
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

372

Abstract—Process measurement is the task of empirically and

objectively assigning numbers to the properties of business processes
in such a way as to describe them. Desirable attributes to study and
measure include complexity, cost, maintainability, and reliability. In
our work we will focus on investigating process complexity. We
define process complexity as the degree to which a business process
is difficult to analyze, understand or explain. One way to analyze a
process’ complexity is to use a process control-flow complexity
measure. In this paper, an attempt has been made to evaluate the
control-flow complexity measure in terms of Weyuker’s properties.
Weyuker’s properties must be satisfied by any complexity measure
to qualify as a good and comprehensive one.

Keywords—Business process measurement, workflow,
complexity.

I. INTRODUCTION
USINESS Process Management Systems (BPMS)
provide a fundamental infrastructure to define and

manage business processes. BPMS, such as Workflow
Management Systems (WfMS), have become a serious
competitive factor for many organizations that are
increasingly faced with the challenge of managing e-business
applications, workflows, Web services, and Web processes.

Recently, a new field of research for processes has
emerged. This new field – termed process measurement –
presents a set of approaches to the quantification of specific
properties of processes. Important properties to analyze
include the estimation of complexity, defects, process size,
effort of testing, effort of maintenance, understandability,
time, resources, and quality of service. Process measurement
is still in its infancy and much work has yet to be undertaken.

Process measurement can and should be used in every
phase of the process development life-cycle, including the
analysis, design, implementation, testing, and maintenance
phases. Process measurement provides business process
engineers and managers with a forecast of the characteristics
of processes early in the development stage so that corrective
actions can be taken, if necessary, when the cost is low.

In [1] we have presented a Control-Flow Complexity (CFC)
measure to analyze the degree of complexity of business
processes. Process complexity can be defined as the degree to

Manuscript received August 26, 2005.
J. Cardoso is with the Department of Mathematics and Engineering,

University of Madeira, 9050-390 Funchal, Portugal (phone: 291-705-156; fax:
291-705-199; e-mail: jcardoso@uma.pt).

which a business process is difficult to analyze, understand or
explain. The use of the CFC measure allow designers to create
less complex processes, thus reducing the time spent reading
and understanding processes in order to remove faults or adapt
the process to changed requirements. Nowadays, complexity
analysis has an increased importance since the emergence of
processes that span both between and within enterprises have
an inherent higher complexity. Therefore, methods should be
used to support the design and redesign of processes to reduce
their complexity. The CFC can be used to analyze the
complexity of business processes, as well as workflow and
Web processes.

In this paper, our objective is to evaluate the control-flow
complexity measure presented in [1] in terms of Weyuker’s
properties [2]. Weyuker’s properties give an important basis
to classify a complexity measure to determine if it can be
categorized as a good, structured, and comprehensive one.

II. PERSPECTIVES TO PROCESS COMPLEXITY
There is no single metric that can be used to measure the

complexity of a process. Four main complexity perspectives
can be identified (Fig. 4): activity complexity, control-flow
complexity, data-flow complexity, and resource complexity.
While in this paper we will focus on control-flow complexity,
we present the main ideas behind each complexity
perspective.

Activity complexity: This view on complexity simply
calculates the number of activities a process has. While this
complexity metric is very simple, it is very important to
complement other forms of complexity. The control-flow
complexity of a process can be very low while its activity
complexity can be very high. For example, a sequential
process that has a thousand activities has a control-flow
complexity of 0, whereas its activity complexity is 100.

Control-flow complexity: The control-flow behavior of a
process is affected by constructs such as splits, joins, loops,
and ending and starting points. Splits allow defining the
possible control paths that exist in a process. Joins have a
different role; they express the type of synchronization that
should be made at a specific point in the process.

Data-flow complexity: The data-flow complexity of a
process increases with the complexity of its data structures,
the number of formal parameters of activities, and the
mappings between activities’ data. A data-flow complexity
metric can be composed of several sub-metrics which include:

Control-flow Complexity Measurement of
Processes and Weyuker’s Properties

Jorge Cardoso

B

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

373

data complexity, interface complexity, and interface
integration complexity [3].

Fig. 1 Types of complexity analysis

Resource complexity: Activities in a process need to
access resources during their executions. The different types
of resources can be analyzed to determine the complexity of a
process. This analysis can help managers to lower
administrative costs and better optimize resource utilization.

