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Abstract —This paper features the modeling and design of a Fast 

Output Sampling (FOS) Feedback control technique for the Active 
Vibration Control (AVC) of a smart flexible aluminium cantilever 
beam for a Single Input Single Output (SISO) case.  Controllers are 
designed for the beam by bonding patches of piezoelectric layer as 
sensor / actuator to the master structure at different locations along 
the length of the beam by retaining the first 2 dominant vibratory 
modes. The entire structure is modeled in state space form using the 
concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite 
Element Method (FEM) and the state space techniques by dividing 
the structure into 3, 4, 5 finite elements, thus giving rise to three 
types of systems, viz., system 1 (beam divided into 3 finite 
elements), system 2 (4 finite elements), system 3 (5 finite elements). 
The effect of placing the sensor / actuator at various locations along 
the length of the beam for all the 3 types of systems considered is 
observed and the conclusions are drawn for the best performance and 
for the smallest magnitude of the control input required to control the 
vibrations of the beam. Simulations are performed in MATLAB. The 
open loop responses, closed loop responses and the tip displacements 
with and without the controller are obtained and the performance of 
the proposed smart system is evaluated for vibration control. 
 

Keywords—Smart structure, Finite element method, State space 
model, Euler-Bernoulli  theory, SISO model, Fast output sampling, 
Vibration control, LMI 

I. INTRODUCTION 
IBRATION control of any system is always a formidable 
challenge for any control system designer. Active control 

of vibrations [8], [22] relieves a designer from strengthening 
the structure from dynamic forces and the structure itself from 
extra weight and cost. The need for intelligent structures [3], 
such as smart structures arises from the high performance 
requirements of such structural members in numerous 
applications. Intelligent structures [3] are those which 
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incorporate actuators and sensors that are highly integrated 
into the structure and have structural functionality, as well as 
highly integrated control logic, signal conditioning and power 
amplification electronics.  

Considerable interest is focused on the modeling and 
control of smart structures with integrated piezoelectric layers. 
Culshaw [11] discussed the concept of smart structure, its 
benefits and applications. Baily and Hubbard [8] have studied 
the application of piezoelectric material as sensor / actuator 
for flexible structures. Hanagud et.al. [12] developed a Finite 
Element Model (FEM) for an active beam with many 
distributed piezoceramic sensors / actuators. Fanson et.al. [13] 
performed some experiments on a beam with piezoelectrics 
using positive position feedback.  Balas [14] did extensive 
work on the feedback control of flexible piezoelectric 
structures.  Experimental evaluation of piezoelectric actuation 
for the control of vibrations in a cantilever beam was 
presented by Burdess et.al. [19].  Yang and Lee [23] studied 
the optimization of feedback gain in control system design for 
structures.  S.B. Choi et.al. presented a new technique of 
control of flexible structures by the use of distributed 
piezofilm sensors and actuators in [17]. Crawley [3] presented 
the development of piezoelectric sensor / actuator as elements 
of intelligent structures.  

Feedback control of vibrations in mechanical flexible 
systems has numerous applications, like in aircrafts, active 
noise and shape control, acoustic control, control of space 
structures and in control of flexible manipulators.  Active 
control of unwanted disturbance consists of canceling the 
disturbance by the deliberate addition of a second disturbance, 
equal in magnitude but opposite in direction. Applying forces 
whose magnitudes and phases are determined by a controller 
can control vibrations of single and multiple degree of 
freedom (DOF) systems. The inputs to the controller are 
displacements or velocities measured at various points in the 
system. 

An active vibration control system consists of an actuator, 
controller, sensor and the system / plant (beam) which is to be 
controlled. Fully active actuators like Piezoelectrics, Magneto 
Rheological (MR) fluids, Piezoceramics, Electro-Rheological 
(ER) fluids, Shape Memory Alloys (SMA), PVDF can be used 
to generate a secondary vibrational response in a linear 
mechanical system. This could reduce the overall response of 
the system plant by destructive interference with the original 
response of the system, caused by the primary source of 
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vibration [6].   
Recent advances in smart structure technology provide a 

means for integrating sensors and actuators to the mechanical 
structure. Due to its fast response time, relatively good control 
force, low power consumption, high bandwidth, smart 
structures finds a lot of applications in vibration control of 
systems [10].  Numerous identification and control techniques 
have been proposed for active vibration suppression of 
flexible structures. Some of the various methods used for 
vibration control in systems are the periodic output feedback 
control [24], sliding mode control, fast output sampling 
feedback control [1], [2], [15] wave suppression method, 
independent modal space control method, modified 
independent modal space control method, higher order  
laminate beam theory and PID control. Control of vibrations 
(using the fast output sampling feedback control technique) in 
a flexible structure through smart structure concept for a SISO 
case is being proposed here in this paper. 

In the present research work, a smart flexible cantilever 
beam is considered and the state space model is obtained 
using the FEM technique and using the Euler-Bernoulli 
theory. A new control algorithm is proposed to design a FOS 
feedback based controller for the flexible smart cantilever 
beam by bonding patches of piezoelectric layers as sensor / 
actuator pair to the master structure at different locations 
along the length of the beam as shown in Fig. 2. An external 
force input extf  is applied at the free end of the beam for all 
the various models of the plant as shown in Fig. 2. There are 
two inputs to the plant. One is the external force input extf , 
which is taken as a load matrix of 1 unit in the simulation. The 
other input is the control input u to the actuator from the 
controller. Simulations are performed in Matlab. The actual 
response of the system, i.e., the tip displacement ),( txw  is 
obtained for all the various models of the smart flexible 
system with and without the controllers by considering the 
first two dominant vibratory modes. In the work considered, 
both the tip displacement and the plot of time derivative of the 
displacement, i.e., the sensor output y as a function of time 
with the fast output sampling feedback gain L are observed. 

