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Continuous Functions Modeling with Artificial Neural
Network: An Improvement Technique to Feed the
Input-Output Mapping
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Abstract—The artificial neural network is one of the interesting
techniques that have been advantageously used to deal with modeling
problems. In this study, the computing with artificial neural network
(CANN) is proposed. The model is applied to modulate the
information processing of one-dimensional task. We aim to integrate
a new method which is based on a new coding approach of
generating the input-output mapping. The latter is based on
increasing the neuron unit in the last layer. Accordingly, to show the
efficiency of the approach under study, a comparison is made
between the proposed method of generating the input-output set and
the conventional method. The results illustrated that the increasing of
the neuron units, in the last layer, allows to find the optimal
network’s parameters that fit with the mapping data. Moreover, it
permits to decrease the training time, during the computation process,
which avoids the use of computers with high memory usage.

Keywords— Neural network computing, information processing,
input-output mapping, training time, computers with high memory.

1. INTRODUCTION

HE artificial neural networks have been widely used in

different applications [1]-[3], these new techniques of
networks have been proven very suitable for solving such
problems with fewer adjustable parameters [4], [5], because
they are known as universal approximators [6] that can learn
from its environment by using a mathematical process which
leads in adjusting the synaptic weight and bias. The requested
processes are typically obtained through a learning operation
which consists to adjust the synaptic weights. For this reason,
a variety of learning algorithms have been proposed to adjust
these connection links [7]-[10]. The algorithms of first order
may converge very slowly to the optimal solution of weights if
the choice of learning rate is taken very small; however, if the
learning rate is large, the learning process may get over fitting
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or be stuck in local optima [11], [12]. The algorithms of
second order, which take into account the second derivative,
are ranked as one of the most efficient learning algorithms.
Among these algorithms, we will use in this study the
Levenberg Marquardt algorithm [13]. Besides, it has been
proven that the choice of the activation functions is as
important as the choice of the network architecture and the
learning algorithms. The sigmoid is considered as one of the
most important activation functions for the performance of
neural network models [14].

In this study, we develop an artificial neural network which
is able to modulate the information processing of one-
dimensional task. The model involves: supervised learning
technique, second order algorithms to update the weights, and
sigmoid as activation function. This paper is organized as
follows: in Section II, we give a mathematical description of
CANN. In Section III, we provide a theoretical formalism of
synaptic weights updating. Moreover, we explain the way of
feeding the input-output data by the proposed model and this
by using first and second order algorithms. In Section IV, we
show the results obtained through the neural network. The
conclusion is provided in Section V.

II. NEURAL NETWORK ARCHITECTURE

Artificial neural networks are known to be universal
approximators of nonlinear functions [6]. In this approach,
every multivariate continuous signal can be represented by the
superposition of a small number of invariant continuous
functions. In terms of neural network, every continuous
function of two variables can be computed by a network with
one hidden layer whose hidden units compute continuous
functions.

Fig. 1 shows the architecture of a typical feedforward neural
network model. The given network is a model of information
processing whose design is very schematically inspired from
real neuron functioning.

The architecture contains three layers with q input
parameters, a layer of n nodes, and p output parameters. The
connections are from each input node to each intermediate
layer node and from each intermediate layer node to each
output node in a feed forward manner.

Mathematically, the output ti(k) to the ith node is given as
[15]:

K K, (-1
ti( )= ALY sz( ) tj( ))' (M
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where w;; are weight coefficients, which are connection links
between the nodes in different layers, and N is the number of

neurons in the layer (k — 1).
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Fig. 1 Feedforward neural network, with architecture of g inputs, one
hidden layer, and p outputs

