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Contaminant Transport Modeling Due to Thermal
Diffusion Effects with the Effect of Biodegradation

Nirmala P. Ratchagar, S. Senthamilselvi

Abstract—The heat and mass transfer characteristics of
contaminants in groundwater subjected to a biodegradation reaction
is analyzed by taking into account the thermal diffusion (Soret)
effects. This phenomenon is modulated mathematically by a
system of partial differential equations which govern the motion
of fluid (groundwater) and solid (contaminants) particles. The
numerical results are presented graphically for different values of
the parameters entering into the problem on the velocity profiles of
fluid, contaminants, temperature and concentration profile.
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I. INTRODUCTION

CONTAMINATION of groundwater by chemical solvents,

microorganisms and petroleum products coming from

leaking pipelines and tanks, hazardous spills and surface

waste deposits is a problem of increasing public concern. The

contaminants migrate through the subsurface, and eventually

reach the water table.

In recent years, the flows of fluid through porous media

are of principal interest because these are quite prevalent in

nature. Convective heat transfer in porous media has been

a subject of great interest for the last several decades. The

research activities in this field has been evaluated because of

a broad range of applications such as pollutant dispersion in

groundwater, geophysical, thermal and insulating engineering,

petroleum reservoirs, ground hydrology and solar power

collector [1]-[5].

Recently, studies on heat and mass transfer problems

on free convection flow of a fluid saturated Darcy porous

medium have received considerable attention because of

numerous applications, such as migration of moisture through

air contained in fibrous insulations, dispersion of chemical

contaminants through water saturated soil, spreading of

pollutants, water movements in reservoirs, building science

and convection in the earth’s crust.

The Coupling between transport of heat and mass takes

place due to influence of density variations with temperature

and concentration. However, there are circumstances when

direct coupling between temperature and concentration

is possible when the cross diffusion (Soret effect) is

not negligibly small. The Soret effect refers to the

mass flux produced by temperature gradients. The Soret

effect plays a significant role in the problems concerning

in contaminant transport in groundwater, exploitation of

geothermal reservoirs, etc.
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Flows driven by buoyancy effects of thermal diffusion

is encountered mostly in movement of contaminants

in groundwater. Convective flows with temperature and

concentration differences where the transfer of heat and mass

takes place have been studied extensively. The influence of

contaminant particles on the flow of a viscous fluid has several

important applications. Saffman [6] initiated and investigated

the study of dusty fluids and discussed the stability of the

laminar flow of a dusty gas in which the dust particles are

uniformly distributed. Migration of moisture air contained

in fibrous insulations and grain storage installations and the

dispersion of chemical contaminants through water-saturated

soil, super coveting geothermics are investigated by Dunn and

Hardee [7].

The laminar flow which arises in fluids due to the

interaction of the force of gravity and density differences

caused by the simultaneous diffusion of thermal energy and of

chemical species was investigated by Gebhart and Pera [8]. A

fundamental study of the phenomenon of natural convection

heat and mass transfer near a vertical surface embedded in

a fluid saturated porous medium was analyzed by Bejan and

Khair [9]. Beg and Makinde [10] extended their study with

species diffusion in a Darcian porous medium channel using

numerical solution.

The present investigation is to study systematically and

numerically the laminar flow of an incompressible fluid

(groundwater) due to thermal and mass diffusion and

biodegradation reaction. The highly coupled non-linear partial

differential equations governing the physical system are

first reduced using perturbation technique to the ordinary

differential equations and is converted into system of six

simultaneous equations. These equations are then solved

numerically by stream function method to obtain velocity,

temperature and concentration profiles for various physical

parameters.

II. MATHEMATICAL FORMULATION

In Cartesian co-ordinate system, we consider unsteady

laminar flow of a viscous, incompressible fluid (groundwater)

of uniform cross section h, lying below the porous layer

and above the impermeable layer. Initially at t ≤ 0, the

region is assumed to be at the same temperature T0 and

concentration C0. When t > 0, the temperature of the region

is instantaneously raised to Tw and concentration raised to Cw
which oscillate with time and is therefore maintained constant.

Let x axis be along the fluid flow and y axis perpendicular to

it. The schematic diagram of the problem is shown in Fig. 1.
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A. Assumptions

The governing equations are written based on the following

assumptions:

(i) The contaminant particles are solid, spherical,

non-conducting, and equal in size and uniformly distributed

in the flow region.

(ii) The density of contaminants is constant and the

temperature between the particles is uniform throughout the

motion.