III. THE CONTROL-FLOW COMPLEXITY METRIC
For our investigation of complexity we use the following

practical definitions related to the control-flow complexity
metric.

Definition 1 (Process):
A process is a collection of activities that takes one or more

kinds of input and creates an output that is of value to the
customer. A process is a specific ordering of activities across
time and place, with a beginning, an end, and clearly
identified inputs and outputs.

Definition 2 (Process Property)
A property is a feature, characteristic or attribute of a

process, such as complexity, maintainability, cost, reliability,
etc. Process properties can be evaluated and quantified using
suitable models, methods, and algorithms.

Definition 3 (Process Measure)
A process measure is an empirical assignment of numbers

(or symbols) to processes to characterize a specific property.

Definition 4 (Process Measurement)
Process measurement is the task of applying measures to

processes in such a way as to describe them.

Definition 5 (Control-flow Graphs)
Control-flow graphs can be used to describe the logic

structure of processes. A process is composed of activities and
transitions. Activities are represented using circles and
transitions are represented using arrows. Transitions express
dependencies between activities. An activity with more than
one outgoing transition can be classified as an and-split, or-
split or xor-split. And-split activities enable all their outgoing
transitions after completing their execution. Or-split Activities
enable one or more outgoing transition after completing their

execution. Xor-split activities enable only one outgoing
transition after completing their execution. And-split activities
are represented with a ‘•’, or-split are represented with a ‘O’
and xor-split activities are represented with a ‘⊕’. An activity
with more than one incoming transition can be classified as an
and-join, or-join or xor-join. And-join Activities start their
execution when all their incoming transitions are enabled. Or-
join activities start their execution when a subset of their
incoming transitions is enabled. Xor-join activities are
executed as soon as one of the incoming transitions is enabled.
As with and-split, or-split and xor-split activities, and-join, or-
join and xor-join activities are represented with the symbols
‘•’, ‘O’ and ‘⊕’, respectively.

Definition 6 (Fan-out)
Fan-out is the number of transitions going out of an

activity.

Definition 7 (Control-flow induced state)
We map the control-flow complexity into the space of

possible execution states of a process. An induced state is a
state that can be reached from a particular activity. Splits
introduce the notion of states in processes. When a split
(XOR, OR, or AND) is added to a process, the activities
connected to its outgoing transitions form the states that can
be reached from the split.

Definition 8 (XOR-split Control-flow Complexity)
XOR-split CFC (CFCXOR-split(activityi)) is determined by the

number of induced states that are introduced with the split.
For XOR-splits, the complexity corresponds to the fan-out of
the split, i.e. the number of states that follow the XOR-split
that the process designer needs to consider, analyze, and
assimilate.

Definition 9 (OR-split Control-flow Complexity)
OR-split CFC (CFCOR-split(activityi)) is also determined by

the number of induced states that are introduced with the split.
For OR-splits, the complexity corresponds to 2n-1, where n is
the fan-out of the split. OR-splits lead to higher control-flow
complexity than an XOR-split or AND-split since they
originate a greater number of induce states.

Definition 10 (AND-split Control-flow Complexity)
As with the previous types of splits, an AND-split CFC

(CFCAND-split(activityi)) is determined by the number of
induced states that are introduced with the split. For AND-
splits, the complexity is simply 1. The designer constructing a
process needs only to consider and analyze one state that may
arise from the execution of an AND-split construct since it is
assumed that all the outgoing transitions are selected and
executed.

Definition 11 (Control-flow Complexity)
The complexity of process is connected to effects such as

readability of processes, understandability, effort, testability,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

374

reliability and maintainability. The Control-flow Complexity
(CFC) is calculated by adding the CFC of all split constructs
presents in a process.

The CFC metric was inspired from the branch of software
engineering known as software metrics, namely from the
McCabe’s Cyclomatic complexity [4]. In processes, the
McCabe’s Cyclomatic complexity cannot be used directly
since the metric ignores the semantics associated with nodes
of the graph. While the nodes (i.e. activities) of processes
have distinct semantics (e.g. different types of splits and
joins), the nodes of a program’s flowgraph are
undifferentiated. Therefore, we calculated the control-flow
complexity for a process P as follows:

∑

∑∑

∈
−

−∈
−

−∈
− ++

=

}Pof splits-AND{

}Pof splitsOR{}Pof splitsXOR{

)(

)()(
)(

k
splitAND

j
splitOR

i
splitXOR

kCFC

jCFCiCFC
PCFC

 (1)

The greater the value of the CFC(P) the greater the overall

architectural complexity of a process. CFC(P) analysis seeks
to evaluate complexity without direct execution of processes.

