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Abstract—Reduction of Single Input Single Output (SISO) 
discrete systems into lower order model, using a conventional and an 
evolutionary technique is presented in this paper. In the conventional 
technique, the mixed advantages of Modified Cauer Form (MCF) and 
differentiation are used. In this method the original discrete system is, 
first, converted into equivalent continuous system by applying 
bilinear transformation. The denominator of the equivalent 
continuous system and its reciprocal are differentiated successively, 
the reduced denominator of the desired order is obtained by 
combining the differentiated polynomials. The numerator is obtained 
by matching the quotients of MCF. The reduced continuous system is 
converted back into discrete system using inverse bilinear 
transformation. In the evolutionary technique method, Particle 
Swarm Optimization (PSO) is employed to reduce the higher order 
model. PSO method is based on the minimization of the Integral 
Squared Error (ISE) between the transient responses of original 
higher order model and the reduced order model pertaining to a unit 
step input. Both the methods are illustrated through numerical 
example. 

Keywords—Discrete System, Single Input Single Output (SISO), 
Bilinear Transformation, Reduced Order Model, Modified Cauer 
Form, Polynomial Differentiation, Particle Swarm Optimization, 
Integral Squared Error.

I. INTRODUCTION

EDUCTION of high order systems to lower order models 
has been an important subject area in control engineering 

for many years [1]. The mathematical procedure of system 
modeling often leads to detailed description of a process in the 
form of high order differential equations. These equations in 
the frequency domain lead to a high order transfer function. 
Therefore, it is desirable to reduce higher order transfer 
functions to lower order systems for analysis and design 
purposes. 

The conventional methods of reduction, developed so far, 
are mostly available in continuous domain [2-5]. However, the 
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high order systems can be reduced in continuous as well as in 
discrete domain [6-8]. There are two approaches for the 
reduction of discrete system, namely the direct method and 
indirect method. The indirect method uses some 
transformation and then reduction is carried out in the 
transformed domain. First the z- domain transfer functions are 
converted into w-domain by the bilinear transformation and 
then after reducing them in w-domain, suitably, they are 
converted back into z-domain. 

In recent years, one of the most promising research fields 
has been “Evolutionary Techniques”, an area utilizing 
analogies with nature or social systems. Evolutionary 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. Recently, the 
particle swarm optimization (PSO) technique appeared as a 
promising algorithm for handling the optimization problems. 
PSO is a population-based stochastic optimization technique, 
inspired by social behavior of bird flocking or fish schooling 
[9]. PSO shares many similarities with the genetic algorithm 
(GA), such as initialization of population of random solutions 
and search for the optimal by updating generations. However, 
unlike GA, PSO has no evolution operators, such as crossover 
and mutation. One of the most promising advantages of PSO 
over the GA is its algorithmic simplicity: it uses a few 
parameters and is easy to implement [10].  

In this paper, two methods of model reduction of single-
input single-output (SISO) discrete system have been 
presented. The first method which is based on the 
conventional approach combines the advantages of Modified 
Cauer Form and differentiation of the denominator 
polynomials. In this method the original high order discrete 
system is transformed into an equivalent continuous system by 
applying bilinear transformation separately on the numerator 
and denominator polynomials. This transformation is 
accomplished using synthetic division [11, 12]. The 
denominator of reduced continuous system is derived using 
differentiation, of both, the original and reciprocal 
polynomials in w-domain and multiplying various derivatives 
of these two polynomials [13] .The numerator is found by 
matching the quotients of MCF [14]. After obtaining the 
ROMs of continuous system its conversion into discrete 
system is accomplished by using inverse bilinear 
transformation, separately on numerator and denominator 
polynomials to give the desired result.  Since the bilinear 
transformation is used twice the resulting reduced order model 
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will show error in the steady state, hence the steady state 
correction is applied to match the final values of responses of 
original and reduced systems. In the second method, PSO is 
employed for the order reduction where both the numerator 
and denominator coefficients of LOS are determined by 
minimizing an ISE error criterion. 

II. STATEMENT OF THE PROBLEM

Given a high order discrete time stable system of order ‘ n ’
that is described by the z -transfer function: 
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The polynomial )(zD is stable, that is all its zeros reside 

inside the unit circle z =1. Where, )10( nia i ,

)0( nib i , )10( rici  and )0( rid i  are 
scalar constants. 

The numerator order is given as being one less than that of 
the denominator, as for the original system. The )(zR
approximates )(0 zG in some sense and retains the important 

characteristics of )(0 zG .

III. REDUCTION BY CONVENTIONAL METHOD

The reduction procedure by conventional method (modified 
Cauer Form and differentiation) may be described in the 
following steps:  

Step-1 

Apply bilinear transformation
w
wz

1
1

, separately in 

the numerator and denominator polynomials of Eq. (1) using 
synthetic division [12]. This converts )(0 zG  into )(wG as 
[15]: 

0
)1(

)()()( 1
1
1 n

w
wz w

wNzNwN      (3) 

0
)1(
)()()(

1
1 n

w
wz w

wDzDwD      (4) 

From Eqs. (3) and (4) we get 
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This can be expressed as: 
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The reciprocal of )(wD is given as: 
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Step-2 

Compute the quotients of Modified Cauer Form (MCF) 
....,,......,, 2121 HHhh  using Modified Routh Array [16]. 