(iii) The interaction between the particles, chemical reaction

between the particles and fluid has been considered.

(iv) The volume occupied by the particles per unit volume of

the mixture, (i.e., volume fraction of contaminants) and mass

concentration have been taken into consideration.

B. Governing Equations of the Flow

The governing equations of continuity, momentum, energy

and species are:

For fluid particle:

∂uf
∂x

+
∂vf
∂y

= 0 (1)

∂uf

∂t
+ uf

∂uf

∂x
+ vf

∂uf

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2uf

∂x2
+

∂2uf

∂y2

)

+
KN

p
(us − uf ) + gβT (Tf − T0) + gβT (Cf − C0)− ν

k1
uf

(2)

∂vf
∂t

+ uf
∂vf
∂x

+ vf
∂vf
∂y

= −1

ρ

∂p

∂y
+ ν

(
∂2vf
∂x2

+
∂2vf
∂y2

)

+
KN

p
(vs − vf )− ν

k1
vf

(3)

ρCp

(
∂Tf

∂t
+ uf

∂Tf

∂x
+ vf

∂Tf

∂y

)
= KT

(
∂2Tf

∂x2
+

∂2Tf

∂y2

)

+
NmCp

τt
(Ts − Tf )

(4)

∂Cf
∂t

+ uf
∂Cf
∂x

+ vf
∂Cf
∂y

= D1

(
∂2Cf
∂x2

+
∂2Cf
∂y2

)

+
D1kT
Tm

(
∂2Tf
∂x2

+
∂2Tf
∂y2

) (5)

For solid particles:

∂us
∂x

+
∂vs
∂y

= 0 (6)

∂us
∂t

+ us
∂us
∂x

+ vs
∂us
∂y

=
k

m
(uf − us)− ν

k1
us (7)

∂vs
∂t

+ vs
∂vs
∂x

+ vs
∂vs
∂y

=
k

m
(vf − vs)− ν

k1
vs (8)

NCm

(
∂Ts
∂t

+ us
∂Ts
∂x

+ vs
∂Ts
∂y

)
= −NCp

τT
(Ts−Tf ) (9)

∂Cs
∂t

+ us
∂Cs
∂x

+ vs
∂Cs
∂y

= D2

(
∂2Cs
∂x2

+
∂2Cs
∂y2

)

+
D2KT

Tm

(
∂2Ts
∂x2

+
∂2Ts
∂y2

)
− γ(Cs − C0)

(10)

where uf ,vf is the velocity of the fluid particle, us,vs is

the velocity of solid particles, ρ is the density of the fluid,

ρ is the pressure, K is the Stokes resistance coefficient, N is

the number density of the solid particles, g is the gravitational

acceleration, βT is the thermal expansion coefficient, βc is

coefficient of expansion with concentration, ν is the kinematic

viscosity, k1 is the permeability of the porous medium, Tf is

the temperature of the fluid, Ts is the temperature of solid

particles, T0 is the initial temperature, Cp is the specific heat

of the fluid, Cm is the specific heat of solid particles, KT is the

thermal conductivity of the fluid, τT is the thermal relaxation

time of the solid particles, m is the mass of the solid particles,

Cf is the concentration of the fluid, Cs is the concentration

of the solid particles, D1 is the coefficient of mass diffusivity

of the fluid, D2 is the coefficient of mass diffusivity of solid

particles, γ is the biodegradation reaction constant.

The initial and boundary conditions to the problem are:

When t=0, uf=0, vf=0, us=0, vs=0, Tf = T0,

Ts = T0, Cf = C0, Cs = C0

uf = 0, us = 0, vf = 0, vs = 0, Tf = Ta,

Ts = Tb,
∂Cf
∂y

= 0,
∂Cs
∂y

= 0

⎫⎬
⎭ y = 0 (11)

∂uf

∂y
=

α√
k1

uf ,
∂us

∂y
=

α√
k1

us, vf = va, vs = vb,

∂Tf

∂y
=

α√
k1

Tf ,
∂Ts

∂y
=

α√
k1

Ts,
∂Cs

∂y
= 0,

Cf = ca, Cs = cb

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

y = h (12)

The problem is non-dimensionalized by substituting the

following non-dimensional quantities,

u∗f =
uf
v0
, u∗s =

us
v0
, t∗ =

tv20
ν
, v∗f =

vf
v0
, v∗s =

vs
v0
,

x∗ =
v0x

ν
, y∗ =

v0y

ν
, θ∗f =

Tf − T0
Tw − T0

, θ∗s =
Ts − T0
Tw − T0

,

φ∗f =
Cf − C0

Cw − C0
, φ∗s =

Cs − C0

Cw − C0
, p∗ =

p

ρv20

(13)