IV. CONTROL-FLOW COMPLEXITY AND WEYUKER’S
PROPERTIES

Weyuker properties have been applied to software
engineering and have been seriously discussed in the literature
[5-8]. Weyuker properties are a widely known formal
analytical approach and were therefore chosen for our analysis
since they do provide a basis for some validation of
complexity metrics. As shown by Weyuker, with such
properties it is possible to filter out measurements with
undesirable properties. The majority of these properties are
formulated in a clear way. This is an advantage because we
are able to discuss them.

A. Summary of Weyuker’s Properties
Weyuker’s first property states that a metric cannot measure

all software programs as being equally complex. The second
property states that there are only a finite number of programs
of the same complexity. The third property states that each
different program may be complex. The fourth property states
that the complexity of a program depends on its
implementation and that even if two programs solve the same
problem, they can have different complexities. Weyuker’s
fifth property states that the complexity of two programs
joined together is greater than the complexity of either
program considered separately. The sixth property states that a
program of a given complexity when joined to two other
programs does not necessarily mean the resulting program
will be of equal complexity, even if the two added program
are of equal complexity. Weyuker’s seventh property states
that a permuted version of a program can have a different
complexity, so the order of statements matters. The eighth
property states that if a program is a straight renaming of

another program, its complexity should be the same as the
original program. The final property states the complexity of
two programs joined together may be greater than the sum of
their individual complexities.

B. Concatenation Operations on Processes
Weyuker introduces the concatenation operation (P1;P2) of

program blocks. Weyuker defines the concatenation operation
in the following way: a program can be uniquely decomposed
into a set of disjointed blocks of ordered statements having the
property whenever the first statement in the block is executed;
the other statements are executed in the given order.

In our approach and since we are dealing with processes,
four concatenation operations exist. Processes can be
concatenated either sequentially, using an AND, an OR, or a
XOR. Every AND/OR/XOR split has also a corresponding
AND/OR/XOR join and the different splits do not overlap
each other. We have decided to only allow the construction of
well structured processes [9] which are based on a set of
predefined building blocks. This protects users from designing
invalid processes. Aalst [9] has shown that processes that are
not well structured contain design errors, such as non-
termination, deadlocks, and spliting of instances. We use
Weyuker’s properties to evaluate the CFC metric assuming
that the processes are well-structured for simplicity reasons.
The CFC metric can be applied to well-structured and
unstructured processes.

In the list of properties below, P, Q and R represent
processes and the complexity of P computed by our
complexity measure CFC(P) is represented by |P|.

1) When a process P is concatenated sequentially with a
process Q, we depict the resulting process as P-Q. This type of
concatenation is illustrated in Fig. 2.

QP

P-Q

Fig. 2 Sequential concatenation

2) When a process P is concatenated with a process Q using
an AND-split and an AND-join, we depict the resulting
process as P•Q.This type of concatenation is illustrated in Fig.
3.

P

Q

P•Q

AND-split AND-join

Fig. 3 AND concatenation

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

375

3) When a process P is concatenated with a process Q using
an OR-split and an OR-join, we depict the resulting process as
PoQ. This type of concatenation has the same illustration as
the one in
Fig. 3, except that the AND-split and the AND-join shown are
replaced with an OR-split and an OR-join, respectively.

4) When a process P is concatenated with a process Q using
a XOR-split and a XOR-join, we depict the resulting process
as P⊕Q. This type of concatenation has also the same
illustration as the one in
Fig. 3, except that the AND-split and the AND-join shown are
replaced with a XOR-split and a XOR-join, respectively.

C. Evaluating the CFC Metric
The nine criteria proposed by Weyuker give a framework to

evaluate software metrics’ properties using a formal
theoretical basis. The properties are intended to evaluate
complexity measures on source code metrics. Since there is a
strong similarity of source code flowgraphs and processes [1],
we will use Weyuker’ properties to validate our CFC measure.
This widely used criterion will be presented, adapted and
applied to processes in the following paragraphs.

Property 1:
There are processes P and Q such that the complexity of P

is not equal to the complexity of Q. The property requires that
a measure should not produce the same complexity value for
every process.

