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Abstract—An accurate and proficient artificial neural network 

(ANN) based genetic algorithm (GA) is developed for predicting of 
nanofluids viscosity. A genetic algorithm (GA) is used to optimize 
the neural network parameters for minimizing the error between the 
predictive viscosity and the experimental one. The experimental 
viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 
to 343.15 K and volume fraction up to 15% were used from 
literature. The result of this study reveals that GA-NN model is 
outperform to the conventional neural nets in predicting the viscosity 
of nanofluids with mean absolute relative error of 1.22% and 1.77% 
for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results 
of this work have also been compared with others models. The 
findings of this work demonstrate that the GA-NN model is an 
effective method for prediction viscosity of nanofluids and have 
better accuracy and simplicity compared with the others models. 
 

Keywords—genetic algorithm, nanofluids, neural network, 
viscosity 

I. INTRODUCTION 

 ANOFLUIDS are mixtures of solid nanoparticles with 
average particle size smaller than 100 nm dispersed in 

base fluids [1] such as water, ethylene glycol, propylene 
glycol or engine oil. Research on nanofluids has received great 
attention in the last decade due to the prospect of enhanced 
transport properties. Among of transport properties viscosity 
is a fundamental characteristic property of a fluid that 
influences flow and heat transfer phenomena. Determining the 
viscosity of nanofluids is essential for optimizing flow 
transport devices in energy supply.  

Many experimental and theoretical works have been 
dedicated to the thermal conductivity of nanofluids [2-6]. 
However, experimental data for the effective viscosity of 
nanofluids are limited to certain nanofluids. [7-13]. The 
ranges of the investigated variables such as the particle 
volume concentration, particle size and temperature are also 
limited. More correlations reported for determining of 
nanofluids viscosity are based on simple Einstein model 
[14].A few theoretical models have been developed for the 
determination of a nanoparticles suspension viscosity[15, 16]. 
Still, the experimental data show the trend that the effective 
viscosities of nanofluids are higher than the existing 
theoretical predictions [12]. In an attempt to modify this 
situation, researchers proposed models applied to specific 
applications, e.g., Al2O3 in water [12, 17], Al2O3 in ethylene 
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glycol [17], and CuO in water with temperature change [18]. 
However, the problem with these models is that they do not 
reduce to the Einstein model [14] at very low particle volume 
concentrations and, hence, lack a sound physical basis. 
Moreover, many of the deterministic or conceptual viscosity 
models need a sufficient amount of data for calibration and 
validation purposes that makes them computationally 
incompetent. As a result this has caused the attention of the 
researcher to focus on a separate category of models called 
systems theoretic models. Systems theoretic models such as 
artificial neural networks (ANN), also known as the black box 
models, attempt to develop relationships among input and 
output variables involved in a physical process without 
considering the underlying physical process. The ANN 
technique has applied successfully in various fields of 
modeling and prediction in many engineering systems, 
mathematics, medicine, economics, metrology and many 
others. It has become increasingly popular in during last 
decade. The advantage of ANN compared to conceptual 
models are its high speed, simplicity and large capacity which 
reduce engineering attempt. Some recent applications are 
made in termophysical properties [19-21]. Back propagation 
neural network (BPNN) is widely used because it can 
effectively solve non-linear problem. However, there are some 
deficiencies for BP neural network, such as getting into local 
extreme and convergence is slow. This is disadvantageous 
under limited experiment data of nanofluid viscosity. To 
overcome these problems and improve reliability of network, 
this study attempts to combine genetic algorithm (GA), 
avoiding local minima and achieving global convergence 
quickly and correctly by searching in several regions 
simultaneously, with BPNN to minimize the total mean 
squared error (MSE) between output of the network and the 
desired output through optimizing the weights and thresholds 
of neural network. The presented model determines the 
effective viscosity of nanofluids as a function of the 
temperature, nanoparticle volume fraction, nanoparticle size 
and the base fluid physical properties. 

II. SOFT COMPUTING TECHNIQUES 
The soft computing techniques employed in this study 

include the artificial neural networks and the genetic 
algorithms. Implementation algorithm of the network training 
is programmed within the Matlab environment using GA and 
Neural Networks Tool Boxes. A brief overview of these 
techniques is presented here. 
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III.  ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks have been introduced as a flexible 

mathematical, which can imitate complex and non-linear 
relationships through the application of many non-linear 
processing units called neurons. The relationship can be 
learned by a neural network through adequate training from 
the experimental data [22]. Artificial neural network provides 
a parameterized, non-linear mapping between inputs and 
outputs. Neural networks are clearly extremely useful in 
recognizing patterns in complex data. The resulting 
quantitative models are transparent; they can be interrogating 
to reveal the patterns and the model parameters can be studied 
to illuminate the significance of particular variables [23]. 
Several authors have discussed the history, architecture, and 
operation of ANN. 