Step-3

Differentiate successively the denominator of the Eq. (5), 
and its reciprocal, the thr order denominators of reduced order 
models can be obtained by multiplying various combinations 
of differentiated polynomials. In particular )(wD is

differentiated )( 1rn times and its reciprocal )(~ wD is 

differentiated )( 2rn times. The thr order reduced 
denominator is obtained as: 

)()()( 21 wDwDwD rrr              (7) 

where )(~
2 wDr  is the reciprocal of )(2 wDr and

21 rrr

Step-4

Match the quotients ....,,......,, 2121 HHhh  to find out 
the numerator )(wN of the ROM as given in [14]. 

The ROM )(wG will be obtained as 
)(
)()(

wD
wNwG

Step-5

Apply the inverse bilinear transformation
1
1

z
zw

separately in the )(wN and )(wD to convert )(wG in z 

domain. Thus the rank of )(0 zG  and )(wG will be same. 

Hence the step responses of   )(0 zG and )(wG will match at 

initial time 0t .
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Step-6

Remove steady state error by evaluating 

1)(

)(
zzR

zGoK , and multiply it in the numerator of )(zR .

IV. PARTICLE SWARM OPTIMIZATION METHOD 

 In conventional mathematical optimization techniques, 
problem formulation must satisfy mathematical restrictions 
with advanced computer algorithm requirement, and may 
suffer from numerical problems. Further, in a complex system 
consisting of number of controllers, the optimization of 
several controller parameters using the conventional 
optimization is very complicated process and sometimes gets 
struck at local minima resulting in sub-optimal controller 
parameters. In recent years, one of the most promising 
research field has been “Heuristics from Nature”, an area 
utilizing analogies with nature or social systems. Application 
of these heuristic optimization methods a) may find a global 
optimum, b) can produce a number of alternative solutions, c) 
no mathematical restrictions on the problem formulation, d) 
relatively easy to implement and e) numerically robust. 
Several modern heuristic tools have evolved in the last two 
decades that facilitates solving optimization problems that 
were previously difficult or impossible to solve. These tools 
include evolutionary computation, simulated annealing, tabu 
search, genetic algorithm, particle swarm optimization, etc. 
Among these heuristic techniques, Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) techniques appeared 
as promising algorithms for handling the optimization 
problems. These techniques are finding popularity within 
research community as design tools and problem solvers 
because of their versatility and ability to optimize in complex 
multimodal search spaces applied to non-differentiable 
objective functions. 

The PSO method is a member of wide category of swarm 
intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual 
is referred to as particle and represents a candidate solution. 
Each particle in PSO flies through the search space with an 
adaptable velocity that is dynamically modified according to 
its own flying experience and also to the flying experience of 
the other particles. In PSO each particles strive to improve 
themselves by imitating traits from their successful peers. 
Further, each particle has a memory and hence it is capable of 
remembering the best position in the search space ever visited 
by it. The position corresponding to the best fitness is known 
as pbest and the overall best out of all the particles in the 
population is called gbest [9]. 

The modified velocity and position of each particle can be 
calculated using the current velocity and the distances from 
the pbestj,g to gbestg as shown in the following formulas [2-3, 
9-10]: 
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 With nj ,...,2,1   and mg ,...,2,1

Where, 

n = number of particles in the swarm

m  = number of components for the vectors vj and xj

t  = number of iterations (generations) 

)(
,
t
gjv = the g-th component of the velocity of particle j at 

iteration t  , max)(
,

min
g

t
gjg vvv ;

w  = inertia weight factor 

     21, cc = cognitive and social acceleration factors 

respectively

21, rr = random numbers uniformly distributed in the 

range (0, 1) 

)(
,
t
gjx  = the g-th component of the position of particle j at 

iteration t

jpbest  = pbest of particle j

gbest  = gbest of the group 
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Fig. 1. Description of velocity and position updates in particle swarm 
optimization for a two dimensional parameter space 

The j-th particle in the swarm is represented by a d-
dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its rate of 
position change (velocity) is denoted by another d-
dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best previous 
position of the j-th particle is represented as pbestj =(pbestj,1,
pbestj,2, ……, pbestj,d). The index of best particle among all of 
the particles in the swarm is represented by the gbestg. In PSO, 
each particle moves in the search space with a velocity 
according to its own previous best solution and its group’s 
previous best solution. The velocity update in a PSO consists 
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of three parts; namely momentum, cognitive and social parts. 
The balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 and c2 determine the 
relative pull of pbest and gbest and the parameters r1 and r2
help in stochastically varying these pulls. In the above 
equations, superscripts denote the iteration number.  

Start

Specify the parameters for PSO

Generate initial  population

Find the fitness of each particle
in the current population

Gen. > max Gen ? Stop

Update the particle position and
velocity using Eqns. (8) and (9)

Gen.=1

Gen.=Gen.+1
Yes

No

Fig. 2. Flowchart of PSO for order reduction  

Fig.1. shows the velocity and position updates of a particle 
for a two-dimensional parameter space. The computational 
flow chart of PSO algorithm employed in the present study for 
the model reduction is shown in Fig. 2. 