III. MAIN BASIS FUNCTIONS IN NEURAL APPROACH

Before we proceed, it is important to bring an outline of the
approach and the architecture of the neural network. Consider
an input x which must be processed into an output defined as a
continuous signal given as a function F(x). Next, let us deal
with neural elementary units which obtain the same input x .
Each unit of the network delivers an output f(x) which relates
on two parameters: the translation parameter b and the scale
parameter A. Output synaptic weights w(b, 1) linearly regroup
these elementary outputs into a unique output Fy,(x). We
have then the expansion [16]:

Fop(x) = [ w(b, A). f (xl;b).db. 2 )

The unknown function F(x) is approximated by a function
Fap(x) of a set of N units of basic functionsf (@) For

this reason, we can discretize, in the context of approximation
theory, the approximation scheme to become as [13]:

F,(x() = ?’:1 Wj(bj'lj)-ff (X(pa),-_bi)' 3)

where b; and A; are the network parameters (synapses). N is
neurons number in the last layer.

If we set the neural architecture to be a one hidden layer,
and the last-layer activation functions to be linear then the (3)
will be considered exactly as the (1). In this case, we will use
(3) as expression to deal with our approaches.

In order to find the best approximation of the given task, we
minimize the mean square error &, first in terms of synaptic
weight w;(b;, 4;), and second in terms of the parameters A;.
For this, we minimize the square norm of the error € given by:

€= (F(x)lFap(x)> S

Compared to the synaptic weights, the minimization of the
mean squared error is to solve the following equations:

= ((FG) = Fap@)|F () = Fip(@)) = 0, and

72 (FG) = Ep(@)[F () = Fyp (00)) = 0, (5)

where the coefficients w; and A; can be determined during the
learning stage, using the gradient descent method or the
Levenberg-Marquardt algorithm.

A. Training Algorithms

In the network learning processes, error back propagation
(EBP) is considered as one of the most used training algorithm
for feedforward artificial neural networks [17]. However, this
algorithm is very slow if the size of the network is too large
and different regions of the error surface may have a dynamic
change of the learning rate coefficient. Second order
algorithms help to converge much faster than the first order
algorithms. Furthermore, by combining the training speed of
second order algorithms and the stability of EBP algorithm,
we obtain a very effective model of updating the network
parameters. The training and optimization of neural networks
to perform the approximation tasks is well documented in the
literature [18], [19].

To start the training stage, we would like to provide a
theoretical formalism of updating the synaptic weights of our
model. In this approach, the Levenberg Marquardt algorithm
is used to train the neural network connection links [20], [21].
The weights are adjusted as follows:

wk+1) = w(k) +[JT ()J(k) + u1]J7 (k) e(k), and
Ak+1D = 20 +[JTWIE) + w ) (K k), (6)

The Hessian matrix H is approximated as H = JTJ, and the
gradient is computed as g = JTe, where] is the Jacodian
matrix, which contains first derivatives of the network errors,
€ is a vector of mean square network errors, and u is a
constant.

IV. RESULT OF SIMULATION

In this section, the experimental results of artificial neural
networks are discussed by dealing with two different
methodologies in generating the input-output mapping.

The task under study includes continuous functions given
as:

sin(x) + (1/x 2+ 1).exp(—x ?),
sin(x) + (1/x?+ 1).cos(—x 2),

-6<x<0
0<x<6

Fe = | (7

The network that we have applied is a feedforward artificial
neural network with one neuron in the input layer. The hidden
layer is powered with 3 neurons, while the output layer
contains one single neuron. In this study, the sigmoid
activation function has been employed at hidden layers, i.e.
f () =1/ + e™™). However, for the output layer a linear
function has been used as activation, i.e. f (u) = u.

For evaluating the optimal weight values, we have chosen
the mean square error (¢) as a criterion. The ¢ indicates the
average deviation from the target task and the neural response,
and it is given as:
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e=5 I, (v - 6P®) ®)
where t;®(p) are the set of the neural network response,
v;(p) represent the desired values given by the task under
study, Q is the total number of training data, and K is the
neural number in the last layer.