 

 
Fig. 1 A smart flexible beam made up of 4 finite elements with piezo 
patches as collocated pair at fixed end. 1, 2 and 3 are regular beam 
elements, 4 is a piezoelectric beam element 

 

The paper is organized as follows. In Section 2, a state 
space model of the smart cantilever beam bonded with 

piezoelectric as sensor / actuator using the Finite Element 
Theory [7], [9], [16] is presented. Section 3 contains a brief 
review on the FOS control technique and the design of the 
FOS control technique [1], [2], [15] for the vibration control 
of the smart cantilever beam for different sensor / actuator 
locations for all the models of the 3 types of systems. The 
results and discussions are included in Section 4 followed by 
the simulation results and the references. 

 

 
Fig. 2 A smart flexible Al cantilever beam divided into 3, 4, 5 finite 
elements, giving rise to 3 types of systems, viz., System 1(3 models), 
System 2 (4 models) and System 3 (5 models) 

II. MODELING OF SMART STRUCTURES 
The smart structure is modeled as follows. 

A. Displacement  functions 
Consider a flexible cantilever beam element as shown in 

Fig. 3.  The dimensions of the flexible cantilever beam is 
shown  in Tables I. An external force input extf  (impulse) is 
applied at the free end of the smart beam as shown in Fig. 4.  
The beam is subjected to vibrations.  These vibrations are 
suppressed quickly in no time by the closed loop action of the 
controller, sensor and actuator. The free vibration 
characteristics of a flexible beam [25] is governed by the 
following fourth order differential equation  

                        0),(),(
2

2

4

4
2 =

∂
∂

+
∂

∂
x

txw
x

txwc ,  (1) 

where w  is the transverse displacement of the beam and is a 
function x  and t , x  being the distance of the local 
coordinate from the fixed end, t  being the time and c  is a 

constant which is given by A
IE

ρ . AIE and,, ρ  are the 

young’s modulus, moment of inertia, mass density and area of 
the beam respectively. When a system vibrates as shown in 
the Fig. 3, it undergoes to and fro motion, it has transverse 
displacements and so all positions vary with time and 
therefore, the system has velocities and accelerations. Mass 
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times acceleration as inertia force appears in the governing 
differential equation of the beam which is given in (1), i.e., the 
equation of motion involves a fourth order derivative w.r.t. x  
and a second order derivative w.r.t. time (acceleration) The 
solution of the equation (1) is assumed as a  cubic polynomial 
function of x  given by  

                    3
4

2
321)( xaxaxaaxW +++= ,   (2) 

where the constants 1a to 4a are obtained by using the 
boundary conditions given below at both the nodal points 
(fixed end and free end) as 

             1)( wxW = and 11 θ==
∂

∂
u

x

W
;  at 0=x , (3) 

             2)( wxW = and 22 θ==
∂

∂
u

x

W
;  at blx = , (4) 

 
 

Fig. 3  Flexible cantilever beam element 
 

TABLE I 
PROPERTIES OF T HE FLEXIBLE CANTILEVER BEAM ELEMENT 

Parameter  (with units) Symbol Numerical values 

Length (m) 
bl  0.075 

Width (m) b  0.03 

Thickness (mm) 
bt  0.5 

Young’s modulus (Gpa) 
bE  193.06 

Density (kg/m3) 
bρ  8030 

Damping constants βα ,  0.001. 0.0001 

 
TABLE II 

PROPERTIES OF T HE  PIEZO - SENSOR / ACTUATOR  ELEMENT 

Parameter  (with units) Symbol Numerical values 

Length (m) 
pl  0.075 

Width (m) b  0.03 

Thickness (mm) 
sa tt ,  0.35 

Young’s modulus (Gpa) 
pE  68 

Density (kg/m3) 
pρ  7700 

Piezo strain constant (m /V) 
31d  1210125 −×  

Piezo stress constant (Vm / N) 
31g  3105.10 −×  

 

where 111 ,, θuw and 222 ,, θuw are the DOF’s at the node 1 

and node 2 respectively and bl is the length of the regular 

beam element.   
Application of the boundary condition given by equations 

(3) and (4) in (2) yields 

        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

2

1

1

22

3

3

3

4

3

2

1

22
323

000
000

1

θ

θ
w

w

ll
llll

l
l

l
a
a
a
a

bb

bbbb

b

b

b

. (5) 

Substituting the constants obtained from (5) into (2) and by 
rearranging the terms, the final form for )(xW is obtained as 
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where [ ]n gives the shape functions as 
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and [ ]q  is the vector of displacements and slopes (nodal 
displacement vector) and is given by 
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 The displacement, its first and second spatial derivatives 
and its time derivative is given by the equations 

                                [ ] [ ] [ ]qn TxW =)( , (9) 
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B. Dynamic equation of the beam element 
The strain energy U  and the kinetic energy T  for the beam 
element with uniform cross section in bending is obtained as  
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where bρ is the mass density of the beam material, bA  is the 

cross sectional area of the beam, bI  is the moment of inertia 

of the beam and bE  is the modulus of elasticity of the beam 
material. The equation of motion of the regular beam element 
is obtained by the lagrangian equation 
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as                        
                            )(tfqKqM bbb =+&& , (16) 

where bb KM , and bf are the mass, stiffness and the force 
coefficient vectors of the regular beam element.  The mass and 
stiffness matrices are obtained as 
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and                  
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 The resulting equation of motion for the regular beam 

element in its explicit form is obtained as 
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Fig. 4  Piezoelectric (PZT) beam element 