Hormik et al. [24] has proved a three layered feed-forward 
neural network with back propagation algorithm can map any 
non-linear relationship with a desired degree of accuracy. In 
this study, a three layer back propagation network (figure 1) is 
developed to predict viscosity, where the transfer functions in 
hidden and output layer are sigmoid and linear, respectively. 
The four variables (temperature, particle volume 
concentration, particle size and fluid base viscosity) are 
chosen as input to the BPNN, the nanofluide viscosity is the 
output of the network. 

 
Fig. 1 architecture of three layer back propagation neural network for 

nanofluids viscosity prediction 

IV. THE GA TECHNIQUE  
GA has been proved to be capable of finding global optima 

in complex problems by exploring virtually all regions of the 
state space and exploiting promising areas through mutation, 
crossover and selection operations applied to individuals in 
the populations [25]. It applies selection, crossover and 
mutation operators to construct fitter solutions. A genetic 
algorithm processes the populations of chromosomes by 
replacing unsuitable candidates according to the fitness 
function. It can solve how to optimize weight and threshold of 
BP network. It is employed to optimize the weight and 
threshold of the network in this study. The operation is 
divided into five steps as follows. 

A Initialization of population 

After coding the weights Wij and thresholds bi of the 
network, chromosome is generated at random and makes up 
an initial population. We start iterative search using initial 
population as a start point. Finally, population size, selection 
probability, crossover probability and mutation probability are 
determined by experiments. 

B  Fitness function 
Fitness function is an important principle on evaluating 

individual. In this study, the fitness is function of the average 
deviation between experimental and predicted values of 
viscosity (µ). For do this, firstly the objective function defined 
in Eq.( 1) According to mean square error of neural network. 
The fitness value of a chromosome is calculated using the 
objective function BPNN architecture. F is given by 

δ ( Wij,bi)= ∑
=

μ−μ
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Where N stands for the number of the training data,
cal
iμ  is the expected 

output, and 
exp
iμ  is the experimental output. 

.  

C  Selection operation 

The selection operation is to choose the individual who has 
the large fitness from the population. It has the chance to 
propagate offspring. A roulette wheel selection method is used 
to choose new individual in this study.. 

D  Crossover operation 
The crossover operation for GA creates variation in the 

population by producing new offspring that consists of the 
parts taking from each parent. It is that some genes of two 
chromosomes are changed to produce new individual. In this 
study, two parental chromosomes and bunch’s crossing 
position are determined by random. 

E  Mutation operation 

The mutation operation introduces random changes in 
structure in the population. It is to change some values of 
chromosomes of weight and threshold with little probability. It 
cannot only avoid some information be lost perpetually 
resulting from selection and crossover operation, but also 
ensure validity of genetic arithmetic. By using the above 
genetic algorithm operation, appropriate network weight and 
threshold are obtained 

V. BPNN LEARNING BASED ON GA OPTIMIZATION 
According to GA method the optimization is to maximize 

the fitness values (Ffitness) which would lead to the 
minimization of the total mean squared error from Eq. (1). 
This makes optimize the weights and thresholds of the BPNN 
and successively BPNN be achieved in training. 
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The BPNN learning algorithm composed of two stages: 
firstly employing GA to search for optimal or approximate 
optimal connection weights and thresholds for the network, 
then uses the back-propagation learning rule and training 
algorithm to adjust the final weights and thresholds. The 
operations are as follows: 

The BPNN weights Wij and thresholds bi  are initialized as 
genes of chromosome, and then the global optimum is 
searched through selection, crossover and mutation operators 
of genetic algorithm. This procedure is completed by applying 
a BP algorithm on the GA established initial connection 
weights and thresholds. If the BP network’s total mean 
squared error is larger than the expected error, the weights and 
thresholds will be updated; otherwise, they are saved as initial 
value of BP network training. After that, they are further 
adjusted under BP learning rule to the best results, by which 
the viscosity can be accurately predicted. The overall GA-NN 
optimization, training, learning and prediction procedure for 
the experimental dataset is represented in figure 2. 

