained they 
provide accurate values of bus voltage magnitudes at all the 
PQ buses and voltage angles at all the PV and PQ type buses 
almost instantaneously.  These values of voltage magnitudes 
and voltage angles can be used to compute line-flows and line 
losses etc. The counterpropagation neural networks based 
power flow method can be implemented for on-line security 
assessment in Energy Management Systems. 
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