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Abstract—Single side band modulation is a widespread 

technique in communication with significant impact on 
communication technologies such as DSL modems and ATSC 
TV. Its widespread utilization is due to its bandwidth and 
power saving characteristics. In this paper, we present a new 
scheme for SSB signal generation which is cost efficient and 
enjoys superior characteristics in terms of frequency stability, 
selectivity, and robustness to noise. In the process, we develop 
novel Hilbert transform properties. 
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I. INTRODUCTION 
INGLE side band modulation is an improvement over 
standard amplitude modulation (AM). The refinement of 

the technique lies in its power efficiency and reduced 
bandwidth.  While standard AM produces a modulated signal 
that has twice the bandwidth of the information-bearing 
baseband signal, SSB reduces this bandwidth and associated 
power by half at the cost of device complexity, increased cost, 
and sensitivity to frequency drift [1].  

In retrospect, SSB appears to be simple, trivial, and as old 
as telephony itself. Historically, SSB was pioneered by 
telephone companies in the 1930s as the core modulation for 
frequency division multiplexing (FDM) for voice transmission 
over long distance channels. With its bandwidth saving 
property, SSB allows many voice signals (double the number 
in standard AM) to be transmitted via a single channel. This is 
usually done by separating the channel carriers by 4 KHz, thus 
offering a speech bandwidth of nominally 0.3 – 3.3 KHz (one 
extra KHz of bandwidth is reserved as guardband).  

Nowadays, SSB is employed by many advanced 
communication technologies as a key component of 
quadrature amplitude modulation (QAM) and FDM. Most 
commonly, suppressed carrier SSB modulation is 
implemented in DSL modems and in ATSC (a digital TV 
standard developed by the American Television Systems 
Committee that uses MPEG-2 codec for transport). 

The rest of this paper is organized as follows. In section II, 
we present a mathematical background of the Hilbert 
transform since it is a foundation block of the SSB modulator,  
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highlighting a number of properties that we have 
independently developed. In section III, we present an 
overview of traditional schemes used in SSB signal generation 
and then present our novel scheme. In section IV, we conclude 
with practical considerations when implementing the different 
SSB schemes. 

II. BACKGROUND ON THE HILBERT TRANSFORM 

A. Definition 
The Hilbert transform of a signal m(t) is defined as [2] 
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or, simply stated, it is the convolution of m(t) with ( )π −1t . 
Strictly speaking, the Hilbert transform is mathematically 
defined to be the limit of integrals taken over bounded 
intervals with regions around t deleted (in simpler terms, the 
integral is taken in the principal value sense), specifically, 
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The definition of (2) resolves the apparent singularity at 0 for 
a suitable signal m(t). The Hilbert transform of a square wave 
is illustrated in Fig. 1. 

 
Fig. 1 The Hilbert transform of a square wave 

B. Properties 
The Hilbert transform enjoys a number of elegant 

properties. 
1) Bounded operation: The Hilbert transform is a bounded 
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operator on 2( )L R : 
 

≤ ∈ 2( ) ( ) , ( ) ( )m t m t m t LH R .                  (3) 

 
2) Linearity and superposition:  
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3) The Hilbert transform of a Hilbert transform is the 

negative of the original signal: 
 

 H = −2 ( ) ( )m t m t ,                            (5) 
 
 or, more generally,  
 

( )H H

H

2, 6,10, ; ( 1, 5, 8, );

( 3, 7,11, ); ( 4, 8,12, )

nm m n m n

m n m n

= − = =

− = =

L L

L L
   (6) 

 
 This results from the fact that two successive 90o phase 

shifts causes a total 180o phase shift or a sign reversal. 
4) Orthogonality:  
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 This property results from the fact that the product of in-

phase and  quadrature-phase components integrates to 0, 
noting that a cosine wave is Hilbert transformed into a 
sinewave and vice versa (except for sign change). 

5) Differentiation:  
 

 ( )= ''( ) ( )m t m tH H ,                           (8) 
 
 that is, the Hilbert transform of the derivative is the 

derivative of the Hilbert transform. 
6) Convolution: ∗ = ∗ = ∗( )f g f g f gH H H , or 
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This means that the Hilbert transform of the convolution 
of two signals is the convolution of one signal with the 
Hilbert transform of the other signal. 

7) Energy conservation: 
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 This results from the fact that the Hilbert transform causes 

a phase-shift in the signal without changing the amplitude 
of the spectrum, and therefore the energy of the signal is 
preserved. 

