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Abstract—Implicit in most large-scale numerical analyses of the 

crystal growth from the melt is the assumption that the shape and 

position of the phase boundary are determined by the transport 

phenomena coupled strongly to the melt hydrodynamics. In the 

present numerical study, the interface shape-effect on the convective 

interactions in a Czochralski oxide melt is described. It was 

demonstrated that thermocapillary flow affects inversely the phase 

boundaries of distinct shapes. The inhomogenity of heat flux and the 

location of the stagnation point at the crystallization front were 

investigated. The forced convection effect on the point displacement 

at the boundary found to be much stronger for the flat plate interface 

compared to the cone-shaped one with and without the Marangoni 

flow. 

 

Keywords—Computer simulation, fluid flow, interface shape, 

thermocapillary effect.  

I. INTRODUCTION 

ROCESSES developed to grow large single crystals from 

the melt are among the most challenging and precise in 

engineering practice, and large-scale numerical analyses has 

been vital to advance crystal growth technology to current 

level. Refractory oxides such as gadolinium gallium garnet 

(GGG) are widely used as solid-state laser hosts and materials 

for epitaxial films in magneto-optical devices [1], [2]. As the 

most commonly used technique, garnet crystals are grown by 

the Czochraslki (Cz) method during which melt flow 

instabilities can lead to serious problems. These hydrodynamic 

instabilities cause morphological changes as spiral formation 

arising after the onset of symmetry breaking in an initially 

steady and axisymmetric melt flow [3]. 

The Cz growth process of garnet single crystals shows as 

well the so-called interface-inversion as an abrupt change in 

the shape of the phase boundary [4]. The crystallization front 

shape, which is initially convex to the melt, can be suddenly 

changed to a flat or even concave interface. The interface 

inversion, particularly occurs when the crystal diameter, 2r� 

and so the rotationally-driven flow predominates in the flow 

field. The influence of the convective interactions on the shape 

and position of the phase boundary is well known by some 

experimental and many numerical works. However, the details 
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of the interface inversion and the dynamical processes during 

the inversion of the shape boundary are not yet understood. 

In the present hydrodynamic model of Cz oxide melt flow, 

the computational results of a model with cone-shaped 

interface is compared to those of a flat crystallization front. 

That is, particular attention is paid to reveal the impact of the 

interface deflection itself on the convective interactions and 

heat transfer in the melt. 

II. DESCRIPTION OF THE MODEL  

Hydrodynamics of a high Prandtl number (Pr � 1) fluid 

affects strongly the heat transport at the phase boundary in a 

Czochraslki (Cz) growth configuration. In the present two 

dimensional and steady-state finite volume method 

calculations, the flow field of an oxide (Gd3Ga5O12) melt is 

characterized by similarity parameters Pr � 4.69, Gr �
8.22 � 10�, Ma � 1.93 � 10� and/or Ma � 0 for the cases 

with and without Marangoni effect, based on the crucible 

radius, r� � 60mm, and the driving temperature difference, 

∆T��� � T� � T�� � 72 K between the crucible wall and the 

melting point. The nondimensional parameters are defined as 

the Grashof number, Gr � gβ∆T���r�
#/ν#, the Marangoni 

number, Ma � &∂σ ∂⁄ T*∆T���r�/µα- and the Prandtl number, 

Pr � ν/µ where g is the gravitational acceleration, β is the 

coefficient of volumetric thermal expansion, ν is the kinematic 

viscosity, α- is the thermal diffusivity, σ is the surface tension 

coefficient and µ is the dynamic viscosity of the melt. The 

physical properties of the GGG melt used in the present 

simulations all are given in [5]. The crucible of height 

h� � 2r� is filled with the melt of a meniscus configuration 

(h�~4mm) close to the edge (r � r� , z � h� 1 h�) of 

crystal-dummy (r� /r� 2 0.4) rotating uniformly with the 

angular velocity Ω 4rad /s7 around the symmetry axis (OZ). 