()()()QPQP ≠∃∃ .

This property is an essential requirement for measures and

process measurement. It says that a measure should
distinguish between at least two processes. The property
stresses that a measure in which all processes are equally
complex is not really a measure.

With our measure we can always come up with two
processes with two different control-flow complexity values.
We can always design a process P which has the same number
of split types but with a higher fan-out from those in process
Q. As another example, let us take two processes, P and Q,
containing only XOR splits. Let us assume that P=Q (the
processes are exactly equal). Let us replace the XOR splits of
process P with OR splits (for correctness reasons, let us also
replace the XOR joins with OR joins). Since CFCXOR-split(a)=
fan-out(a) and CFCOR-split(a)= 2fan-out(a)-1, where a is an
activity, then |P|>|Q|. Therefore Property 1 is satisfied.

Property 2:
A measure has to be sufficiently sensitive. A measure is not

sensitive enough if it divides all processes into just a few
complexity classes

Let c be a nonnegative number. Then there are only finitely

many processes for which |P| = c.

Our CFC measure does not follow this property. Therefore,
it makes no provision for distinguishing between processes
which have a small number of activities (possibly performing
very little computation) and those which have a large number
of activities (possibly performing substantial amount of
computation), provided that they have the same decision
structure. The influence of the number of activities is captured
by the activity complexity metric.

Property 3:
We have processes which have different degrees of

perceived complexity, but map into the same complexity
measurement value.

There are distinct processes P and Q such that, |P|=|Q|.

A measure that assigns a distinct value to every process is
not much of a measure. It would go against the principle of
measurements which requires that the number of objects that
can be measured be greater than range of the values of the
measure.

Our measure clearly satisfies this property. Let us take two
processes, P and Q. Let us assume that P has an AND-split at
activity a with a fan-out(a) of two. Let us construct process Q
exactly in the same way as process P, but with a fan-out(a) of
four at the AND-split activity a. Since CFCAND-split(a)= 1, the
complexity of P is equal to the complexity of Q, i.e. |P|=|Q|,
but the processes are distinct.

Property 4:
There exist processes P and Q such that P is equivalent to Q

but the complexity of P is not equal to the complexity of Q.

()()()QPQPQP ≠≡∃∃ and .

Even though two processes may have the same
functionality, it is the details of the design that determine the
process’s complexity. There are different process designs for
the same functionality. For example let us take a business
process that makes the backup of a file system composed of
four activities that save files at different locations. Two
different designs (processes P and Q) with the same
functionality of the business process can be constructed.
Process P, carries out the four activities sequentially, while
process Q uses an AND-split and an AND-join to reduce the
time it takes to complete a file system backup. As a result,
|P|=0 and |Q| =1, i.e. |P|≠|Q|. Therefore this property is
satisfied by our metric.

Property 5:
For any processes P and Q, the complexity of P*Q,

{ }⊕•−∈ ,,,* o , is greater than or equal to the original
complexity of P (weak positivity).

Case 1 (-):

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

376

()()()PQPQP ≥−∀∀

For the concatenation operation ‘–‘, the weak positivity
holds. For any two processes P and Q, |P-Q|=|P|+|Q|, thus |P-
Q| ≥ |P|.

Case 2 (o):

()()()PQPQP >∀∀ o

For the concatenation operation ‘o‘, the weak positivity
holds. For any two processes P and Q, |PoQ|=|P|+|Q|+22-1,
thus |PoQ| ≥ |P|. Furthermore, for the concatenation operation
‘o‘ the positivity also holds since |PoQ| > |P|.

Case 3 (●):

()()()PQPQP >•∀∀

For the concatenation operation ‘●‘, the weak positivity
holds. For any two processes P and Q, |P●Q|=|P|+|Q|+1, thus
|P●Q| ≥ |P|. Furthermore, for the concatenation operation ‘●‘
the positivity also holds since |P●Q| > |P|.

Case 4 (⊕):

()()()PQPQP >⊕∀∀

For the concatenation operation ‘ ⊕ ‘, the weak positivity
holds. For any two processes P and Q, |P ⊕ Q|=|P|+|Q|+2, thus
|P ⊕ Q| ≥ |P|. Furthermore, for the concatenation operation
‘ ⊕ ‘ the positivity also holds since |P ⊕ Q| > |P|.