8) Even/odd  symmetry/antisymmetry: 
 

 
= − ⇒ = − −

= − − ⇒ = −

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

m t m t m t m t

m t m t m t m t

H H

H H
,         (11) 

 
 that is, the Hilbert transform of an even function is an odd 

function and the Hilbert transform of an odd function is 
an even function.  

9) Baseband and passband mixing: 
If m(t) is a low pass signal (baseband) and s(t) is a 
bandpass signal with non overlapping spectra, then 
 

 { }H H( ) ( ) ( ) ( )m t s t m t s t= .                     (12) 
 
10) Scaling: 
 

 { } =( ) sgn( ) ( )m at a m atH H .                    (13) 
  
11) Time shifting: 
 

 { }− = −0 0( ) ( )m t t m t tH H .                   (14) 
 

We note that properties (8), (9), (13), and (14) have been 
independently developed by the author of this paper, and to 
the best of our knowledge, treatment of these properties is not 
available elsewhere in the literature. On another note related 
to notation, the Hilbert transform H ( )

m t . 

C. Table of Transformation 
The Hilbert transform of a few basic functions is provided 

in Table I. We note that the Hilbert transforms  of the 

functions Rect(t), sinc(t), 
2−te , ( ) 12 1t

−
+ , ( ) 1

0( )π −−t t , 
' ( )tδ , and of the Rep(.) and Comb(.) operators have been 

independently derived by the author of this paper. In Table I, 
Rep(.) and Comb(.) are respectively the replica and comb 
operators, and the function erfi(t) is the imaginary error 
function, also expressed in terms of the real error function as –
jerf(jt). It is worth mentioning that the Hilbert transform is an 
intra-temporal transform. In contrast, the Fourier transform is 
inter-domain (time-to-frequency domains). 

 
 
 
 

m t  symbolized by a 
Euclidean H  is also denoted by ( )
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TABLE I 
HILBERT TRANSFORM OF SOME BASIC FUNCTIONS AND OPERATORS 
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Fig. 2 SSB signal generation using the phasing method 

 
hybrid phasing-bandpass filtering. In this system, two 
versions of the original modulating signal m(t) are generated 
which are mutually 90o out of phase. The signal m(t) is added 
to the quadrature carrier sin(2 )cf tπ  generated by an 
oscillator, whereas the Hilbert transformed signal � ( )m t  is 
added to the carrier cos(2 )cf tπ π+  produced by passing the 
quadrature carrier through a quadrature phase shift filter 
(QPSF). By multiplying the resulting aggregated signals and 
then passing the product signal through a bandpass filter with 
cutoffs at (2/3)fc and (4/3)fc, an upper sideband signal results. 

Key to the proper operation of this scheme is to select a 
real-valued baseband signal ( )m t ∈ℜ  with bandwidth Bm ≤ 
fc/3 and the observation that the spectrum of the product signal 

( ) ( )m t m t  is zero in the Nyquist domain 2 mf B≥ . 
We now study the practical implication of these methods. 
 

III. SSB SYSTEM DESIGN 

A. Conventional SSB Signal Generators 
The basic method of generating an SSB-AM signal is to 

remove one of the sidebands of a double side band (DSB) 
generated signal using a bandpass filter (BPF), leaving only 
either the upper sideband (USB) or lower sideband (though 
less conventional).  

An alternate method is to suppress the unwanted sideband 
via phase shift filters or Hilbert transformation. The device 
that generates SSB signals under this scheme is called a 
quadrature modulator or phase discriminator. This method is 
illustrated by the block diagram of Fig. 2, where the 
modulating signal m(t) is multiplied by (or mixed with) the 
sinusoid carrier cos( )wt  (or cos(2 )cf tπ ), generated by an 
oscillator. The signal m(t) is also Hilbert transformed or 
passed through a quadrature phase shift filter (QPSF) and the 
output � ( ) ( )Hm t m t=  is multiplied by the quadrature carrier 
sin( )wt . When the two product signals are subtracted (upper 
product minus lower product), the result is a USB-SSB signal. 
On the other hand, if the two product signals are added, an 
LSB-SSB signal is obtained [3-5]. 

B. Proposed SSB Signal Generator 
The functional block diagram of our proposed SSB 

modulator is shown in Fig. 3. We refer to this method as 

 
Fig. 3 Novel hybrid phasing-bandpass filtering SSB scheme 

IV. PRACTICAL CONSIDERATIONS 

A. Conventional Basic BPF Method 
Although simple and low cost, the basis method is 

hampered by the use of a BPF with a sharp cutoff at the 
carrier frequency fc. This is an ideal formulation that requires 
very high precision which cannot be realized in practice. 
Besides, sharp filters are most sensitive to temperature, 
humidity change, and physical damage, rendering them 
unattractive for communication systems. 