 

where  1F and 2F  are the forces at the nodes 1 and 2, 1M  

and 2M  are the bending moments acting at the nodes 1 and 2 
respectively.  The piezoelectric beam element shown in Fig. 4 
is obtained by sandwiching the regular beam element between 
two piezoelectric thin layers of thickness at or st .  The 
dimensions of the piezoelectric patch are given in table II. The 
bottom layer acts as a sensor and the upper layer acts as an 
actuator.   Similar to the equation (19) obtained for a regular 
beam element, the Lagrangian equation of motion of the 
piezoelectric beam element is obtained as 

                           )(tfqKqM ppp =+&& ,  (20) 

where pM and pK are the mass and stiffness matrices of the 
piezoelectric element and is obtained as 
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C. Sensor equation 
The sensor equation is derived from the direct piezoelectric 

equation.  The electric displacement developed on the sensor 
surface is directly proportional to the stress acting on the 
sensor.  If the poling is done along the thickness direction of 
the sensors with the electrodes on the upper and the lower 
surfaces, the electric displacement D  is given by 

                       xxpz eEdD εε 3131 * == , (26) 

where 31d is the piezoelectric constant, 31e  is the 

piezoelectric stress / charge constant, pE is the young’s 

modulus and xε is the strain that is produced. 

The total charge )(tQ developed on the sensor surface is 
the spatial summation of all the point charges developed on 
the sensor layer.  Thus, the expression for the current 
generated is obtained as 
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where a
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2

and 1n  given by  (11).    

 This current is converted into the open circuit sensor 
voltage sV using a signal-conditioning device with the gain 

cG and applied to an actuator with the FOS controller having 

a gain L .  Thus, the sensor output voltage is obtained as 
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which is nothing but the signal conditioning gain cG  

multiplied by the closed circuit current )(ti  generated by the 

piezoelectric lamina. Substituting for T
1n from (11) and 

q& from (12) and simplifying, we get the sensor voltage for a 2 

node finite element as  
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which can be further expressed as a scalar-vector product 
                                    qp &TtV s =)( , (31) 
where q& is the time derivative of the modal coordinate vector 

q , Tp is a constant vector which depends on the type of 
sensor, its characteristics and its location on the beam.  Note 
that the sensor output is a function of the second spatial 
derivative of the mode shape. 
 This sensor voltage is given as input to the controller and 
the output of the controller (which is nothing but the control 
input to the actuator, i.e., the actuator voltage) is the controller 
gain L  multiplied by the sensor voltage )(tV s . Thus, the 

input voltage to the actuator )(tV a is given by 

       )()( tVtV sa L=  = ∫
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T
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131 qnL &  . (32) 

D. Actuator equation 
 The actuator strain is derived from the converse 
piezoelectric equation.  The strain developed aε on the 
actuator layer is given by  
                                  fa Ed31=ε , (33) 

where 31d and fE are the piezo strain constant and the 

electric field respectively.  When the input to the piezoelectric 
actuator )(tV a is applied in the thickness direction at , the 

electric field, fE which is the voltage applied )(tV a divided 

by the thickness of the actuator at ; and  the stress, aσ  which 

is the actuator strain multiplied by the young’s modulus pE of 

the piezo actuator layer are given by  
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and                              

                              
a

a

pa t
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31=σ . (35) 

The strain developed on the actuator layer is directly 
proportional to the electric field ( )fE  and is given by 
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 The resultant moment aM  acting on the beam is thus 
determined by integrating the stress through the structural 
thickness as 
                             )(31 tVzdEM a

pA = , (37) 

where 
( )

2
ba tt

z
+

=  is the distance between the neutral axis of 

the beam and the piezoelectric layer.  Finally, the control force 
applied by the actuator is obtained as 
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or can be expressed as a scalar vector product as 
                          )()( tutVf a

ctrl hh == , (39) 

where T
2n is the first spatial derivative of the shape function 

of the flexible beam, Th is a constant vector which depends 
on the type of actuator and its location on the beam, given by 

[ ]00 3131 zbdEzbdE pp−=h and )(tu is nothing 

but the control input to the actuator, i.e., )(tV a from the 
controller. If any external forces are acting on the beam, then 
the total force vector becomes 

                             ctrlext
t fff += . (40) 

E. Formulation 
The dynamic equation of the smart structure is obtained by 

using both the regular and piezoelectric beam elements given 
by (17) - (22).  The mass and stiffness of the bonding or the 
adhesive between the master structure and the sensor / 
actuator pair is neglected.  The signal conditioning device gain 
(Gc) is assumed as 100. The cable capacitance between the 
sensor and signal-conditioning device is considered negligible 
and the temperature effects are neglected.  The mass and 
stiffness of the entire beam, which is divided into 4 finite 
elements is assembled using the FEM technique [7], [9], [16] 
and the assembled matrices (global matrices), M and K are 
obtained. 

The equation of motion of the smart structure is finally 
given by 

                  tfff ctrlext =+=+ KqqM && ,     (41) 

where 
tf,f,f

ctrlext
,qK,M, are the global mass matrix, 

global stiffness matrix of the smart beam, the vector of 
displacements and slopes, the external force applied to the 
beam, the controlling force from the actuator  and  the  total  
force  vector  respectively.    
 The mass matrix M , stiffness matrix K and the control 
force coefficient vector Th in the system equation can be 
varied by changing the position of the piezo-patch and number 

of regular and piezoelectric beam elements. 
The generalized coordinates are introduced into the (41) 

using a transformation gTq =  in order to reduce it further 
such that the resultant equation represents the dynamics of the 
first two vibratory modes of the smart flexible cantilever 
beam.  