A.  Results through the First Methodology

This first methodology is commonly used and based on a
direct mapping of the training input-output data. The data
generation is given as:

- The neuron number in the first layer is equal to one since
we have a continuous function with one variable.

- The neuron number in the last layer is equal to one since
the desired values are given as one-output function F (x).

We sample the function F(x) to yield 150 training data
generated uniformly over the interval I = [—6, 6]. In this case,
the input-output mapping is organized as follow
e The training patterns x (p) are uniformly and randomly

distributed on the interval I, where i goes from 1 to Q.
e The output is generated directly as a single valued
function defined as y (p) = F(x(p)).

Finally, the training set {{x k% {y (p)}} is created, where
the set {x(p)} and {y (p)} are the p-th input patterns and its
output values over the interval I.

The main purpose, in this work, is to compare the exact
function F(x) to the neural network’s approximated function
Fy» (%), by using the first methodology. To do so, we use the
created training set {{x ®} (p)}}. Furthermore, we
initialize the network weights and bias by using Nguyen and
Widrow’s initialization algorithm [22]. The results are
depicted in Figs. 2- 9.

Fig. 2 Solid line: plot of the task F(x) over [—6, 0]. Dashed line: the
best approximation Fy;, (x) through the neural model in the case of
the first method. The algorithm used is the Gradient Descent, and the
number of iterations is 500

Fig. 3 Solid line: plot of the task F(x) over [—6, 0]. Dashed line: the
best approximation Fy,, (x) through the neural model in the case of
the first method. The algorithm used is the Gradient Descent, and the
number of iterations is 1000
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Fig. 4 Plot of the mean square norm of the error versus the number of

iterations in the case of the first method

Fig. 5 Solid line: plot of the task F(x) over [—6, 0]. Dashed line: the
best approximation Fy,, (x) through the neural model in the case of
the first method. The algorithm used is the Levenberg Marquard, and
the number of iterations is 45

B.  Results through the Second Methodology

In this next methodology which is a proposal one, the
number of neurons is increased in the last layer. It is based on
an indirect mapping of training input-output data. The neuron
number in the last layer is equal to K neurons. In this case, the
input-output mapping is organized as
e The training patterns x (p) are uniformly and randomly

distributed on the interval I

1232



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

e The output is generated indirectly by dividing the training
data into two categories: (i) we use the K neurons in the
output layer and these neurons will be taken as the first
category of the training data. (ii) The second category will
have the number of training data as Q /K training patterns.
And then in total, we will have Q training patterns since
K.(Q/K) = Q. In this case, we are to choose the number
Q and K in such a way that Q /K to be an integer.

Fig. 6 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the
best approximation Fy,,(x) through the neural model in the case of
the first method. The algorithm used is the Gradient Descent, and the
number of iterations is 500

Fig. 7 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the
best approximation Fy;, (x) through the neural model in the case of
the first method. The algorithm used is the Gradient Descent, and the
number of iterations is 1000
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Fig. 8 Plot of the mean square norm of the error versus the number of
iterations in the case of the first method

Fig. 9 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the
best approximation Fg,, (x) through the neural model in the case of
the first method. The algorithm used is the Levenberg Marquand, and
the number of iterations is 45

Finally, the training set {{x (1+p.Q/Kto(p+1).Q/K)};
y(1+p.Q/Kto(p+1).Q/K)} is created, where the set
{x(1+p.Q/Kto(p+1).Q/K)}and {y(1 +p.Q/K to (p +
1).Q/K)} are the p-th inputs patterns and their output values
over the interval I = [—6, 6], where in this case p goes from
OtoK — 1.

The main purpose is to compare the exact function F(x) to
the neural network’s approximated function Fgy,(x), using the
second methodology.

We sample the function F(x) to yield 150 training data
generated uniformly over/. As an application the neuron
number k in the last layer is selected to be 10. Furthermore,
the initialization of the network weights and bias were
generated by using Nguyen and Widrow’s initialization
algorithm. The results are depicted in Figs. 10-17.