Substituting the above non-dimensional quantities (13) in

the governing equations (1)-(12), (after removing asterisks),

we get

∂uf
∂t

+ uf
∂uf
∂x

+ vf
∂uf
∂y

= −∂p
∂x

+
∂2uf
∂x2

+
∂2uf
∂y2

+Gf (us − uf ) +Grθf +Gmφf − σ2uf

(14)

∂vf
∂t

+ uf
∂vf
∂x

+ vf
∂vf
∂y

= −∂p
∂y

+
∂2vf
∂x2

+
∂2vf
∂y2

+Gf (vs − vf )− σ2vf

(15)

∂θf
∂t

+ uf
∂θf
∂x

+ vf
∂θf
∂y

=
1

Pr

(
∂2θf
∂x2

+
∂2θf
∂y2

)

+
f

Λ
(θs − θf )

(16)
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∂φf
∂t

+uf
∂φf
∂x

=
1

Sc1

(
∂2φf
∂x2

+
∂2φf
∂y2

)
+Sc1

∂2φf
∂y2

(17)

∂us
∂t

+ us
∂us
∂x

+ vs
∂us
∂y

=
1

Gp
(uf − us)− σ2us (18)

∂vs
∂t

+ us
∂vs
∂x

+ vs
∂vs
∂y

=
1

Gp
(vf − vs)− σ2vs (19)

∂θs
∂t

+ us
∂θs
∂x

+ vs
∂θs
∂y

= −RLo(θs − θf ) (20)

∂φs
∂t

+us
∂φs
∂x

=
1

Sc2
(
∂2φs
∂x2

+
∂2φs
∂y2

)+Sr2
∂2φs
∂y2

−D1φs (21)

The initial and boundary conditions reduce to

uf = 0, us = 0, vf = 0, vs = 0, θf = 0, θs = 0,

φf = 0, φs = 0 at t = 0

uf = 0, us = 0, vf = 0, vs = 0, θf = T af , θs = T bs ,

∂φf

∂y
= 0,

∂φs

∂y
= 0, at y = 0

(22)

∂uf

∂y
= ασuf ,

∂us

∂y
= ασus, vf = vbf , vs = vcs ,

∂θf
∂y

= ασ(θf + T cf ),
∂θs
∂y

= ασ(θs + T cs),

φf = caf , φs = cbs

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

y=1 (23)

where, Grashof number: Gr = gβtν(Tw−T0)
v3o

Modified Grashof

number: Gm = gβcν(Cw−C0)
v30

Porosity Parameter: σ = ν√
k1v0

Fluid particle parameter: Gf = KNν
ρv20

Particle mass parameter:

Gp =
mv20
νk Prandtl number: Pr =

μCp

kT
Time relaxation

parameter: Λ =
τtv

2
0

ν Mass concentration of solid particle:

f = Nm
ρ Schmidt number of the fluid: Sc1 = ν

D1
Schhmidt

number of solid particle: Sc2 = ν
D2

Soret number of the

fluid: Sr1 = D1kT (Tw−T0)
Tmν(Cw−C0)

Soret number of solid particle:

Sr2 = D2kT (Tw−T0)
Tmν(Cw−C0)

Temperature relaxation time parameter:

L0 = ρh2

μτt
Dimensionless biodegradation reaction parameter:

D1 = γν
v20

R =
Cp

Cm

III. METHOD OF SOLUTION

To get the solution of the system of equations (14)-(21)

subject to the boundary conditions (22) and (23), we

assume the following perturbation method for small geometric

parameter (i.e. ε << 1) as:

ui(x, y, t) = u0i(y) + εei(λx+ωt)u1i(y) + o(ε2) (24)

vi(x, y, t) = εei(λx+ωt)u1i(y) + o(ε2) (25)

p(x, y, t) = p0(x) + εei(λx+ωt)p1(y) + o(ε2) (26)

θi(x, y, t) = θ0i(y) + εei(λx+ωt)θ1i(y) + o(ε2) (27)

Fig. 1 Physical Configuration

φi(x, y, t) = u0i(y) + εei(λx+ωt)φ1i(y) + o(ε2) (28)

where, i = f, s represents the fluid and solid particle

respectively, i represents the imaginary part.