T is the modal matrix containing the eigen vectors 
representing the first two vibratory modes. In the flexible 
system, the first two vibration modes 1ω  and 2ω  which are 
the most dominant modes compared to the other modes are 
being considered.   

This method is used to derive the uncoupled equations 
governing the motion of the free vibrations of the system in 
terms of principal coordinates by introducing a linear 
transformation between the generalized coordinates q and the 
principal coordinates g .  The equation  (41) now becomes 

                  t
ctrlext fff =+=+ KTggMT && . (42) 

Pre-multiplying (42) by TT , we get 

  tT
ctrl

T
ext

TTT fff TTTKTgTgMTT =+=+&& , (43) 
which can be rewritten as 

                    *** fffgKgM t
ctrlext =+=+ **&& . (44) 

where the notations, **, extfKM ,* and *
ctrlf  are given by 

TMTM T=* , TKTK* T= , ext
T

ext fTf =*  and 

ctrl
T

ctrl fTf =*  respectively. 

The above equation (44) can be written as 
              **** fffgKgCgM t

ctrlext =+=++ **&&&  (45) 
by introducing the generalized structural modal damping 
matrix *** KMC βα += , where α  and β  are the 
frictional damping constant and the structural damping 

constant used  in *C .   

Here, **, extfKM ,* and *
ctrlf  represents the generalized 

mass matrix, the generalized stiffness matrix, the generalized 
external force vector and the generalized control force vector 
respectively.  The governing equation (45) decouples into the 
equations corresponding to each individual mode. 

The generalized external force coefficient vector is   

                    ,)(* trfT
ext

T
ext TfTf ==   (46) 

where )(tr is the external force input (impulse disturbance) to 
the beam. 
 The generalized control force coefficient vector is 
           )()(* tutVf TaT

ctrl
T

ctrl hThTTf === . (47) 

F. State space model of the smart cantilever beam 
 The governing equation (45) can be written in state space 
form as follows. Let the states of the system be defined as 
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and 
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 Using (46) to (49) in (45) becomes 
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which can be further simplified as   
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and finally written in state equation form as  
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i.e., 
                   )()()( trtutx EBAX ++=&  (53) 
 The output equation (sensor equation) for a SISO case is 
given by 
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 (54) 

and written in output equation form as 
                          .)()()( tutxty T DC +=  (55) 
 The SISO state space model (state equation and output 
equation) of the smart flexible cantilever beam finally is given 
by 

                       
,

,

)()()(
)()()(
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trtutx

DC
EBAX
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 (56) 

with 

)44(
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. 

The smart flexible cantilever beam as shown in Fig. 3 is 
divided into a number of finite elements as shown in Fig. 2, 
viz., three (system 1-Fig. 2(a)), four (system 2-Fig. 2(b)) and 
five (system 3-Fig. 2(c)). The piezoelectric sensor / actuator is 
bonded to the smart structure at finite elements from free end 
to the fixed end. The state space model in (56) is obtained for 
various sensor / actuator locations on the cantilever beam by 
using 
• 2 regular beam elements and 1 piezo electric element as 

shown in Fig. 2(a) - 3 models of system 1. 
• 3 regular beam elements and 1 piezo electric element as 

shown in Fig. 2(b) - 4 models of system 2. 
• 4 regular beam elements and 1 piezo electric element as 

shown in Fig. 2(c) - 5 models of system 3. 
By placing a piezoelectric element as sensor / actuator at 

one finite element of the cantilever beam and making other 
elements as regular beam elements as shown in Figs. 2(a)-(c) 
and by varying the position of the piezoelectric sensor / 
actuator from the free end to the fixed end, various state space 
models are obtained. Then, the control of these models is 
obtained using the FOS feedback control technique, which is 
considered, in the next section.   

Consider the 3 systems shown in Fig. 2(a)-(i), 2(b)-(i), 2(c)-
(i). State space models of the smart cantilever beam with 
sensor / actuator pair at element 1 (fixed end) is represented 
by (56) with 
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TABLE III 
CHARACTERISTICS  OF  THE  SMART  BEAM  IN  FIG. 2 (a)   

WITH  BEAM  DIVIDED INTO 3 FINITE  ELEMENTS  (SYSTEM 1). 
Position of   

sensor / actuator Eigen values Natural  
Freq. (Hz) 

Element 1 : Fixed end         
(Model 1) 

–2.55 ± j 225.76   
–0.11 ± j 47.61 

35.93 
7.57 

Element 2  : Middle end   
(Model 2)    

–2.1 ± j 204.69  
–0.04 ± j 26.44 

32.57   
4.21 

Element 3  : Free end         
(Model 3) 

–1.32 ± j 162.58  
–0.02 ± j 19.16 

27.87   
3.04 

 
TABLE IV 

CHARACTERISTICS  OF  THE  SMART  BEAM  IN  FIG. 2 (b)   
WITH  BEAM  DIVIDED INTO  4  FINITE  ELEMENTS  (SYSTEM  2). 

