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Abstract—This paper presents a novel control method based on 

radial basis function networks (RBFNs) for chaotic dynamical systems. 
The proposed method first identifies the nonlinear part of the chaotic 
system off-line and then constructs a model-following controller using 
only the estimated system parameters. Simulation results show the 
effectiveness of the proposed control scheme.  
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I. INTRODUCTION 
HAOS is a special feature of parametric nonlinear 
dynamical systems. It is usually difficult to accurately 

predict its future behavior. Recently, a family of artificial 
neural networks have gotten good results on the prediction and 
control of the nonlinear plants [1]-[6]. K. S. Narendra et al. [3] 
have proposed identification and control methods of nonlinear 
dynamical systems using multi-layered perceptron neural 
networks. On the other, K. B. Kim et al. [6] have presented 
control of chaotic dynamical systems using RBF network 
approximators and demonstrated its effectiveness. The RBF 
networks are well known for their stable learning capability and 
fast training. 

In this paper, we propose a design method of 
model-following controller using RBF networks, which is 
robust to disturbance and change of system parameters, 
improving on their basic idea for the control of nonlinear 
systems. The proposed method is applied to the Duffing and the 
Lorenz systems and its effectiveness is presented. 

II. PROBLEM STATEMENT 
Consider a discrete chaotic dynamical system given by 

( 1) ( ) [ ( )],Nx k Ax k f x k+ = +                 (1) 
where fN [x(k)] is the nonlinear part of the system dynamics. In 
(1), A is assumed to be known and fN [x(k)] is unknown but the 
inputs and outputs can be measured. We rewrite (1) to the 
system with a scalar control input of the form 

( 1) ( ) [ ( )] ( ),Nx k Ax k f x k bu k+ = + +             (2) 
where  

[11 1] .Tb = L                                  (3) 
Then, we can also define the system output by 
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Let us assume that the difference equation of the reference 
model for the chaotic system is given by a second-order system 
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where 
( ) : model output,

( ) : reference input
my k

r k .
 

In [3], the error between the model and plant output is defined 
as 

( ) ( ) ( ),m pe k y k y k= −                        (6) 
and the design method is based on the condition 

lim ( ) 0.
k

e k
→∞

=                                     (7) 

Then, from the relations (2)-(6), we obtain 
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where  fN (k) ≡  fN [x(k)]. In (8), due to the non-presence of an 
integrator, it is considered that the system is prone to the offsets 
caused by the step disturbance. 
 Now, let us assume that at the steady state the following 
condition is satisfied: 

    ( 1) ( )e k e k+ = .                                 (9) 
In this case, if  e(0) ≠ 0, then lim ( ) 0.k e k→∞ ≠  Furthermore, it 
is not guaranteed about the stability at the steady state. These 
problems will be solved later. From (9) 

( 1) ( 1) ( ) ( ),m p m py k y k y k y k+ − + = −                (10) 
By substituting (2) and (5) into (10) and replacing ym(k) with 
yp(k), we have 
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In the above, due to the appearance of the term ( 1)bu k − , the 
effect of an integrator operation is expected and it will become 
robust to change of system parameters. On the other, 
substituting (11) into (2), we obtain 
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It is clear that the following condition is satisfied for arbitrary 
initial value e(0). 

                  lim ( ) 0.
k

e k
→∞

=                                (13) 

Furthermore, the stability of the proposed method is obvious 
from some simulation experiments. 

III. NONLINEARITY COMPENSATION USING RBF NETWORKS 

A. RBF Networks 
Fig. 1 illustrates RBF networks (RBFNs) with Ni inputs, Nh 

radial basis functions (RBFs), and No outputs. In Fig. 1, each 
RBF is given by so-called a Gaussian response function: 

2

2exp ,
2

i
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                         (14) 

where 1 2[ , , , ]
i

T
Nx x x x= L  is the input vector, ci is centroid 

vector of the i-th RBF, 2|| ||L denotes L2 norm, and σ  is the 
radius. The output of each RBF, 0( 1,2, , ),jy j N= L  is then 
given as the linearly weighted sum of hi, i.e., 

                   ,j i ji i
i i

y h w h= ∑ ∑                         (15) 
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is called as the weight matrix.  
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Fig. 1 RBF Networks 
 

B. Design of Approximator 
In the design, the function fN (k) in (1) is replaced with the 

output 1 2( ) [ ( ), ( ), , ( )]
o

T
Ny k y k y k y k= L of the RBFNs, 

namely 
( ) ( ).Nf k y k�                              (17) 

