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Control of A Cart-Ball System Using State-
Feedback Controller 

M. Shakir Saat, M. Noh Ahmad, Dr, and Amat Amir 

Abstract—A cart-ball system is a challenging system from the 
control engineering point of view. This is due to the nonlinearities, 
multivariable, and non-minimum phase behavior present in this 
system. This paper is concerned with the problem of modeling and 
control of such system. The objective of control strategy is to place 
the cart at a desired position while balancing the ball on the top of the 
arc-shaped track fixed on the cart. A State-Feedback Controller 
(SFC) with a pole-placement method will be designed in order to 
control the system. At first, the mathematical model of a cart-ball 
system in the state-space form is developed. Then, the linearization of 
a model will be established in order to design a SFC. The integral 
control strategy will be performed as to control the cart position of a 
system. Simulation work is then performed using 
MATLAB/SIMULINK software in order to study the performance of  
SFC when applied to the system.  

.
Keywords—Cart-Ball System, Integral Control, Pole-Placement 

Method, State-Feedback Controller.

I. INTRODUCTION

CART-BALL SYSTEM is basically an inverted 
pendulum problem, much used as a benchmark problem. 

The control objective is to balance the ball on the top of the 
arc and at the same time place the cart at the desired position. 
This kind of problem has a long history with various 
approaches have been tried [1-3]. The system consists of a cart 
and a ball on top of it. The cart is free to move to the left or 
right on a straight bounded track and the ball can swing in the 
vertical plane. The purpose of this paper is to present the 
performance of the State-Feedback Controller (SFC) using 
pole placement method when applied to the system in terms of 
steady-state error, overshoot percentage, disturbance rejection 
and etc.

II. MATHEMATICAL MODELLING 
Fig. 1 shows the free body diagram of a cart-ball system. It 

can be seen that the disturbance, FW is applied horizontally to 
the ball. It is assumed that the direction towards the right is  
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considered to be positive and direction to the left is considered 
negative. It is also assumed that all frictions forces  
are negligible and thus neglected.  

Fig 1.: The free body diagram of the system 

Referring to Fig. 1, the force balance in the x-direction 
gives the mass times acceleration of the cart plus the mass 
time of the x-direction acceleration of the point mass must 
equal to the external force of the system. Thus, it can be 
written as, 
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Equation (1) is expended as follows, 
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The torque in the clockwise direction caused by the horizontal 
wind disturbance is given by, 

Tdr)(RcosFw                (3) 
Hence, the torque balance equation becomes 
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Equation (4) can be re-arranged as follows: 
cosFmgsinr)m(Rcosym w        (5) 

Whereby, (2) and (5) represent the dynamic of the system 
which include the horizontal wind disturbance, Fw. These 
equations can be represented in the state-space form by 
executing the following steps: 

i. Solve the torque balance expression for r)m(R  and 
place into the force balance equation, giving, 

cosymcosFmgsinr)m(R w      (6) 
and

A
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ii.Solve the toque balance equation for and put into the   
force balance equation, producing 
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Multiplying both side by cos , gives   
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iii. Define the state vector x as 
xxx;x;x;x 4321          (11) 

By using (8), (10) and (11) the state-space equation can be 
written as 
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Equation (12) represents the mathematical model of a cart-
ball system with disturbance and it is highly nonlinear and will 
be used in performing the simulation in this work. 

III. LINEARIZATION

As the requirement of the Pole Placement method which 
must use a linearized model in designing the controller, thus 
the linearization should be accomplished to convert from 
nonlinear model of (12) to linear model. Thus, to linearized 
(12), the following approximations are to be considered [3], 

0sin1,cos,sin1,cos 22        (13) 
Now, equations (6) and (10) becomes 
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In the matrix form it can be written as, 
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where,  
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Equation (15) is a linearized model of a cart-ball system. 
Using the physical data tabulated in Table 1, then, (15) can be 
rewritten as follows, 
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Table 1: Physical data of a cart-ball system       
Parameter Symbol Rating
Cart radius of the arc R 0.50m 
Cart weight M 1.0kg 
Cart position y - 
Cart driving force F -
Ball rolling radius r 0.025m 
Ball angular deviation = Max 0.60 rad 

Ball weight m 0.675kg 
Ball horizontal force H -
Ball vertical force V -
Gravity g 9.81ms-2

IV. STATE-FEEDBACK CONTROLLER DESIGN

This part presents the SFC design using the pole 
placement method. Through this method, all closed loop poles 
can be chosen to be at stable location to guarantee the stability 
of the system. The general closed loop state equation using the 
state-feedback controller is given by  

tCxty
tBrtxBKAtx           (17) 

Suppose the SFC is to be designed such that the cart can be 
moved anywhere along the track with overshoot of 20% and 
settling time of 5 (s). This specification can be achieved by 
placing the dominant poles at j1.56170.8s1,2 . The 
other two poles are chosen at s3=-8 and s4 = -10. These value 
are 10 times greater than the dominant poles, s1 and s2,
therefore the system will not be affected by the extra poles [4]. 

In this work, the SFC is applied to the system with and 
without the integral control. First, the simulation is performed 
without the integral control, and the calculated value of gains, 
K are found to be at, 

826.9;195.13;449.15;444.76 4321 kkkk  The 
steady-state error is calculated using (18) 

mBKACe 0758.11 1         (18) 
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Clearly seen from (18), the steady-state error is considerably 
big, means that the cart will does not stop at desired position. 
In order to eliminate the steady-state error in this system, the 
Integral Control is introduced. The general state-space 
representation for the SFC with Integral Control is [4], 
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After manipulating (19) and use the data in Table 1, yield, 
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Since the Integral Control increase the system type, 
therefore an extra pole is needed and has been selected at s5=-
15 to ensure no interruption to the system occurs. Then, the 
characteristic equation becomes, 

08.369465.2997612.1861879.40560.34 2345 sssss

(21) 

The corresponding gains, K are found at, 

197.9297k110.3322;k
160.5866k76.0894;k308.1744;k

54

321

It can be shown that by using (18), the steady-state error is 
zero i.e, the cart stops exactly at the desired location. 