Position of   
sensor / actuator Eigen values Natural  

Freq. (Hz) 
Element 1 : Fixed end       
(Model 1) 

–2.64 ± j 229.92  
–0.09 ± j 41.86 

36.89  
6.66 

Element 2   
(Model 2)    

–1.19 ± j 172.35  
–0.04 ± j 29.77 

27.43  
4.73 

Element 3   
(Model 3) 

–1.84 ± j 191.81  
–0.03 ± j 24.22 

30.52  
3.85 

Element 4  : Free end        
(Model 4) 

–1.27 ± j 159.23 

–0.02 ± j 19.89 

25.34   
3.16 

 
TABLE V 

CHARACTERISTICS  OF  THE  SMART  BEAM  IN  FIG. 2 (C)   
WITH  BEAM  DIVIDED INTO  5  FINITE  ELEMENTS  (SYSTEM 3). 

Position of 
sensor / actuator Eigen values Natural 

Freq. (Hz) 

Element 1 : Fixed end         
(Model 1) 

–2.53  ± j 224.74 
–0.07  ± j  38.57 

35.76 
6.14 

Element 2   
(Model 2)    

–1.34  ± j 163.70 
–0.05   ± j  31.06 

26.05 
4.94 

Element 3 : Middle end   
(Model 3) 

–1.65  ± j 181.19 
–0.04  ± j  26.90 

28.88 
4.28 

Element 4           
(Model 4) 

–1.69  ± j 183.93 

–0.03   ± j  26.63 

29.27 
3.76 

Element 5  : Free end         
(Model 5) 

–1.24  ± j 157.68 

–0.02  ± j 20.57 

25.09 
3.27 

 
 

The state space models of the smart cantilever beam divided 
into 3 finite elements with sensor / actuator pair at element 2, 
3 (free end), 4 finite elements with sensor / actuator pair at 
elements 2, 3, 4 (free end), 5 finite elements with sensor / 
actuator pair at elements 2,3,4,5 (free end) are obtained 
similarly.  The characteristics of the smart cantilever beam 
with the piezo pair at various locations along the length of the 
beam for different models of the three systems in Fig. 2 are 
given in Tables III - V. 

III. CONTROL OF THE SMART STRUCTURE 
In the following section, we develop the control strategy for 
the SISO representation of the developed smart structure 
model using the fast output sampling feedback control law [1], 
[2], [15] with 1 actuator input u and 1 sensor output y to 
control the vibrations of the flexible beam.   In this type of 
control law as shown in Fig. 5, the value of the input at a 
particular moment depends on the output value at a time prior 
to this moment (namely at the beginning of the period).   

Werner and Furuta [1], [2], [15] have shown that the poles 
of the discrete time control system could be assigned 
arbitrarily (within the natural restriction that they should be 
located symmetrically with respect to the real axis) using the 
fast output sampling technique. Since the feedback gains are 
piecewise constants [20], [21] their method could easily be 
implemented, guarantees the closed loop stability and 
indicated a new possibility. Such a control law can stabilize a 
much larger class of systems. 

 
Fig. 5  Graphical illustration of fast output sampling feedback method 
 

Consider a plant described by a LTI state space model 
given by 

         ,)()(),()()( txtytutxtx CBA =+=&    (60) 

where nx ℜ∈ , mu ℜ∈ , py ℜ∈ , nn ×ℜ∈A , mn ×ℜ∈B , 
np ×ℜ∈C , A , B , C , are constant matrices of appropriate 

dimensions and it is assumed that the model is controllable 
and observable.  Assume that output measurements are 
available at time instants τkt = , where ....,3,2,1,0=k Now, 
construct a discrete LTI system from these output 
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measurements at sampling rate
τ
1

(sampling interval of τ secs) 

during which the control signal u is held constant. The system 
obtained so is called as the τ  system and is given by 

              
),()(

),()())1((
ττ

τττ ττ

kxky
kukxkx

C=
Γ+Φ=+

 (61) 

where C,, ττ ΓΦ are constant matrices of appropriate 

dimensions. 
Assume that plant is to be controlled by a digital computer, 

with sampling intervalτ and zero order hold and that a 
sampled data state feedback design has been carried out to 
find a state feedback gain F such that closed loop system 

                ( ) ( ) )( τττ ττ kxFkx Γ+Φ=+  (62) 
has desirable properties.   

 Let 
N
τ

=∆  , where >N the observability index υ  of the 

system. The control signal )(ku , which is applied during the 
interval ττ )1( +≤≤ ktk  is then generated according to 
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, (63) 

where the matrix blocks jL  represent the output feedback 

gains and the notations ky,L has been introduced here for 

convenience.  Note that 
τ
1

is the rate at which the loop is 

closed, whereas the output samples are taken at the N - times 

faster rate 
∆
1

.  To show how a FOS controller in (63) can be 

designed to realize the given sampled data state feedback gain 
for a controllable and observable system, we construct a 
fictitious, lifted system for which (63) can be interpreted as 
static output feedback [4], [18].  Let ( )C,,ΓΦ  denote the 

system ( ∆  system) in (60) sampled at the rate 
∆
1 .   

 Consider the discrete time system having at time τkt = , 
the input )( τkuuk = , the state )( τkxxk = and the output ky  
as 
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Now, design a state feedback gain F such that 
( )Fττ Γ+Φ  has no eigen values at the origin and provides 
the desired closed loop behavior.  Then, assuming that in the 
interval )( τττ +≤≤ ktk , 

                                )()( τkxFtu = ,  (66) 
one can define the fictitious measurement matrix,  

           ( )( ) 1
00),( −Γ+Φ+= FFNF ττDCC ,  (67) 

which satisfies the fictitious measurement equation  
                                   kk xy C= .   (68) 

For L to realize the effect of F , it must satisfy the 
equation. 