V. NUMERICAL EXAMPLES

Let us consider the discrete system described by the transfer 
function [17]: 

282145.0551205.0875599.0361178.1

216608.0319216.040473.054377.0
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)()(

234

23

zzzz

zzz

zD
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For which a second order reduced model )(2 zR is desired. 

A. Conventional Method  

Applying bilinear transformation separately on numerator and 
denominator, using synthetic division, the equivalent 
continuous system becomes: 

24476.02503.19417.5492.40707.4
24526.0568.1077.14879.1)( 234

23

wwww
wwwwG

                          (11) 

The values of the quotients of MCF are obtained as: 

99796.01h and 366.01H

Using the proposed steps the   2nd order continuous system is 
obtained as: 

2606.27246.9
61.2366.0)( 2 ww

wwR         (12) 

Using synthetic division, the inverse bilinear transformation is 
obtained as: 

9286.5022.33306.13
244.2976.2)(

2 zz
zzR       (13) 

After steady state correction the final reduced order model is 

9286.5022.33306.13
431.4876.5)( 2 zz

zzR       (14) 

B. Particle Swarm Optimization Method  

For the implementation of PSO, several parameters are 
required to be specified, such as 1c and 2c  (cognitive and 
social acceleration factors, respectively), initial inertia 
weights, swarm size, and stopping criteria. These parameters 
should be selected carefully for efficient performance of PSO. 
The constants 1c and 2c  represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
pbest and gbest positions. Low values allow particles to roam 
far from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward, or 
past, target regions. Hence, the acceleration constants were 
often set to be 2.0 according to past experiences. Suitable 
selection of inertia weight, w , provides a balance between 
global and local explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. As originally 
developed, w  often decreases linearly from about 0.9 to 0.4 
during a run [10]. One more important point that more or less 
affects the optimal solution is the range for unknowns. For the 
very first execution of the program, wider solution space can 
be given, and after getting the solution, one can shorten the 
solution space nearer to the values obtained in the previous 
iterations. 

The objective function J is defined as an integral squared 
error of difference between the responses given by the 
expression: 
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t

r dttytyJ
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Where  
)(ty and )(tyr  are the unit step responses of  original and 

reduced order systems. 

The reduced 2nd order model employing PSO technique is 
obtained as follows: 

9286.57487.857977.56
3556.185858.27)( 22
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zzR      (16) 
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Fig. 3. Convergence of fitness function 

The convergence of objective function with the number of 
generations is shown in Fig. 3. The unit step responses of 
original and reduced systems by both the methods are shown 
in Fig. 4. It can be seen that the steady state responses of both 
the proposed reduced order models are exactly matching with 
that of the original model. However, compared to 
conventional method of reduced models, the transient 
response of evolutionary reduced model by PSO is very close 
to that of original model. 

VI. COMPARISON OF METHODS

The performance comparison of both the proposed 
algorithm for order reduction techniques is given in Table I. 
The comparison is made by computing the error index known 
as integral square error ISE [2-5] in between the transient parts 
of the original and reduced order model, is calculated to 
measure the goodness/quality of the [i.e. the smaller the ISE, 
the closer is )(sR to )(sG , which is given by:  

t

r dttytyISE
0

2)]()([               (17) 

Where )(ty and )(tyr  are the unit step responses of 
original and reduced order systems for a second- order 
reduced respectively. This error index is calculated for both 
reduced order models. 

TABLE I: COMPARISON OF METHODS

 Method  Reduced model ISE 

PSO method 
9286.57487.857977.56

3556.185858.27
2 zz

z
0.0131

Conventional
method

9286.5022.33306.13
431.4876.5

2 zz
z

44.874

VII. CONCLUSION

In this paper, two methods for reducing a high order 
discrete system into a lower order system have been proposed. 
In the first method, a conventional technique has been 
proposed which uses the advantages of both modified Cauer 
Form (MCF) and differentiation. In this method, first the 
original discrete system is converted into equivalent 
continuous system by applying bilinear transformation. Then 
the denominator of the equivalent continuous system and its 
reciprocal are differentiated successively and the reduced 
denominator of the desired order is obtained by combining the  
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Fig.  4. Step Responses of original system and reduced model 
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differentiated polynomials. The numerator is obtained by 
matching the quotients of MCF. Finally the reduce continuous 
system is converted back into discrete system using inverse 
bilinear transformation. In the second method, an evolutionary 
swarm intelligence based method known as Particle Swarm 
Optimization (PSO) is employed to reduce the higher order 
model. PSO method is based on the minimization of the 
Integral Squared Error (ISE) between the transient responses 
of original higher order model and the reduced order model 
pertaining to a unit step input. Both the methods are illustrated 
through a numerical example. Also, a comparison of both the 
proposed methods has been presented. It is observed that both 
the proposed methods preserve model stability and the time 
domain characteristics of the original system. However, PSO 
method seems to achieve better results in view of its 
simplicity, easy implementation and better response. 
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