Property 6:
There exist processes P, Q, and R, such that |P|=|Q| and

|P*R|≠|Q*R|, where { }⊕•−∈ ,,,* o .

()()()
{ } ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⊕•−∈

≠=
∃∃∃

,,,* and
 ** and

o

RQRPQP
RQP

As with property 5, this property has four distinct cases.
Case 1 (-): |P-R|=|P|+|R| and |Q-R|=|Q|+|R|, since |P|=|Q|, it
holds that |P-R|= |Q|+|R|, thus |P-R| = |Q-R|.

Case 2 (o): |PoR|=|P|+|R|+22-1 and |QoR|=|Q|+|R|+22-1, since
|P|=|Q|, it holds that |PoR|= |Q|+|R|+22-1, thus |PoR| = |QoR|.

Case 3 (●): |P●R|=|P|+|R|+1 and |Q●R|=|Q|+|R|+1, since
|P|=|Q|, it holds that |P●R|= |Q|+|R|+1, thus |P●R| = |Q●R|.

Case 4 (⊕): |P ⊕ R|=|P|+|R|+2 and |Q ⊕ R|=|Q|+|R|+2, since
|P|=|Q|, it holds that |P ⊕ R|= |Q|+|R|+2, thus |P ⊕ R| =
|Q ⊕ R|.

As a result, it is clear that our measurement does not follow
Weyuker's property 6 in any of the cases presented.

Property 7:
There are processes P and Q such that Q is formed by

permuting the order of the activities of P and |P| is not equal to
|Q|.

()()QP ∃∃ If Q is formed by permuting the order of the

activities of P, then |P| ≠ |Q|.

This property requires that permutation of elements within a
process change the metric value. The intent is to ensure that
the possibility exists for metric values to change due to
permutation of process activities.

Let us assume that we have a process P which contains an
AND-split and an OR-split for the activities a1 and a2,
respectively. Each split has a different fan-out. Activity a1 has
a fan-out of two, while activity a2 has a fan-out of three.
Therefore,

|P| =)(1aCFC splitAND− +)(2aCFC splitOR−
= 1 + 23 -1 = 8

Let us assume that Q is a permutation of the activities of

process P. More precisely, the activities a1 and a2 are
exchanged. As a result, activity a1 has now a fan-out of three,
while activity a2 has a fan-out of two. The complexity of Q
becomes,

|Q| =)(2aCFC splitAND− +)(1aCFC splitOR−
= 1+22 -1 = 4

Since |P| ≠ |Q| (i.e. 8 ≠ 4), it happens that our measurement

follows this property.

Property 8:
This property states that uniformly changing activity names

should not affect a process complexity.

If P is a renaming of Q, then |P| = |Q|.
This property requires that when the name of the activities

or processes changes, the metric should remain unchanged. As
the metric being considered in this research does not depend
on the name of activities or processes, it satisfies this property.

Property 9:
The complexity of a process formed by concatenating two

processes can be greater than the sum of their individual
complexities (wholeness property). This property states that
the whole must be at least as great as the sum of the parts. The
idea behind wholeness is that the whole is more complex than
the sum of its components.

()() { }(),,,,* and ,* ⊕•−∈+>∃∃ oQPQPQP

This property states that, at least in some cases, the

complexity of a process formed by concatenating two

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

377

processes is greater than the sum of their complexities. This
reflects the fact that there may be interactions between the
concatenated processes.

As with previous properties, this property has four distinct
cases.

Case 1 (-): |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|+|Q|.

Case 2 (o): |PoQ|=|P|+|Q|+22-1, thus |PoQ| > |P|+|Q|.

Case 3 (●): |P●Q|=|P|+|Q|+1, thus |P●Q| > |P|+|Q|.

Case 4 (⊕): |P ⊕ Q|=|P|+|Q|+2, thus |P ⊕ Q| > |P|+|Q|.

As a result, our measurement follows property 9 for case 2,
3, and 4. Case 1 follows a variation of the wholeness property,
called the weak wholeness property.

()()()QPQPQP +≥−∃∃

D. Dealing with Process Loops
Our complexity metric is able to cope with the modeling of

loops. When a transition “goes back” to a previous activity, a
XOR split as to be place on the activity that will decide if the
loop will be taken or not. As presented earlier, our analysis of
Weyuker’s properties accounts for the existence of XOR splits
in a process.