                                    F=LC .   (69) 
Let υ  denote the observability index of ( )C,,ΓΦ .  It can 

be shown that for υ≥N , generically C has full column 
rank, so that any state feedback gain can be realized by a fast 
output sampling gain L .   If the initial state is unknown, there 
will be an error kkk xFuu −=∆ in constructing the control 
signal under the state feedback; one can verify that the closed-
loop dynamics are governed by 
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The system in (64) is stable if F  stabilizes and only if 
( )ττ ΓΦ ,  and the matrix ( )τΓ− F0LD  has all its Eigen 
values inside the unit circle.  Thus, one can say that the eigen-
values of the closed-loop system under a fast output sampling 
control law given in (63) are those of ( )Fττ Γ+Φ  together 

with those of ( )τΓ− F0LD .  This suggests that the state 

feedback F should be obtained so as to ensure the stability of 
both ( )Fττ Γ+Φ  and ( )τΓ− F0LD . 

The problem with controllers obtained in this way is that, 
although they are stabilizing and achieve the desired closed 
loop behavior in the output sampling instants, they may cause 
an excessive oscillation between sampling instants.   The  FOS 
feedback gains obtained may be very high.  To reduce this 
effect, we relax the condition that L exactly satisfy the linear 
equation (69) and include a constraint on the gain L .  Thus, 
we arrive at the following equations as 
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This can be formulated in the form of Linear Matrix 
Inequalities (LMI) [5] as 
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321 ,, ρρρ represent the upper bounds on the spectral 

norms of L , τΓ− F0LD and F−LC respectively.  These 
3 objectives have been expressed by the upper bounds on 
matrix norms and each should be as small as possible.  1ρ  

means low noise sensitivity, 2ρ small means fast decay of 

observation error and most importantly, 3ρ  small means that 

fast output sampling controller with gain L is a good 
approximation of the originally designed state feedback 
controller.  In this form, the LMI control optimization tool box 
for Matlab can be used to minimize a linear combination of  

321 ,, ρρρ  and for the synthesis of L  [5].   The following 
approach turned out to be useful. The fast output sampling 
feedback controller obtained by the above method requires 
only constant gains and hence is easier to implement.  

The FOS control technique discussed above is used to 
design a controller to suppress the 1st 2 vibration modes of a 
smart flexible cantilever beam through smart structure concept 
for the various models of the 3 types of systems shown in Fig. 
2. Controllers are designed for the various models of the smart 
structure system using the developed state space models for 
the sensor / actuator locations at various positions along the 
length of the beam for the various models of the 3 systems as 
given in (56) and its performance is evaluated for vibration 
control.  

The first task in designing the FOS controller is the 
selection of the sampling interval τ . The maximum 
bandwidth for all the sensor / actuator locations on the beam 
are calculated (here, the 2nd vibratory mode of the plant) and 
then by using existing empirical rules for selecting the 
sampling interval based on bandwidth, approximately 10 
times of the maximum 2nd vibration mode frequency of the 
system has been selected. The sampling interval used is 

004.0=τ  seconds. The number of sub-intervals N is chosen 
as 4.  Simulations are carried out in Matlab. 

Let ( )C,, ττ ΓΦ  be the discrete time systems (tau system) of 

the systems in Fig. 2 in (56) sampled at a rate of  τ/1 seconds 
respectively and are given by  

    

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=Γ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−
−−

=Φ

−

0093.0
1175.0
0
0

1

,

9810.00000.09.00620000.0
0000.00.60420000.04999.751

0040.00000.09819.00000.0
0000.00034.00000.06217.0

3
11

11

eτ

τ

  (73) 

for the model shown in the Fig. 2(a)-(i), 
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1

;

9853.00000.097476.0000.0
0000.00.59060000.09848.180
0040.00000.09860.00000.0
0000.00034.00000.06087.0

3
12

12

eτ

τ

 (74) 

for the model shown in the Fig. 2(b)-(i) and 
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9875.00000.09265.50000.0
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0040.00000.09881.00000.0
0000.00034.00000.06249.0

3
13

13

eτ

τ

 (75) 

for the model shown in the 2(c)-(i). It is found that the tau 
systems are controllable and observable. The ranks of the 
matrices are 4. Similarly, the tau systems for other models of 
the 3 systems are obtained. 
 The stabilizing state feedback gains are obtained for each of 
the tau systems such that the eigenvalues of ( )Fττ ΓΦ +  lie 

inside the unit circle and the response of the system has a 
good settling time. The impulse response of the system with 
the state feedback gain F is obtained.                     
 Let ( )C,, ΓΦ  be the discrete time systems (delta system) of 

the system in Fig. 2 in (56) sampled at the rate ∆/1 secs 

respectively, where N/τ=∆ .  The delta systems for all the 
models of the 3 systems are obtained.  Finally, the fast output 
sampling feedback gain L for any model of the system is 
obtained by solving F=LC using the LMI optimization 
method [5] and is given by   

          
,]51.1191.1325.2466.26[
,]26.6136.6221.5460.66[

,]33.7275.8316.5452.78[

13

12

11

−−=
−−=

−−=

L
L
L

 (76) 

for the models 1 of system 1, 2 and 3 and  
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.]51.9391.8325.2466.36[

,]26.6936.8221.7460.56[
,]33.3275.8316.12452.116[

53

42

31

−−=
−=

−−=

L
L
L

  (77) 

for the models 3, 4 and 5 of the systems 1, 2 and 3 
respectively.  

The closed loop impulse responses (sensor outputs) with 
FOS feedback gain L , the tip displacements and the plot of 
control effort u  as a function of time t  are obtained for the 
state space models of the system shown in the Fig. 2(a)-(i), 
2(b)-(i), 2(c)-(i) respectively. The various responses are 
observed for the different models of the 3 systems similarly. 
Here in this paper, only the responses at the fixed end and the 
free ends of the 3 systems are shown for convenience. The 
results are compared and the conclusions are drawn for the 
best performance. 