The intensity of the rotationally-driven flow is given by 

Re � 81.4 Ω for both the flat plate (k /r� � 0) and the cone-

shaped (2α � 120°, k /r� � 0.58) phase boundaries. The melt 

is generally assumed to be opaque (ε> � 0.3), the ambient 

temperature and heat transfer coefficient are T� � T�� �
∆T���. Here, k /r� denotes the convexity of interface. 

The steady-state convective interaction regimes in a Cz melt 

are defined by the ratio between the intensity of buoyancy-

driven flow and the rotationally-driven forces (see Fig. 2), 

represented as Gr/Re?. For Gr/Re? @ 1 the thermal 

convection, that is, the buoyancy-and the surface tension 

driven flows, predominates and the heat balance at the phase 
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boundary leads to a convex to melt interface with 

as the interface deflection. We define k 

cone-shaped crystallization front. When the swirl velocity, 

uB � r� Ω increased and so Gr/Re? approached to the unity, 

the isotherms just beneath the growing crystal correspond to a 

flat interface with 4k/r� 7 2 0. The crystal rotation drives a 

flow which streams upward below the crystalli

outward along the meniscus, and down along the boundary 

between the thermal convection and the rotationally

convection cells. The shear layer between the two cells, 

known as the Stewartson layer, is a thin region of high 

vorticity separating the regions of low vorticity which can be 

modelled as a line across which the velocity field is 

discontinuos [6]. The Stewartson layer has a contact point, 

KCrD�, zE on the crystallization front 0F r
Gr/Re? @ 1. The point K lies near the tri

rD� 2 r�  when the governing parameter of the flow field 

(Gr/Re?) is around the unity, and the further enhancement of 

the forced convection intensity leads to a larger displacement 

of the stagnation point, K radially outwards and the

inversion occurs for the case 4Gr/Re?7 F
The geometry of the problem to be studied is depicted in 

Fig. 1. The cylindrical crucible is stationary and the crystal 

rotates at the rate Ω4rad/s7. The oxide melt is assumed to be 

incompressible, Newtonian, Boussinesq fluid. The 

temperature of the melt-crystal interface is maintained at the 

melting point, T��. The heat loss from the melt free surface is 

due to convection and radiation to an ambient temperature, 

The sidewall of the crucible is kept at a constant temperature, 

T�. The bottom of the crucible is adiabatic. The no

condition is applied for all physical boundaries of the melt 

except for its free surface. The melt free surface is assumed to 

be free of stresses or not when the thermocapillary effect is 

taken into account.  
 

Fig. 1 Sketch of open crucible model with a convex to melt interface

 

boundary leads to a convex to melt interface with 4k/r� 7 @ 0 

 as the height of the 

front. When the swirl velocity, 

approached to the unity, 

the isotherms just beneath the growing crystal correspond to a 

. The crystal rotation drives a 

flow which streams upward below the crystallization front, 

outward along the meniscus, and down along the boundary 

between the thermal convection and the rotationally-driven 

he shear layer between the two cells, 

known as the Stewartson layer, is a thin region of high 

rating the regions of low vorticity which can be 

modelled as a line across which the velocity field is 

. The Stewartson layer has a contact point, 

rD� F r�  for the case 

he tri-junction point at 

when the governing parameter of the flow field 

) is around the unity, and the further enhancement of 

the forced convection intensity leads to a larger displacement 

of the stagnation point, K radially outwards and the interface 

1. 

The geometry of the problem to be studied is depicted in 

1. The cylindrical crucible is stationary and the crystal 

. The oxide melt is assumed to be 

ian, Boussinesq fluid. The 

crystal interface is maintained at the 

. The heat loss from the melt free surface is 

due to convection and radiation to an ambient temperature, T�. 

a constant temperature, 

. The bottom of the crucible is adiabatic. The no-slip 

condition is applied for all physical boundaries of the melt 

except for its free surface. The melt free surface is assumed to 

thermocapillary effect is 

 

Sketch of open crucible model with a convex to melt interface 

Fig. 2 The flow field in the Cz model subjected to the boundary 

conditions of the problem (Pr
10�, Re � 325

III. GOVERNING EQUATIONS 

The Cz melt flow is governed by the momentum, 

continuity, and energy equations in the Boussinesq 

approximation. These equations are given as follows:

 

G. u �  0                        

 

ρ4G. u7 �  �GP 1 µG? u 1 ρg
 

G. 4uT7 �  α-G?T 

 

where u � 4uI, uB, uJ7 is the flow velocity vector, 

are the pressure, the melt temperature and the melt density. 