Fig. 10 Solid line: plot of the task F(x) over [—6, 0]. Dashed line:

the best approximation Fy, (x) through the neural model in the case

of the second method. The algorithm used is the Gradient Descent,
and the number of iterations is 8

e This study confirmed the performance of the neural
network while dealing with the second methodology. It
has been proven, from Figs. 1-17, that the network
recognized better the functions under study in the second
approach and this by dealing only with the first order
algorithm. However, for the first methodology, the
network response was less accurate, by using the first
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order algorithm. Consequently, the first methodology
requires the use of the second order algorithm to get better
results.

0s

Fig. 11 Solid line: plot of the task F(x) over [—6, 0]. Dashed line:

the best approximation Fy, (x) through the neural model in the case

of the second method. The algorithm used is the Gradient Descent,
and the number of iterations is 22
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Fig. 12 Plot of the mean square norm of the error versus the number
of iterations in the case of the second method
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Fig. 13 Solid line: plot of the task F(x) over [—6, 0]. Dashed line:
the best approximation Fy, (x) through the neural model in the case
of the second method. The algorithm used is the Levenberg
Marquand, and the number of iterations is 10

-
os £
~

o4}
02

4 3 ]
02

N = o
04 F T -

Fig. 14 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the
best approximation Fg,, (x) through the neural model in the case of
the second method. The algorithm used is the Gradient Descent, and
the number of iterations is 8
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Fig. 15 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the

best approximation Fy,, (x) through the neural model in the case of

the second method. The algorithm used is the Gradient Descent, and
the number of iterations is 22
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Fig. 16 Plot of the mean square norm of the error versus the number
of iteratios in the case of the second method

e It is important to remember that the second order
algorithms such as Levenberg Marquand are more
efficient, but they require a huge amount of calculation
which means the need of computers that are equipped
with high memory. For this reason, the proposed method
is very useful since it avoids the use of second order
algorithms and decrease the training time by using only
the first order algorithm.

e From the results, it is clear that the training time is
considerably reduced when dealing with the proposed
method. However, for the first approach, we can notice
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that it needs more time to reach the required mean square
error and sometimes we stuck in local optima.
Accordingly, we have to go over the second order
algorithm to overcome the issue of local optima.
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Fig. 17 Solid line: plot of the task F(x) over [0, 6]. Dashed line: the

best approximation Fy;, (x) through the neural model in the case of

the second method. The algorithm used is the Levenberg Marquand,
and the number of iterations is 10

The results can be improved by acting on several
parameters: (i) the quality of the training data (examples that
constitute the training set) needs to broaden and more
diversified. (ii) For having an optimal model, we have to
increase the neuron number in the hidden layer. The latter
helps to get the optimal neural network parameters that would
be adequate to ensure a higher accuracy of the proposed tasks.
(ii1) Neural network training is essentially an optimal weight
determination problem for which the second order algorithms
have been employed. The objective and the important factor of
the second order algorithm are to expedite the learning process
and minimize the mean square error function.

V. CONCLUSION

The gradient descent and Levenberg Marquardt
backpropagation algorithm were taken into consideration to
train the neural network. The performance of the neural
network for the training data is given by using only the
topology in which the number of neurons was powered by 3
neurons in the first hidden layer. Furthermore, the
initialization of the network weights and bias were generated
by using Nguyen and Widrow’s initialization algorithm. The
results advocated in favor of the second method. In fact, we
have found that the proposed method is very useful since it
allows using the first order algorithm without being stuck in
local optima. Moreover, it provides the best network’s
parameters that fit with the tasks under study. We conclude
that using neural networks with a new method of generating
the input-output mapping would be very effective in term of
accuracy and performance, as this study showed. Also, the
study confirmed that neural techniques are typically
considered as a strong tool to deal with in information
processing.
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