V. SIMULATION RESULT

The plant described by (12) is absolutely unstable since 
there is one pole at the right hand side of the s-plane. Fig. 2 
shows the unforced response of a system when theta (angle of 
a ball from vertical position) is set to be at 0.1 (rad) and no 
disturbance is applied to the system. The simulation utilizes 
equation (12) and (16) to represent both nonlinear and linear 
models of the system. The linear and nonlinear response gives 
almost the same result. It shows that the approximation used in 
the linearization method does not affect much the system. 

Fig.2: Unforced response of the system.

A. SFC Without Integral Control  
Fig. 3(a) and 3(b) show the outputs of the system with no 

disturbance apply to the system and cart is required to move 
1(m) from the original position. 

Fig. 3(a) Ball angle output. 

Figure 3(b) Cart position output 

It can be seen that the ball returns to 0 degree after 3.8 (s) 
with the steady-state error of 1.0758 (m) which is similar to 
the result calculated in Part IV.
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B. SFC With Integral Control 
Fig. 5 depicts the output of a system with all specifications 

are same as in Part V(A).
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Fig. 4 Ball angle output and Cart position output 

From Fig. 4, the ball returns to 0 (degree) after 6 (s) and the 
steady-state error is zero (after 6 sec) which is similar to the 
result calculated in Part IV. Therefore, using the Integral 
Control it can be sure that the cart will stop at any selected 
desired position. 

The overshoot of the system of a cart is 19.7% which is 
within the objective limit determined earlier. However, the 
settling time is 6 (s) which is 1 (s) over the objective value, 
error is 20%. 

C. Disturbance Rejection Analysis 
Different values of disturbance are used as to determine the 

maximum value of disturbance force that can be handled by 
the State-Feedback Controller. A pulse signal is used to 
represent disturbance force which is starts at 7 (s) and ends at 
8 (s) as shown in Fig. 5. 

In the first part simulation, the disturbance value is set to be 
at 0.1 (N), and effect to the system is studied. Fig 5 shows the 
result of a system with initial value of ball angle (theta) is 
chosen at 0.1 (rad). From the result, the SFC can handle the 
system well. 

However, the existence of disturbance limits the system 
capability, thus restrict the ability of SFC to control the system 
with value of theta should not exceed than 0.3 (rad). Outside 
of this range SFC cannot control the system anymore. These 
behaviors are shown in Fig. 6 and 7. 
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Fig. 5 Ball angle and cart position output with an angle (theta) 
is equal to 0.1 rad and disturbance is 0.1N. 
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Fig. 6 Ball angle and cart position output with an angle (theta) 
equal to 0.3 (rad)and disturbance is 0.1(N). The maximum 

value of theta that can be controlled by SFC is 0.3 rad. 
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Fig. 7 Ball angle and cart position output with an angle (theta) 
equal to 0.4 (rad) and disturbance is 0.1(N). SFC fails to 
control the system. 

The second part of the simulation is to determine the 
maximum value of the disturbance force that can be handled 
by SFC. In this portion, the initial value of ball angle (theta) is 
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maintains at 0.1 (rad). Fig 8 shows the result of ball angle and 
cart position output with disturbance value is 0.5(N). 
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Fig. 8 Ball angle and cart position output with theta is    
0.1 (rad) and disturbance force at 0.5 (N). 

From Fig. 8, it shown that SFC compensates the existence 
of a disturbance well and the system is stable at 4 (s) after the 
disturbance force exist. Further increase of a disturbance force 
value will result higher overshoot of a system. This behavior 
can be depicted through Fig. 9 to 12 Based on all of these 
figures, the time taken to the stable location is maintain at 4 
(s), whereas the overshoot of a system is increase by 
increasing disturbance force magnitude to the system. 
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Fig. 9 Ball angle output of theta is 0.1 (rad) and disturbance 
force is 0.5 (N). 
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Fig. 10 Cart position output of theta is 0.1 (rad) and 
disturbance force is 0.5 (N). 
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Fig. 11 Ball angle output of theta is 0.1 (rad) and disturbance 
force is 2 (N) 
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Fig. 12 Cart position output of theta is 0.1 rad and disturbance 
force is 2N. %OS at the disturbance location is greater than 

20%. 

However, increasing the disturbance force to 3 (N) results 
the system becomes unstable. So, SFC manages to control the 
disturbance force only up to 2N in this system. It can be 
shown in Fig. 14 where 3 (N) disturbance force is applied to 
the system. 
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Fig.14: Ball angle and cart position output with theta is equal 
to 0.1 rad and disturbance force is 3 N. SFC fails to control the 

system. 
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VI. CONCLUSION

The modeling and control of a cart-ball system are 
presented in this paper. The formulation produced an unstable 
nonlinear state equation model with disturbance. Performance 
of a State-Feedback Controller using the pole placement 
method has also been highlighted. Through the result it can be 
concluded that the SFC needs to be complemented with the 
Integral Control to eliminate the steady state error. In terms of 
the disturbance rejection, the SFC can only control with the 
small rolling angle of the ball which is at 0.3(rad) and also can 
control just up to 2 N disturbance forces as shown in the result 
in Part V. Therefore, it can be said that the performance of 
SFC become poor with the existence of a disturbance to a 
system. However, the performance of SFC in this system is 
good in condition where there are no disturbances force 
applied to the system. Further investigation is still needed 
before it can be adapted in this system in a real 
implementation.. 
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