VI.  TRAINING AND TESTING DATABASE 
Experimental data of Nguyen C.T., et. al [26] for viscosity 

in two nanofluids Al2O3-H2O and water-CuO-H2O were used 
in this study. The summary of variables and those ranges of 
varieties are given in Table 1. 

VII. RESULTS AND ANALYSIS 
The GA-NN is trained and tested based on the database. 

Randomly 75% of the data points were used for training and 
the rest 25% was used for testing. As the dimension and 
magnitude of original experimental data are different, the 
training and testing data should be normalized before fed to 
GA-NN. 

It should be noted that a potential difficulty with the use of 
powerful non-linear regression methods is the possibility of 
over-training data. The proper selection of the number of 
neurons in the hidden layer can avoid the overtraining of 
neural network effectively. In the above developed technique 
in order to optimize the net, achieve generalization of the 
model and avoid over-training, the number of hidden nodes 
was determined by trial and error, and the sensitivity of the 
network to this number was studied. For the given training 
subset, we started with 2 neurons in the hidden layer and 
gradually increased the number neurons. the performance of 
network in training phase (simulating the input–output 
response embedded in the training subset) was observed to 
increase with increasing number of neuron, while the 
performance of network in testing (simulating the input–

output response embedded in the testing subset) was observed 
to be optimum at an optimal number of hidden neurons. As 
network was used for generalizing an input–output response, 
network testing was given higher preference, and the use of 
more than the optimal number of hidden nodes was 
discouraged. For this study, the mean square error (MSE) was 
chosen as a measure of the performance of the nets. The 
network model with a hidden layer and seven neurons in 
hidden layer resulted in the best prediction. 

We run GA-NN algorithm using initial population as a start 
point for experimental data set of two nanofluides. Finally, 
population size, selection probability, crossover probability 
and mutation probability are determined by trial. They are 20, 
0.8, 0.87 and 0.001, respectively. 

As using the optimized neural network model to predict the 
effective viscosity, the comparisons between predictive values 
and experimental values for testing data are shown in figures 3 
and 4. 

The prediction results of the GA-BPNN model are shown in 
Table 2. The results demonstrated good agreement between 
the predicted and the experimental values of diffusivity by 
relatively low mean absolute errors (MARE=0.0122 and 
0.0177), and high correlation coefficients R=0.999 for Al2O3-
H2O and CuO-H2O, respectively.  

The computational results were compared with the results 
obtained using a conventional back-propagation neural 
network (BPNN). For comparison of GA-NN and 
conventional neural network based on average error criteria 
we defined advantage of GA-NN as follow. 

 

 100
MARE

MAREMARE
Ad

BPPN

NNGABPPN ×
−

= −                    (3) 

 
The analysis of results showed that the mean absolute 

relative error (MARE) corresponding to conventional BPN for 
two nanofluids, Al2O3-H2O and CuO-H2O, are0.0296 and0.0 
270 respectively. According to Table 2 and using formula (3), 
for Al2O3-H2O, Ad= 58%, it means GA-NN model can reduce 
the error by 58%. Similarly for CuO-H2O, Ad= 34%. This is 
further proof that the proposed procedure can build a useful 
and robust model. 

So the conclusion can be drawn that the proposed GA-NN 
model has more accurate prediction ability over two 
nanofluids, Al2O3-H2O and CuO-H2O, but slightly less 
accuracy can be seen in the case of CuO-H2O. 
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Fig. 2 The block diagram of hybrid genetic algorithm and neural network (GA-NN) procedure to prediction of nanofluids 

 
TABLE I SUMMARY OF THE NANOFLUIDS VISCOSITY DATASET CHARACTERIZATION 

nanofluids  Temperature 
[K] 

Volume 
fraction 

Particl
e 
size(nm) 

Base fluide 
viscosity (pa.s) 

Nanofluids 
viscosity(pa.s) 

Al2O3-
H2O 

293.15-
343.15 

0.005-0.094 13-47 0.00039-0.0010 0.00044-0.0022 

CuO-H2O 278-339.25 0.050-0.150 29 0.00042-0.00151 0.00046-0.288 
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TABLE II  RESULTS OBTAINED FOR TEST DATA MODELED WITH GA-NN AND BPNN MODEL FOR AL2O3-H2O  
AND CUO-H2O NANOFLUIDS, WITH RESPECTIVE ERRORS 