To estimate the weight matrix W of the RBFNs we apply the 
singular value decomposition (SVD) [7] instead of applying the 
conventional least squares. Namely, the following relation is 
considered: 

HW Y=                                    (18) 

with 
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Applying the SVD, the matrix H can be rewritten: 
,TH USV=                                    (19) 

where the matrix 1 2[ , , , ] N N
NU u u u ×= ∈ℜL and 

1 2[ , , , ] h h

h

N N
NV v v v ×= ∈ℜL  are orthogonal to each other such 

that T
NU U I= and ,

h

T
NV V I= respectively, and 

1 2( , , , )
hNS diag λ λ λ= L with 1 2 .

hNλ λ λ> > >L Then, we 

assume that the last (Nh - r) diagonal entries satisfy the relation 
1 2 0,

hr r Nλ λ λ+ += = = =L  the diagonal matrix S is re-written 

as 

,
0

S
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where 1 2( , , , )rdiag λ λ λ∑ = L  and r < Nh. 
Finally, the matrix W can be estimated using the 

reduced-rank version Sr of the matrix S: 
1

,r
0

S
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.T
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IV. SIMULATION RESULTS 
In the simulation study, the transfer function of the reference 

model is given in the form of a standard second-order system: 
2

2 2( ) ,
2
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m m m

G s
s s
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ζ ω ω
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+ +

                      (23) 

where mω = 50[rad/sec] and mζ =1. To obtain the difference 
equation of the reference model in discrete form, we used the 
zero-order hold method [8]. The sampling interval was 10 
[msec]. Then, the coefficients of the reference model were am1 
= -1.213, am2 = 0.368, bm0 = 0.090, and bm1 = 0.065, 
respectively. Throughout the simulation study, the reference 
input r(k) (with a total of 100 samples) was fixed as 
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To study the immunity from the disturbance, the step 
disturbance at k = 40 with the magnitude d(40) = 0.05 is 
intentionally added to the plant input u(k). The structure of the 
proposed control system by SIMULINK is presented in Fig. 2. 

A. Example 1: Duffing System  
The continuous dynamics of the chaotic Duffing system is 

given by 
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Fig. 3 illustrates an example of the trajectory Duffing system. 
Discretizing (25) with the sampling interval Ts = 10[msec], 

we have 
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Off-line identification for the nonlinear part of the system is 
first performed. For the approximator of the Duffing system, 
the structure of the RBFNs is summarized in Table I. 
 

TABLE I 
STRUCTURE OF THE RBFNS FOR THE DUFFING  SYSTEM 

Number of hidden nodes 30 
Number of inputs, outputs 2, 2 

Number of clustering samples 1000 
Off-line training iteration 10000 

 
The simulation result for x1(k) of this tracking control is 
illustrated in Fig. 4, where the initial state was x(0) = [1 1]T. The 
dotted and solid lines show the model and plant outputs, 
respectively. 
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Fig. 2 Structure of the Control System using RBFNs 

 

 
Fig. 3 A plot example of the trajectory Duffing system 
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Fig. 4 Tracking Control of the Duffing system 

B. Example 2: Lorenz System  
The continuous dynamics of the chaotic Lorenz system is 

given by 
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Fig. 5 illustrates an example of the trajectory Lorenz system. 
Then, the discrete form of the Lorenz system is given by 
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For the Lorenz system, the RBFNs summarized in Table II 
was used as the approximator of the nonlinear part. The 
simulation result for x2(k) of this tracking control is presented in 
Fig. 6, where the initial state was x(0) = [1 1 -1]T. 
 

TABLE  II 
STRUCTURE OF THE RBFNS FOR THE LORENZ  SYSTEM 

Number of hidden nodes 30 
Number of inputs, outputs 3, 3 

Number of clustering samples 5000 
Off-line training iteration 15000 
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Fig. 5 A plot example of the trajectory Lorenz system 
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Fig. 6 Tracking Control of the Lorenz system 

V. CONCLUSION 
In this paper, a novel design method for the control of 

chaotic dynamical systems has been presented. It has been 
shown that the nonlinear part of the chaotic dynamical system 
can be estimated by the RBFNs. The simulation experiments 
have illustrates that the proposed method is effective for the 
model-following control of the chaotic systems.  
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