The boundary conditions which define the melt free surface 

can be written in cylindrical coor

 

µ4∂uI/ ∂n7 �  �4∂σ/ ∂T74∂T
 

4∂uB/ ∂n7 �  0,          uJ � 0  
 

�λ>4∂T/ ∂n7 � h�4T � T�7 1
 

Equation (4) describes the Marangoni effect depe

the radial temperature difference 

coefficient 4∂σ/ ∂T7 is assumed to be vanished for the case 

without the thermocapillary effect. 

vector from the free surface outwards to the ambient with 

h� � 10 W. mN?. KNO as its coefficient of heat transfer. The 

boundary conditions at the melt ce

∂uJ/ ∂r � 0 and ∂T/ ∂r � 0
and T � T�. The crucible bottom is conditioned by 

∂T/ ∂uJ � 0. The crystal-

T � T��, uI � uJ � 0 and uB

  

The flow field in the Cz model subjected to the boundary 

� 4.69, Gr � 8.22 � 10�, Ma � 2.0 �
325, k/r� � 0.58) 

QUATIONS AND BOUNDARY CONDITIONS  

The Cz melt flow is governed by the momentum, 

continuity, and energy equations in the Boussinesq 

approximation. These equations are given as follows: 

(1) 

g (2) 

(3) 

is the flow velocity vector, P, T and ρ 

are the pressure, the melt temperature and the melt density. 

The boundary conditions which define the melt free surface 

can be written in cylindrical coordinates as: 

T/ ∂r7 (4) 

    (5) 

1 ε>σP4T� � T�
�7 (6)    

(4) describes the Marangoni effect depending on 

difference ∆T��� � T� � T��. The 

is assumed to be vanished for the case 

without the thermocapillary effect. n � 4nI, nJ7 is a normal 

vector from the free surface outwards to the ambient with 

as its coefficient of heat transfer. The 

boundary conditions at the melt centerline are uI � uB � 0, 

0. At the crucible sidewall, u � 0 

. The crucible bottom is conditioned by u � 0 and 

-melt interface is defined by 

B � r�Ω. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:5, 2014

737

 

 

IV. RESULTS AND DISCUSSION  

It was found that thermocapillary effect on the heat 

removed from the melt free surface Q >4W7 results in a 

constant increment of 25.5 R 1.5 W for Ω in the range 

2~6 rad /s. This means that, the rotationally-driven flow does 

not affect the heat transfer at the melt free surface. Contrarily, 

the heat removed from the phase boundary Q �4W7 depends on 

the shape and rotation rate of the crystal dummy. It was shown 

that, the influence of Marangoni (Ma) convection on Q �4W7 

is decreasing (for k /r� � 0) and/or vanishing (for k /r� �
0.58) with the crystal rotation rate.  

The ratio between the heat fluxes, η � q� /q> was 

calculated for the crystal rotation rate in the range 2 U
Ω 4rad /s7 U 6 . It was shown that η is larger for the convex 

to melt interface with L�
W � r� /sinα if compared to the flat 

plate phase boundary of L� � r�  . The marangoni flow which 

carries hot fluid to the cold spots in the meniscus region, 

affects inversely the ratio η for the cone-shaped and the flat 

plate phase boundaries, respectively. The inverse effect of 

Marangoni convection on η, found to be enhanced by 

increasing the rotation rate. This has been shown in Fig. 3 that 

increasing the forced convection intensity the Marangoni 

effect on η found to be enhanced for the convex to melt 

interface while the effect is vanishing with Re for the flat 

interface. 

 

 

Fig. 3 The inverse effect of Marangoni convection on η �
4Q� Q>⁄ 74A> A�⁄ 7  

 

The most important characteristic which affects the 

inhomogenity of the heat flux, q� 4W /m?7 at the phase 

boundary is the location of the contact point, K 4rD�, z7 of the 

thermal and forced convection flows on the melt boundaries. 