Considering the real part and neglecting the higher order

terms (order of ε2) we proceed our problem. Substituting

(24)-(28) in (14)-(21) and collecting the coefficient of various

power of ε on both sides, we obtain the following set of

equations:

A. Base State Equations

∂2u0f
∂y2

− g3u0f +Grθ0f +Gmφ0f + g1 = 0 (29)

1

Pr

∂2θ0f
∂y2

+
f

Λ

(
θ0s − θ0f

)
= 0 (30)

1

Sc1

∂2φ0f
∂y2

− Sr1
∂θ0f
∂y

= 0 (31)

1

Gp
u0f −

(
1

Gp
+ σ2

)
u0s = 0 (32)

RL0

(
θ0s − θ0f

)
= 0 (33)

1

Sc2

∂2φ0s
∂y2

+ Sr2
∂2θ0s
∂y2

+D1φ0s = 0 (34)

The corresponding boundary condition becomes

u0f = 0, u0s = 0, θ0f=Tbf
,
∂φ0f

∂y
= 0,

∂φ0s

∂y
= 0 at y = 0 (35)

∂u0f

∂y
= ασu0f ,

∂u0s

∂y
= ασu0s ,

∂θ0f
∂y

= ασ(θ0f + Tcf ),

φ0f = caf , φ0s = cbs at y = 1

(36)

The solutions for zeroth-order velocity, temperature and

concentration of both fluid particle and solid particles are given

by

u0f = Ae
√
g3y +Be−

√
g3y +

1

g3(
g4
y2

2
+Grc1y +Grc2 +Gmc4 + g1 + g4

) (37)

u0s =
u0f

1 +Gpσ2
(38)
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θ0f = c1y + c2 (39)

θ0s = θ0f (40)

φ0f = Sr1Sc1c1
y2

2
+ c4 (41)

φ0s =
cas

c0s
√
D1Sc2

cos[
√
D1Sc2]y (42)

where,

g1 = − ∂p
∂x ; g2 = − ∂p

∂y ;

g3 = σ2 +Gf +
Gf

1+Gpσ2 ; g4 = −GmSr1Sc1; c1 = α
1−σα ;

c2 = Tbf ; caf = Sr1Sc1c1; Tbf = Ta−T0

Tw−T0
; Tcf = T0ν

ν0(Tw−T0)
;

A = −B − 1

g3
(Grc2 +Gmc4 + g1 + g4) ;

B =
−1

(
√
g3 + ασ) cosh(

√
g3)((

ασ − 1

g3
(Grc2 +Gmc4 + g1 + g4)e

√
g3

))

+
1

g3

(
3

2
g4 +Grc1 +Grc2 +Gmc4 + g1

)

+
1√
g3

e
√
g3 (Grc2 +Grc4 + g1 + g4)

− 1

g3
(g4 +Grc1);

B. First Order Equations

∂2u1f

∂y2
+

(
ω tan(λx+ ωt) −Gf + u0f

λ tan(λx+ ωt) − λ
2 − σ

2
)

u1f
+ λp1tan(λx+ ωt) +Gfu1s −Grθ1f −Gmφ1f

= 0

(43)

∂2v1f
∂y2

+

(
ωtan(λx+ ωt) + u0f

λ tan(λx+ ωt)− λ2tan(λx+ ωt)− σ2

)
v1f

− g2 +Gf (v1s − v1f ) = 0

(44)

1

Pr

∂2θ1f
∂y2

+

(
ωtan(λx+ wt)− 1

Pr
λ2 − f

λ

)
θ1f

+ λtan(λx+ ωt)θ0fu1f − v1f
∂θ0f
∂y

+
f

λ
θ1s = 0

(45)

1

Sc1

∂2φ1f
∂y2

+ Sr1
∂θ1f
∂y

+

(
ωtan(λx+ ωt)

+ u0fλtan(λx+ ωt) +
1

Sc1
λ2

)
φ1f = 0

(46)

ωtan(λx+ ωt) +

(
λtan(λx+ ωt)u0s −

1

Gp
− σ2

)

u1s − v1s
∂u0s
∂y

+
1

Gf
u1f = 0

(47)

(
ωtan(λx+ ωt) + λtan(λx+ ωt)u0s − σ2 − 1

)
v1s − v1f = 0

(48)

(
ωtan(λx+ ωt) + λtan(λx+ ωt)u0s +RL0

)
θ1s

− v1s
∂θ0s
∂y

−RL0θ1f = 0

(49)