Even if an exact sharp BPF cutoff is achieved, the 
transmitted SSB signal would still be very sensitive to 
frequency deviation (as little as this might be). Since the 
carrier frequency is exactly at the edge of the BPF, a small 
frequency shift outside the BPF bandwidth will inhibit the 
receiver from recovering the carrier. Frequency shifts are 
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usually caused by Doppler shift or oscillator drift and can 
cause frequency shift to an adjacent channel, thus causing 
interference. Oscillator drift is an arbitrary offset of an 
oscillator’s frequency from its nominal frequency, caused by 
changes in temperature which can alter the piezoelectric effect 
in a quartz filter (used in BPF design). 

B. Conventional Phasing Method 
The phasing method relies heavily on the use of Hilbert 

transformers (HT) or quadrature phase shift filter (QPSF). The 
drawback of HT is that the impulse response ( )1/ tπ  is a non-
causal filter and therefore cannot be implemented as is. The 
filter also has infinite support which can cause problems in 
some applications. Another problem is the DC component (or 
zero frequency), but this can be avoided by ensuring that the 
signal does not contain a DC component. Despite all these 
obstacles, Hilbert transformers can be digitally implemented 
(approximately), as we will discuss in the next section. 

Another drawback of the phasing method is the use of two 
multiplying devices (mixers). Such devices (along with 
dividers and square-root devices) suffer from poor frequency 
stability and poor selectivity (i.e., high sensitivity to small 
difference). Since the VCO output is multiplied by the 
modulating message, the output of the VCO must be a smooth 
noise-free voltage signal. Any noise on this signal causes 
frequency drift and slow response time. 

Noting that a quadrature filter 
 

 ( ) ( ) * ( )jq t t m t
t

δ
π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

                    (15) 

 
is the analytical signal of the real-valued signal m(t), the SSB-
LSB signal can be conceived as a quadrature filter at certain 
time instants. Set ( ) 2θ π= ct f t  and consider 

( )( ) 1/ 4 , 0, 1, 2, ,θ π= + = ± ± Lt n n  or ( )1/ 4 / 2 ,= +n ct n f  we 
then obtain  
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n n n n nSSB

n n n

x t m t t jm t t

m t jm t Gq t
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Thus the SSB-LSB signal at the time instants 

( )1/ 4 / 2= = +n ct t n f  is a quadrature filter (except for a 

trivial constant gain 2 / 2= ±G ), that is, 
( ) ( ) ( )=LSB

n nSSBx t Gq t . The practical implications of this is that a 
quadrature filter is difficult to approximate as a filter which is 
either causal or of finite support, or both.  

C. Novel Hybrid Phasing-BPF Method 
The functional block diagram of our proposed SSB scheme 

(Fig. 3) utilizes 2 op-amp summers and 1 mixer. By 
comparison, the classical phasing SSB generator utilizes 2 
mixers and 1 op-amp summer (Fig. 2). Addition is a simpler 
operation than multiplication and is easier to implement 
electronically (multiplication problems have been already 

discussed in the previous section). The advantage of this 
system comes, however, at the cost of the added cost of a 
BPF. Such BPF does not face the problems of the 
conventional basic BPF method because the carrier frequency 
is not at the edge of the filter (cutoffs at 2/3 fc and 4/3 fc), 
making it robust to possible erroneous frequency shifts. In 
addition, such a BPF can be efficiently implemented using a 
crystal filter (a special form of a quartz filter) with 
exceptionally high frequency stability and high selectivity. 
The crystal filter provides a very precisely defined center 
frequency and very steep bandpass characteristics with a very 
high Q-factor (quality factor). 

The drawback of using Hilbert transformers can be easily 
overcome if the HT is digitally implemented via approximate 
discrete Fourier transform (DFT) as shown in Fig. 4. 

 

 
Fig. 4 Discrete Hilbert transform  

(ordinate axis logarithmically scaled) 
 

Another obstacle that might be faced by our proposed 
method is amplitude compression by the transmitter. This 
amplitude can be easily restored by an expander at the 
receiver if ACSB (amplitude compandored sideband) is 
employed (a narrowband modulation using a single sideband 
with an added pilot tone). 
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