The radial position, rD� of the stagnation point, K at which the 

flow velocity, uI changes the sign, was measured on a 

horizontal line, LI (2 mm below the melt free surface) for 

different cases. The manner after which we determined the 

radial position of K 4rD�, z7 is illustrated by two sets of figures, 

Figs. 4 (a)-(d) and 5 (a)-(d) for the cases with and without 

Marangoni flow, respectively. Note that only the left moiety of 

the system is considered. Hence, close to the melt free surface, 

uI F 0 belongs to the thermal convection (clockwise 

circulation) and uI @ 0 is the radial velocity due to the 

rotationally-driven flow (ccw). 

It was shown that, by increasing the rotation rate (2 U
Ω 4rad /s7 U 4), the point K 4rD�, z7 moves outward from its 

location on the phase boundary. As given in Table I, the 

forced convection effect on the displacement of the stagnation 

point is much stronger for the flat phase boundary compared 

to the convex to melt (k /r� � 0.58) interface. 

 
TABLE I 

CONVECTIVE INTERACTION AND INTERFACE SHAPE EFFECT ON THE RADIAL 

POSITION OF THE STAGNATION POINT K 4rD�, z7 WITH rD� � r� R ∆r, r� �
23.75 mm 

Cone-shaped interface (k /r� �
0.58) 

Flat plate interface 

 (k /r� � 0) 

2 U Ω 4rad /s7 U 4 2 U Ω 4rad /s7 U 4 

Ma � 0 Ma 2 2 � 10� Ma � 0 Ma 2 2 � 10� 

22.3
U r D�4mm7
U 28.3 

16.0
U r D�4mm7
U 23.5 

15.8
U r D�4mm7
U 27.0 

10.0
U r D�4mm7
U 18.2 

∆r � 27% ∆r � 47% ∆r � 71% ∆r � 82% 

 

This is a noticeable result because a cone-shaped interface 

exerts more shear onto the melt due to its larger boundary 

(L[ � r� /sinα) compared to a flat interface. It was shown 

(Table I) that, in the presence of thermocapillary forces 

(Ma \ 0), the point K 4rD�, z7 displaces largely but remains on 

the crystal dummy (r D� U r�): Even for the flow field 

characterized by Gr /Re? � 0.775, the radial position of the 

point K was found to be equal to rD� � 18.2 and rD� � 23.5 

for the flat and cone-shaped interfaces, respectively. 
 

(a) k /r� � 0, Ω � 2 rad/s 

 

(b) k /r� � 0, Ω � 4 rad/s 

(c) k /r� � 0.58, Ω � 2 rad/s (d) k /r� � 0.58, Ω � 4 rad/s 

Fig. 4 Radial velocity of the flow along the horizontal line L]  (2mm 

below the melt free surface) for the case Ma \ 0 
 

For the convex to melt phase boundary (k /r� � 0.58), 

increasing Ω (or Re) the inhomogenity of heat flux at the 

interface ∆q � Cq� � qW
�E/4q� 1 q[�7 is vanishing. That is, 
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for rD� F r�, the local heat flux at the center, q� 4r � 07 is 

larger than the heat flux near the tri-junction point, qW4r � r�7 

and, hence ∆q @ 0 .Contrarily, if the stagnation point K 

locates at rD� � r� , the inhomogenity of heat flux is ∆q U 0 . 

In the case of lower rotation rate (Ω � 2 rad /s , Gr/Re? �
3.1), the point K locates on the crystal dummy and, therefore, 

∆q @ 0 for both of the interface shapes. 

 

(a) k /r� � 0, Ω � 2 rad/s 

 

(b) k /r� � 0, Ω � 4 rad/s 

(c) k /r� � 0.58, Ω � 2 rad/s (d) k /r� � 0.58, Ω � 4 rad/s 

Fig. 5 Radial velocity of the flow along the horizontal line L] (2mm 

below the melt free surface) for the case Ma � 0 
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