(
ωtan(λx+ ωt)− λtan(λx+ ωt)u0s − 1

Sc2
λ2 +D2

)

φ1s +
1

Sc2

∂2φ1s

∂y2
+ Sr2θ1s = 0

(50)

The solution for the above equations of velocity, temperature

and concentration, after introducing the streamfunction ψ in

the following form,

u1f = −∂ψ1f

∂y , u1s = −∂ψ1s

∂y , v1f =
∂ψ1f

∂x , v1s =
∂ψ1s

∂x

and eliminating the pressure perturbations we get the
equation

ψ
′′′′
1f

+

(
ωtan(λx+ ωt) + u0f λtan(λx+ ωt)− λ2−

Bf − σ2 + λ2tan2(λx+ ωt)

)
ψ

′′
1f

−
(
u
′′
0f

λtan(λx+ ωt)

+ ωλ2tan3(λx+ ωt) + u0f λ
3tan3(λx+ ωt)− λ4tan3

(λx+ ωt)− σ2λ2tan2(λx+ ωt) +Bfλ
2tan2(λx+ ωt)

)
ψ1f

+Bfλ
2tan2(λx+ ωt)Ψ1s +Bfψ

′′
1s −Grθ

′
1f

−Gmφ
′
1f

= 0

(51)

1

Pr

∂2θ1f

∂y2
+

(
ωtan(λx+ ωt)− 1

Pr
λ2 − f

Λ

)
θ1f − λtan

(λx+ ωt)θ0f + ψ
′
1f

+ λtan(λx+ ωt)ψ1f θ
′
0f

+
f

Λ
θ1s = 0

(52)

1

Sc1
φ

′′
1f

+ Sr1θ
′
1f

+

(
ωtan(λx+ ωt) + u0f λtan(λx+ ωt)

+
1

Sc1
λ2

)
φ1f = 0

(53)

(
λtan(λx+ ωt)u0s +

1

Bp
− σ2

)
ψ

′
1s

−
(
ωtan(λx+ ωt)+

λtan(λx+ ωt) + u0s − 1− σ2 + λtan(λx+ ωt)u
′
0s

)

λtan(λx+ ωt)ψ1s +
+

1
Bpψ

′
1f

− λtan(λx+ ωt)ψ1f = 0

(54)

(
ωtan(λx+ ωt) + λtan(λx+ ωt)u0s +RL0

)
θ1s + λ tan

(λx+ ωt)ψ1sθ
′
0s

−RL0θ1f = 0

(55)

1

Sc2
φ

′′
1s +

(
ωtan(λx+ ωt)− λtan(λx+ ωt)u0s

− 1

Sc2
λ2 +D1

)
φ1s + Sr2θ1s = 0

(56)

where the prime (′) denotes differentiation with respect to y.

Equations (51)-(56) are solved numerically with the

corresponding boundary conditions

ψ1f = 0, − ψ
′
1f

= 0, − ψ
′
1s = 0, θ1f = Tbf , φ

′
1f

=

0, φ
′
1s = 0 at y = 0
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ψ”
1f

= ασψ
′
1f
, ψ1f = vc, θ

′
1f

= ασθ1f ,

φ1f = caf , φ1s = cas at y = 1 (57)

Solving (51)-(56) we get ψ1f , ψ1s , θ1f , θ1s , φ1f and φ1s .

Differentiating ψ1f and ψ1s with respect to y, we get u1f
and u1s . The sum of the base part and perturbed part gives

the required velocity of fluid particle uf and velocity of solid

particle us respectively as:

uf = u0f + εecos (λx+ωt)u1f

us = u0s + εecos (λx+ωt)u1s

Similarly the sum of the base part and perturbed part of

temperature (θf , θs) and concentration (φf , φs) of fluid and

solid particles are respectively given below:

θf = θ0f + εecos (λx+ωt)θ1f

θs = θ0s + εecos (λx+ωt)θ1s

φf = φ0f + εecos (λx+ωt)φ1f

φs = φ0s + εecos (λx+ωt)φ1s

IV. RESULTS AND DISCUSSIONS

In order to study the behavior of fluid velocity (uf ), solid

velocity (us), temperature (θf ) and concentration ((φf ),(φs))
fields, a comprehensive numerical computation is carried out

for various values of the parameter that describe the flow

characteristics, and the results are presented in terms of

graphs. Figs. 2-7 present the effect of thermal Grashof number,

fluid parameter and mass Grashof number on the velocity

distributions of fluid particle and solid particle, respectively.

