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Abstract—In this study, the contact problem of a layered 

composite which consists of two materials with different elastic 
constants and heights resting on two rigid flat supports with sharp 
edges is considered. The effect of gravity is neglected. While friction 
between the layers is taken into account, it is assumed that there is no 
friction between the supports and the layered composite so that only 
compressive tractions can be transmitted across the interface. The 
layered composite is subjected to a uniform clamping pressure over a 
finite portion of its top surface. The problem is reduced to a singular 
integral equation in which the contact pressure is the unknown 
function. The singular integral equation is evaluated numerically and 
the results for various dimensionless quantities are presented in 
graphical forms.   

 
Keywords—Frictionless contact, Layered composite, Singular 

integral equation, The theory of elasticity.   

I. INTRODUCTION 
N engineering mechanics, the contact problems have 
different applications to a variety of structures of practical 
interest. Foundations, roads, railways, airfield pavements, 

rolling mills, ball and roller bearings are some application 
areas of the contact problems. Although developments in the 
contact problems did not appear in the literature until the 
beginning of this century, the studies are accelerated recently 
because of improvements in computer technology. 

 In previous studies, the elastic layer resting on an elastic 
half space or rigid foundation is considered. In these studies, 
the layer is subjected to uniform or concentrated loading 
conditions [1, 2]. The examples for the contact problems in 
which the load is transmitted to the elastic layer by the rigid 
stamp can be found in [3, 4] . While the effect of gravity in all 
these studies is taken into account, it is neglected in [5]. In [6], 
the load is transmitted to the layer by means of an elastic 
stamp instead of a rigid one. The examples for the works in 
which the elastic layer is resting on rigid supports can be 
found in [7, 8].  
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 In this study, the contact problem of the two elastic layers 
with different constant heights h1 and h2 resting on rigid flat 
supports is solved according to the theory of elasticity. The 
layered medium is subjected to a uniform clamping pressure 
over a portion of width 2a on its top surface as seen in Fig. 1.  
In solution, the effect of gravity is neglected. The friction 
between the layers is taken into account. However, it is 
assumed that there is no friction between the supports and the 
layered composite so that only compressive traction can be 
transmitted across the interface.  
 
 
 
 
 
 
 
 
 
 

 
      

Fig. 1 Layered composite resting on rigid flat supports subjected to 
uniform clamping pressure 

 
II. FORMULATION OF THE PROBLEM 

 
 The Navier equations to be used in the solution of two- 

dimensional contact problem may be expressed as follows. 
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where subscript i=1,2 indicates the layer number. 
 In these expressions, iλ  and iμ  are the Láme constant and 

the shear modulus, iu  and iv  are the displacement 
components in x  and −y directions, respectively. The 
problem is symmetrical according to the −y axis and the 
following conditions must also be satisfied. 

 ),(),( yxuyxu ii −−= ,     ),(),( yxvyxv ii −= .        (2) 
 Due to symmetry, it is enough to consider the problem in 

the region ∞<≤ x0 . Displacements of each layer may be 
expressed as the Fourier sine and Fourier cosine transforms of 
the unknown functions ),( yi αφ  and ),( yi αΨ  as 
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Substituting (3) into (1) and solving the resulting ordinary 
differential equation system, one may obtain the unknown 
functions ),( yi αφ  and ),( yi αΨ . Using these solutions into 
(3), the displacements iu  and iv  for each layer can be 
determined as 
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(5) 
where 2,1, =iiκ  is an elastic constant and )43( ii νκ −=  for 
plane strain, )1/()3( iii ννκ +−=  for plane stress. iν  is the 
Poisson’ s ratio. xiσ , yiσ  and xyiτ  stress components may be 
expressed in terms of iu  and iv  as follows. 
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 Substituting (4) and (5) into equations from (6) to (8), the 
stress expressions for each layer may readily be obtained as 
follows. 
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where iA , iB , iC  and iD , i=1,2 are the unknown constants 
which are determined from the following boundary 
conditions. 
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where )(xq  in (12h) is the unknown contact pressure.  
Applying the boundary conditions (12) to the displacement 

and the stress expressions given in (4), (5) and (9) to (11), one 
may obtain the coefficients iA , iB , iC  and iD , i=1,2 in 
terms of the unknown contact pressure )(xq . These 
coefficients are given in Appendix. 

 
3. THE SINGULAR INTEGRAL EQUATION 

 
 The unknown contact pressure )(xq  is determined by 

making use of the remaining boundary condition (13). If 
constants 2A , 2B , 2C  and 2D  are substituted into (5), after 
some routine manipulations, one may obtain the following 
singular integral equation. 
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where ),( txk  and )(xl  are given in the Appendix. The 
equilibrium condition for the problem may be written as 
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The kernel, ),( txk  of the singular integral equation is 
bounded in closed interval cxb ≤≤ .  