Al2O3-H2O CuO-H2O 
Effective 

viscosity[Pa.s] 
GA-
NN 

BPN
N  Effective 

viscosity[Pa.s] 
GA-
NN BPNN 

Experimental ARE
% ARE% Experimental ARE% ARE% 

0.00068 1.44 4.58 0.00312 0.37 1.44 
0.00205 0.83 0.57 0.00188 1.73 0.71 
0.00088 1.27 0.10 0.00046 0.01 1.22 
0.00045 1.49 1.32 0.00468 0.41 0.27 
0.00092 0.60 4.63 0.00176 1.39 2.39 
0.00145 1.35 6.49 0.00092 0.42 3.52 
0.00094 0.29 1.09 0.00257 0.41 1.19 
0.00117 0.53 5.84 0.00207 2.55 8.04 
0.00064 0.74 4.92 0.00710 2.24 2.41 
0.00065 2.76 4.16 0.00185 3.84 3.02 
0.00109 1.64 0.73 0.00101 2.45 0.61 
0.00240 0.87 2.76 0.00241 0.74 0.02 
0.00092 1.82 6.46 0.00049 2.97 2.75 
0.00047 1.00 0.90 0.00800 2.68 3.39 
0.00109 2.49 2.74 0.00142 0.50 2.98 
0.00048 0.29 0.94 0.00055 5.53 9.18 
0.00127 0.15 5.47 MARE 1.77 2.70 
0.00063 1.82 3.78    
0.00369 0.34 0.26    
0.00209 1.57 1.16    
0.00107 0.61 1.59    
0.00136 0.38 1.84    
0.00118 0.44 1.79    
0.00150 0.60 2.14    
0.00105 1.55 6.23    
0.00177 0.54 1.82    
0.00083 0.20 0.54    
0.00088 1.33 7.95    
0.00345 0.84 1.00    
0.00105 0.91 5.58    
0.00055 6.10 3.35    
0.00074 2.52 1.33    
0.00142 1.94 3.55    
0.00092 0.86 4.37    
0.00299 1.16 3.06    
0.00220 0.61 1.46    

MARE 1.22 
 

2.96 
    

 
In the following, we compared the results obtained by GA-

NN with other analytical and empirical correlations.  
Figure 5 compares the temperature variation of the 

predicted results of Al2O3-H2O and CuO-H2O nanofluids with 
the experimental results and with other models [14, 15, and 
26]. As is shown the GA-NN model could well predict the 
effect of the temperature variations on the nanofluid viscosity. 
There are a great deal of deviation between other models 
prediction and experimental data especially in figures 5a, 5c 
and 5d. In Enistien and Bachelor model the effect of 

nanoparticle is not considered in effective viscosity 
correlation. Therefore as showed in figures 5a, 5c and 5d, the 
accuracy of those models reduce seriously in large volume 
fraction of nanoparticle in suspension.  

In Masoumi et al.[15] the model parameters are adjusted for 
limited nanoparticle size, consequently this model not usable 
for wide range of nanoparticle size. 
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Fig. 3 Comparisons between predictive values and experimental values for testing data a) the predicted results of Al2O3-H2O 
nanofluide; b) the predicted results of CuO–H2O nanofluide 

Fig. 4 Modeling ability of the optimized GNN to predicate of effective viscosity of nanofluids: a) the predicted results of Al2O3-
H2O nanofluide (R=0.999, MARE=1.22%); b) the predicted results of CuO–H2O nanofluide (R=0.999, MARE=1.77%) 
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Fig. 5 Comparison of the temperature variation of different models for the calculation of the effective viscosity of nanofluids with experimental 

results (a ,b) Al2O3-H2O nanofluid and (c, d) CuO–H2O nanofluid 
 

 

VIII. CONCLUSION  
In this study we successfully employed the hybrid neural 

network and genetic algorithm for the prediction of the 
effective viscosity of nanofluids. The model could calculate 
the effective viscosity as a function of the temperature, the 
mean particle size, the nanoparticle volume fraction and the 
base fluid viscosity. The GA-NN due to advantages including 
relatively low MARE in prediction (1.22% for Al2O3-H2O and 
1.77% for CuO-H2O nanofluids), the high correlation 
coefficient between predicted and experimental value is a 
powerful tool for accurate determination of viscosity of 
nanofluids. GA-NN model results were compared with 
conventional back propagation neural network (BPNN), for 
this purpose an advantage factor (Eq. 3) base on GA-NN 

model was defined. For Al2O3-H2O nanofluids, Ad= 58%, it 
means GA-NN model can reduce the error by 58%, for CuO-
H2O, Ad= 34%. This is another proof that the proposed 
MDNN can build a useful and robust model. Compared with 
the other theoretical and imperical models that are available in 
the literature, the presented model in general has higher 
accuracy and precision 
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