IV. CONCLUSION 
Controllers have been designed for the smart flexible 

cantilever beam using the FOS feedback control technique for 
the three systems to suppress the 1st 2 vibratory modes. The 
flexible cantilever beam was divided into 3 elements (system 
1), 4 elements (system 2) and 5 elements (system 3) and the 
sensor / actuator pairs were bonded to the structure at various 
finite elements, thus giving rise to various models of the 3 
systems. Various state space models were obtained. The 
various responses are obtained for each of the models for the 
three systems. Here, the comparison and discussion of the 
simulation results of the vibration control for the smallest 
magnitude of the control effort u required to control the 
vibrations of the smart cantilever beam is presented.  

From the simulation results, it is observed that modeling a 
smart structure by including the sensor / actuator mass and 
stiffness and by varying its location on the beam from the free 
end to the fixed end introduces a considerable change in the 
system’s structural vibration characteristics. From the 
responses of the various models of each system, it is observed 
that when the piezoelectric element is placed near the clamped 
end, i.e., the fixed end, the sensor output voltage is greater.  

This is due to the heavy distribution of the bending moment 
near the fixed end for the fundamental mode, thus leading to a 
larger strain rate. The sensor voltage is very less when the 
sensor / actuator pair is located at the free end. The sensitivity 
of the sensor / actuator pair depends on its location on the 
beam. From the output responses shown in the Figs. 6 - 11, it 
is observed that the control effort u required from the 
controller gets reduced if the sensor / actuator placement 
location is moved towards the fixed end. 

A small magnitude of the control signal u is sufficient to 
control the structural vibrations of each model of the systems 
1, 2 and 3 at fixed end. A state feedback gain for each discrete 
model of the 3 systems is obtained such that its poles are 
placed inside the unit circle and has a very good settling time. 
The individual models of the 3 systems are compared to 
obtain the best performance.  

Comparing the 3 systems, viz., system 1, 2 and 3, it is 

observed that as the smart beam is divided into 5 finite 
elements, the vibration characteristics is the best. Hence, it can 
be concluded that, the best placement of the sensor / actuator 
pair is at the fixed end of the system 3, i.e., near the root or the 
hub where the beam is fixed. (the model 1 of system 3). 
Comparing the responses of the various models of the three 
systems, system 3’s vibration response characteristics are the 
best for the vibration control of smart beam because of the 
following reasons. 
• A small magnitude of control input u is required to 

dampen out the vibrations compared to systems 1 & 2. 

• The magnitude of the impulse response (open loop and 
closed loop) of both the continuous and the discrete time 
system is less compared to systems 1 & 2. 

• Also, the response characteristics with F and L are 
improved. 

• The tip displacements are improved and the vibrations 
dampen out quickly in this case as seen in table VI. 

Responses are simulated for the various models of the plant 
without control and are compared with the control to show the 
control effect. It was inferred that without control the transient 
response was predominant and with control, the vibrations are 
suppressed. The model 1 of system 3 is more sensitive to the 
first mode as the bending moment is maximum, strain rate is 
higher, minimum tip deflection, better sensor output and less 
requirement of the control input u (control will be more 
effective), whereas at the free end of the system 3, because of 
the lesser strain rate and maximum deflection, more control 
effort is required to damp out the vibrations.  

 
Fig. 6  CL impulse response with FOS feedback gain L (sensor output 

y) and control input u, beam divided into 3 finite elements, PZT placed at 
fixed end 

 

The sensitivity to the higher modes depends not only on the 
collocation of the piezo pair, but also on many factors such as 
the gain of the amplifier used, location of the piezo pair at the 
nodal points , its properties and the number of finite elements. 
The time responses of the tip displacement w4, for model 1 of 
system 1, w5 (for model 1 of system 2), w6 (for model 1 of 
system 3) are also obtained.  It was seen that the tip 
displacement is well controlled and is within limits with the 
controller. 
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Fig. 7  CL impulse response with FOS feedback gain L (sensor output y) 
and control input u, beam divided into 3 finite elements, PZT placed at 
free end 

 
Fig. 8  CL impulse response with FOS feedback gain L (sensor output y) 
and control input u, beam divided into 4 finite elements, PZT placed at 
fixed end 

 
Fig. 9  CL impulse response with FOS feedback gain L (sensor output y) 
and control input u, beam divided into 4 finite elements, PZT placed at 
free end 

 
Fig. 10  CL impulse response with FOS feedback gain L (sensor output 
y) and control input u, beam divided into 5 finite elements, PZT placed at 
fixed end 

 

 
Fig. 11  CL impulse response with FOS feedback gain L (sensor output 
y) and control input u, beam divided into 5 finite elements, PZT placed at 
free end 
 

 

The tip displacements for the models of the Fig. 2 with 
piezo-patches at fixed end and free end are shown below with 
the results in table VI.  