To simplify the numerical analysis of the integral equation, 
the following dimensionless quantities can be introduced. 
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Substituting the dimensionless quantities given in (16) into 
(14) and (15), these equations may be written as follows.  
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The function g s( )  has singularities at 1±=s  and thus the 

index of the integral equation is +1 [10]. Assuming the 
solution of integral equation as 

 21/)()( ssGsg −= ,     )11( <<− s ,             (19) 
and using the appropriate Gauss-Chebyshev integration 
formula [11], (17) and (18) may then be replaced by 
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 Equations (20) and (21) constitute n linear algebraic 
equations for n unknowns, )( isG , i=1,....,n. Solution of these 
algebraic equations and use of (19) yield the unknown contact 
pressure, )(xq . Once the contact stress is obtained, the stress 
components at any point in the medium may be found easily 
by making use of (9) to (11). 

 
4. RESULTS 

 
 Results for normalised contact pressure 0/)( pxq  are shown 

in Figs. 2 to 5.  
Fig. 2 shows the normalised contact pressure distribution 

with variation of load width. It should be mentioned that the 
calculated contact pressure distribution was found to depend 
essentially on ha /  only, that is, the normalized contact 
pressure 0/)( pxq  independent of the magnitude of the applied 
load. As expected, the contact pressure has singularities at the 
corners of the supports. The normalised contact pressure 
decreases with decreasing of ha / . As ha /  increases, the 
normalised contact pressure has more great values at where 
close to outer edge with respect to ones at where close to inner 
edge of the rigid stamp.  

In Fig. 3, the normalised contact pressure distribution with 
variation of support width is given. As support width 
increases, it is observed that the normalised contact pressure 
decreases at where close to the outer edge of the rigid stamp. 
Also, as hc /  increases, the normalised contact pressure gets 
smaller. Therefore, it shows the possibility of separation 
between the rigid stamp and layered composite. 

 As seen in Fig. 4, the normalised contact pressure decreases 
at where close to inner edge whereas increases at where close 
to outer edge of the rigid stamp with decreasing of hh /2 .  

As 12 / μμ  increases, the normalised contact pressure 
increases interior region of the rigid stamp while decreases in 
the region close to corners as seen in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 The normalised contact pressure distribution with variation of 

load width (h2/h=0.2, μ2/μ1=6.48, b/h=0.1, c/h=0.5) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 The normalised contact pressure distribution with variation of 

support width (h2/h=0.2, μ2/μ1=6.48, b/h=0.1, a/h=1)  
 
 Results for 0/),0( pyxσ  dimensionless stress are shown in 

Figs. 6 to 8.  
 In Fig. 6, it can be seen that the layer 2 has tensile stress 

distribution along the y-axis, although very small compressive 
stresses appear at the upper surface for small values of ha / . 
In the layer 1, compressive stress distribution is examined. On 
the contrary, stresses are tensile in the layer 1 and compressive 
in the layer 2 for larger values of ha / , although small 
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compressive stresses appear close to the lower surface. For 
small values of ha / , the layered composite behaves like a 
simply supported beam whereas it behaves like an 
overhanging beam for larger values of ha / . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The normalised contact pressure distribution with variation of 
hh /2  (μ2/μ1=6.48, b/h=0.1, c/h=0.5, a/h=0.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The normalised contact pressure distribution with variation of 
elastic constants (h2/h=0.2, b/h=0.5, c/h=1, a/h=1.5) 

 
 Variation of 0/),0( pyxσ  dimensionless stress distribution 

with elastic constants is shown in Fig. 7. In the layer 2, for 
every 12 / μμ  ratio, tensile stress distribution is observed. As 

12 / μμ  increases, the values of the tensile stresses increase at 
the lower surface of the layer 2. In the layer 1, both tensile and 
compressive stresses are determined. As 12 / μμ  ratio 
decreases, the region where the tensile stresses appear 
becomes closer to the middle of the layer 1. 

As the support width increases, the values of dimensionless 
stress 0/),0( pyxσ  increase as seen in Fig. 8. Although only 
compressive stresses are determined in the layer 1, both 
tensile and compressive stresses are observed in the layer 2. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 The axial stress distribution 0/),0( pyxσ  with variation of 

load width (h2/h=0.2, μ2/μ1=6.48, b/h=1.0, c/h=1.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 The axial stress distribution 0/),0( pyxσ  with variation of 

elastic constants (h2/h=0.2, b/h=1.5, c/h=2, a/h=1) 
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Fig. 8 The axial stress distribution 0/),0( pyxσ  with variation of 

support width (h2/h=0.5, μ2/μ1=6.48, a/h=0.5) 
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APPENDIX 

 Here, we gave the coefficients iA , iB , iC  and iD , i=1,2 
determined from the boundary conditions and the functions 

),( txk  and )(xl seen in (14). 
 