V. RELATED WORK
While a significant amount of research on the complexity of

software programs has been done in the area of software
engineering, the work found in the literature on complexity
analysis for business processes, workflows, and processes in
general is almost inexistent.

Research in software engineering has produced various
measurements for software. Among others are lines-of-code,
the Halstead’s measure [10], McCabe’s measure [4], the and
the COCOMO model [11]. There is a vast literature on
software metrics which represents the result from the
measurement of the development, operation and maintenance
of software in order to supply meaningful and timely
management information.

Misra and Misra [12] have evaluated cognitive complexity
measure in terms of Weyuker properties and has found that
most of Weyuker properties have been satisfied by the
cognitive weight software complexity measure and established
the cognitive complexity as a well structured one.

In [13] the authors attempt to formalize some properties
which any reasonable control-flow complexity measure must
satisfy. Their approach is directed to large software programs
which are often built by sequencing and nesting of simpler
constructs, the authors explore how control-flow complexity
measures behave under such compositions.

Please note that these two last fields of research have been
carried out in the context of software engineering and not
process management.

VI. CONCLUSIONS
Most of the work done so far in the business process field

has been tool-oriented and technological in nature; the main
goal has been during years the definition and development of
WfMS including models, modeling languages, correctness
analysis, and execution environments. Recently, a new field of
research for processes has emerged. This new field – termed
process measurement – presents a set of approaches to the
quantification of specific properties of processes, such as their
complexity.

The process control-flow complexity (CFC) metric is a
design-time metric that can be used to evaluate the difficulty
of producing business process, Web process, and workflow
designs before an actual implementation exist. When process
control-flow complexity analysis becomes part of the process
development cycle, it has a considerable influence in the
design phase, leading to less complex processes.

To increase the confidence, acceptance, and use of the CFC
measure we have carried out a serious validation procedure
using Weyuker’s nine properties. These properties give a
formal analytical approach to classify our measure. Since our
CFC measure happens to fully satisfy seven of the Weyuker’s
nine properties and partially satisfies one property it can be
considered to have passed a significant part of the
theoretically validation process. Therefore, it can be
categorized as a good, structured, and comprehensive one.

REFERENCES
[1] Cardoso, J., Evaluating Workflows and Web Process Complexity, in

Workflow Handbook 2005, L. Fischer, Editor. 2005, Future Strategies
Inc.: Lighthouse Point, FL, USA. p. 284-290.

[2] Weyuker, E.J., Evaluating software complexity measures. IEEE
Transactions on Software Eng., 1988. 14(9): p. 1357-1365.

[3] Cardoso, J. About the Data-Flow Complexity of Web Processes. in 6th
International Workshop on Business Process Modeling, Development,
and Support: Business Processes and Support Systems: Design for
Flexibility. 2005. Porto, Portugal.

[4] McCabe, T., A Complexity Measure. IEEE Transactions of Software
Engineering, 1976. SE-2(4): p. 308-320.

[5] Kitchenham, B., S.L. Pfleeger, and N. Fenton, Toward a Framework for
Measurement Validation. IEEE Transactions of Software Engineering,,
1996. 21(12): p. 929-944.

[6] Fenton, N., Software Measurement: A Necessary Scientific Basis. IEEE
Transactions on Software Engineering, 1994. 20(3).

[7] Morasca, S., et al., Comments on "Towards a Framework for Software
Measurement Validation". IEEE Transactions on Software Engineering,
1997. 23(3): p. 187-188.

[8] Zuse, H., A Framework of Software Measurement. 1997, Berlin: Walter
de Gruyter Inc.

[9] Aalst, W.M.P.v.d., The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers, 1998.
8(1): p. 21-66.

[10] Halstead, M.H., Elements of Software Science, Operating, and
Programming Systems Series. Vol. 7. 1977, New York, NY: Elsevier.

[11] Boehm, B., Software Engineering Economics. 1981: Prentice Hall.
[12] Misra, S. and A.K. Misra. Evaluating Cognitive Complexity Measure

with Weyuker Properties. in Third IEEE International Conference on
Cognitive Informatics (ICCI'04). 2004. Victoria, Canada.

[13] Lakshmanan, K.B., S. Jayaprakash, and P.K. Sinha, Properties of
Control-Flow Complexity Measures. IEEE Transactions on Software
Engineering archive, 1991. 17(12): p. 1289 - 1295.