 
TABLE VI (a) 

TIP  DISPLACEMENT  SIMULATION  RESULTS FOR THE FIXED  END  

Fixed end  

With controller  Without 
controller  

Model 1, Sys 1 1.8 –1.9 5.3 2.9 –2.7 53 
Model 1, Sys 2 0.9 –0.9 4.8 1.3 –1.3 50 
Model 1, Sys 3 0.78 –0.6 3.8 0. 8 –0.7 48 

 

 
TABLE VI (b) 

TIP  DISPLACEMENT  SIMULATION  RESULTS FOR THE  FREE  END  

Free end  

With controller  Without 
controller  

Model 3, Sys 1 2.6 –2.6 5.5 2.9 –2.8 25 
Model 4, Sys 2 2.1 –2.1 5 2.7 –2.6 22 
Model 5, Sys 3 1.5 –1.5 4 2 –1.8 15 

 
 

 
Fig. 12 Tip displacement for model 1 of system 3 (fixed end) 
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Fig. 13  Tip displacement for model 1 of system 2 (fixed end) 

 
 

 
Fig. 14 Tip displacement for model 1 of system 1 (fixed end) 

 

 
Fig. 15 Tip displacement for model 5 of system 3 (free end) 

 

 
Fig.  16 Tip displacement for model 4 of system 2 (free end) 

 

 
Fig. 17 Tip displacement for model 3 of system 1 (free end) 

 

The frequency response plots (bode plots) of the models of 
the 3 systems at the fixed end are shown below.  

 

 
Fig. 18  Bode plots for model 1 of system 1 (fixed end ) 

 

 
Fig. 19 Bode plots for model 1 of system 2 (fixed end ) 

 

 
Fig. 20 Bode plots for model 1 of system 3 (fixed end ) 

ACRONYMS  
 

SISO   Single Input Single Output   
FEM   Finite Element Method  
PVDF   Poly Vinylidene Derelyne Flouride 
FOS    Fast Output Sampling 
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DOF   Degree Of Freedom 
ER    Electro Rheological 
MR    Magneto Rheological 
AVC   Active Vibration Control 
LMI    Linear Matrix Inequalities 
PZT    Lead Zirconate Titanate 
FE    Finite Element   
SS    Smart Structure   
CT    Continuous Time 
DT    Discrete Time     
RHS    Right Hand Side     
LTI    Linear Time Invariant  
EB    Euler-Bernoulli     
PZT    Lead Zirconate Titanate 
IOP    Institute of Physics     
IEEE   Institute of Electrical and Electronics Engineers 
ISSS   Institute of Smart Structures and Systems  
SPIE   Society Photonics & Instrumentation Engineers 
MATLAB MATrix LABoratory 

NOMENCLATURE (SYMBOLS) 
 

extf  External force input 
l , L  Length of the beam 
b  Width of the beam 

bE  Young’s modulus of beam 

bρ  Mass density of beam 
βα ,  Structural constants 

bt  Thickness of beam 

pl  Length of the piezoelectric patch 

at  Thickness of actuator 

st  Thickness of sensor 

pE  Young’s modulus of piezoelectric 

pρ  Mass density of piezoelectric 

31d  Piezoelectric strain constant 

31g  Piezoelectric stress constant 

ZYX ,,  The 3 axis of 3D space 
W  Time dependent transverse displacement of Z axis 
I   Mass moment of inertia of the beam element 
A  Area of cross section of the beam element 

UT ,  Kinetic energy and strain energy 
w&  Linear velocity  

TU δδ , , eWδ  Variations of the strain energy, the kinetic 
energy, work done due to the external forces 

t   Time in secs 

ia   )4,3,2,1( =i  Unknown coefficients 
q  Vector of displacements and slopes 
q&  Strain rate 

bK  Stiffness matrix of the regular beam element (also 
called as the local stiffness matrix) 

bM  Mass matrix of the regular beam element (also 
called as the local Mass matrix) 

pK  Stiffness matrix of the piezoelectric element  
pM  Mass matrix of the piezoelectric element  

pA  Area of the piezoelectric patch 

fE   Electric field 

D   Dielectric displacement 
e   Permittivity of the medium 

Es  Compliance of the medium 
d   Piezoelectric constant 

)(tQ  Charge developed on the sensor surface (due to the 
strain) 

)(ti  Current generated by the sensor surface 

31e  Piezoelectric stress / charge constant 
sV  Sensor voltage  

cG  Signal-conditioning device gain  
K  Controller gain  

Tp  Constant vector, which depends on sensor 
characteristics 

Th  Constant vector, which depends on actuator 
characteristics 

)(tV a   Actuator voltage 

)(tV s   Sensor voltage 

ctrlf    Control force applied by the actuator  
tf   Total force coefficient vector 

M   Assembled mass matrices (global mass matrix) 
K   Assembled stiffness matrix (global stiffness 

matrix) 
T   Modal matrix containing the eigenvectors 

representing the 1st 2 modes 
*M   Generalized mass matrix 
*K   Generalized stiffness matrix 

** ff ctrlext and  Generalized external force vector and 
generalized control force vector 

*C    Generalized damping matrix 
g    Principal coordinates 

)(tu    Control input   
)(tr    External input to the system 
)(ty   Output of the system, i.e., the sensor output 

DC,B,A,  State space matrices (CT) : System matrix, input 
matrix, output matrix, transmission matrix  

E   External load matrix which couples the disturbance 
to the system 

)(tx   State vector 
)(tx&   Derivative of the state vector  

nℜ   n dimension space 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2934

 
 

 

τ   Sampling interval 

ττ ΓΦ ,   System matrix, input matrix discritized at sampling 
interval of τ  secs 

ΓΦ ,   System matrix, input matrix discritized at sampling 
interval of ∆  secs 

F   State feedback gain  
υ    Observability index of the system 

jL    Output feedback gains 

kk yu ,   Input and output at the thk instant 

00 , DC   Lifted system matrices  
L   Fast output sampling gain  

321 ,, ρρρ  Spectral norms 
I   Identity matrix 
N   Number of sub-intervals 
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