For various values of Grashof number (Gr) the velocity

profiles for fluid and solid particle are plotted in Figs. 2 and 5.

The Grashof number signifies the relative effect of the thermal

buoyancy force to the viscous force. It is observed that there is

a decrease in velocity field with increase in Grashof number.

This is due to the fact that the pressure of contaminant particles

causes a resistive force which slows down the movement of the

fluid and in turn decreases the fluid and solid particle velocity.

From Figs. 3 and 6 the following observations are made:

The velocity profiles of both the fluid and solid particles

decrease with increase in fluid particle parameter (Gf ) for the

case of Gf < 1. Also for Gf=1 and Gf > 1, the velocity

profiles of the fluid and contaminant particle are negative.

The differences of the velocity are greater in the case of

contaminants than fluid phase, when the mass concentration

of the solid particle changes. This is due to the presence of

contaminants. It is clear that the contaminant particles have an

influence in changing the velocity of the fluid when compared

with clean fluid profiles.

It is clear from Figs. 4 and 7, that an increase in mass

Grashof number leads to enhance the velocity profiles because

it reduces the drag force. This is due to the inclusion of

the buoyancy effects. The presence of the buoyancy effects,

complicate the problem, by coupling of the flow problem with

thermal and mass problem.

The effect of the Prandtl number Pr on the temperature

profile is shown in Fig. 8. The central reason behind this effect

is that the heat absorption causes a decrease in the thermal

energy of the fluid and solid particle. This is consistence

with the well known fact that the rate of cooling is faster

with increasing Prandtl number for both fluid and contaminant

particle.

The concentration profiles for different values of the

Schmidt number for the fluid and solid particles are displayed

through Figs. 9 and 11, respectively. The Schmidt number

quantifies the relative effectiveness of momentum and mass

transport by diffusion in the hydrodynamic (velocity) and

concentration (species) boundary layers. It is seen that the

concentration profile decreases with increase of Schmidt

number, in both the fluid and contaminant particle. This

causes the concentration buoyancy effects to decrease a

yielding eradication in the fluid and contaminants. Hence, the

concentration boundary layer becomes thinner, velocity and

at the same time the concentration diffusion species depletes.

However, the reduction in mass diffusion causes the decrease

in the concentration.

The Soret number, Sr, defines the effect of the temperature

gradients including significant mass diffusion effects. Figs. 10

and 12 reveal that the concentration profile slackens with the

reckoning of Sr. From this illustration it is noted that the heat

is generated due to buoyancy force, which induces the flow

rate to the booming in the concentration profile for both the

fluid and contaminant phase. Also it is noted that an rising

in the Soret number due to the contribution of temperature

gradients to species diffusion aggregates the concentration, and

consequently enhances the same (concentration profile).

Fig. 13 shows the effect of biodegradation reaction

parameter D1 on the concentration for contaminant particle.

It is observed that the concentration decreases with increase

in biodegradation reaction parameter. The reason behind the

effect is due to hydrodynamic dispersion occurence, which

results in the faster travelling molecules of biodegradation

which results in a decrease in the concentration profile. Further

the bacterial growth and acclimation increase the rate of

degradation, which results in a decrease in the concentration.

V. CONCLUSION

This study focused on the behavior of a source contaminant

and toxic intermediates under physical and biological

conditions including groundwater flow, biodegradation

and Soret effect. In contaminated sites, the physical,

chemical, biological and geological conditions determining

groundwater contamination is more complicated. Micro

organism populations can vary with time and location, and

these variation may change overall biodegradation of organic

contaminants. Thus these site-specific factors should be

integrated in characterizing the contaminant migration and

in evaluating the natural attenuation processes, its potential

health hazards and also the evaluation of potential plume

development at contaminated sites.
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Fig. 2 Velocity of fluid particle for different Grashof number
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Fig. 3 Velocity of fluid for different fluid particle parameter
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Fig. 4 Velocity of fluid particle for different mass Grashof number
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Fig. 5 Velocity of solid particle for different Grashof number
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Fig. 6 Velocity of solid particle for different fluid particle parameter
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Fig. 7 Velocity of solid particle for different mass Grashof number
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Fig. 9 Concentration of fluid particle for different Schmidt number
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Fig. 10 Concentration of fluid particle for different Soret number
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Fig. 11 Concentration of solid particle for different Schmidt number
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Fig. 12 Concentration of solid particle for different Soret number
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Fig. 13 Concentration of solid particle for different biodegradation parameter
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