Δ=x1(e1z9(3 - 4α2z8)) + (e17  + e2)(z1x2x3 + x4x5)  
 + e1(2z13(1 + κ2x4  - mx2) + κ2

2z9 + m(4α2h((-h + 4h2)  
 + m(h - 2h2) )+ 2κ1((1 + z10) + κ1m(1 + .5z9)) 
 + 2κ2(.5z15 + κ1(-1 + z2z12)))) 
 + (e9  + e10)((1 - 4α2z8)x4x2 - x3x5)(1 + e3)x3(-x4)  

 + (e4 + e11)x2x5 (A1) 
αA1=(-(.5(P(e7(x2x3(z4 + z9z4 - z1κ1) - x4x5(z4 + κ1))  
 + e5(x1z9(z5κ1 + 2(1 + αh2z5)) + z9(κ2

2 + κ1m(-2κ2 + κ1m)) 
 +  z2m(z7(1 - κ2) - κ1

2x6) + (1 - z2z7)(1 + κ2
2)  

 + z5(κ1(1 + κ2
2) + 2κ1m(-1 + κ2 + m))  

 + m(2κ1(1 - κ2 + κ1m) + 2z2(z7x2 + αhκ1x6)))  
 + (e12 + e13)(x2x4z5(z2 + κ1) - x3x5)  
 + (z4 + κ1)(e6x3x4 - e14x2x5)) + T(x6(x2(z2(-κ1m)(e2 - z11e10)  
 + m(-e2z2z3 + (z6 + 4α2h(h - h2 + z2(h - h2)))e10))  
 + m(κ1 - κ2)(e2 + e102αh)) + (m(z2(x6m(1 - κ1) + (-1 + κ2

2))  
 + x6(κ1κ2 - 1))) + e1m(z3κ1(1 + κ1mx6) + x6((1 + z15)κ2  
 + (1 + 2αhz12)m + 2α(h2z4κ1m - h(1 - κ1κ2))) + (1 - κ2

2)z10  
 - κ1κ2(1 + κ2z2)) + e10(x6κ1mx5)))))/Δ (A2) 
B1=(-(P(e5(m(z2((2 - m) + κ1x6) + z7(-1 + κ2 + m))  
 + (1 + z12)((1 + κ2x4 - mx2) + z9x1)) - e6x4x3  
 + x2(e14x5 + (e12 + e13) (1 + z12)x4) + e7(z1x2x3 + x4x5))  
 + T(x2mx6(e102α(-h - h2z11) + e2z3) + e1m(-z3(1 + κ1mx6)  
 - z12(m + κ2x4)) -m(x6(e10x5 + x4) + e1z4κ2))))/Δ (A3) 
αC1=((.5(P(e6(x1(2z9(-1 + αh2z11) + (-z11 - z9z11)κ1)  
 + (-1 + z2z4)(1 - κ2x5) - z11κ1(κ2x4  + m2)  
 - z2z4m(2x2   + (1 - κ2)) -  x5(2(1 + .5z9)κ1m -  z9κ2)  
 + 2κ1m(-αh2κ1x6  - (1 + .5z10) -  αhκ2))  
 +  e12(x3x2(z7  +  z9z7  +  z1κ1) - x5x4(z7 - κ1))  
 + (e15  +  e7)(x2x4(z2z11  -  z11κ1) + x3x5) + e16(-x2x5(z7  - κ1))  
 + e5(x4x3(z7  - κ1))) + T(mx6(x2((e9(-1 - z15  + z2  - z10z5)  
 + e17z2z6)  + (κ1z2(e9z5  -  e17)))  + (κ1  -  κ2)(2αhe9  -  e17))   
 + x6m(-κ1x5e9  + (1 - κ1κ2)(-2αhe1  +  e3))  
 + e1m((-1 -  2αhz12)(m + κ2x4)  -  κ2(1 + z15)   
 +  z2(-z7κ1mx6  -  2αh)  +  κ1(x3x6  +  z2(x3  + κ2x5)))   
 +  e3(z2m((1 -  κ1)mx6  +(-1 + κ2

2)))))))/Δ (A4) 
D1=(-(P(z11(e6(1 + κ2x4 - mx2) + (e15 + e7)x2x4)  
 + e12(-z1x2x3 - x4x5) + e6(z9z11x1 + m(-z4(x2 - κ2) + z2((2 - m)  
 + κ1x6))) - e16x2x5 + e5x3x4) + T(x2mx6(e17z6  

 + e92α(-h - h2z5)) + e1(m(-z6(1 + κ1mx6)  
 - z7κ2 - z12(κ2x4 + m))) + mx6(e3x4 + e9x5))))/Δ (A5) 
 
αA2=(-(.5(P(e6(z2(1 + κ1x3) + z12(κ2x7 + m)  
 + m(x7(κ1κ2 - 1) + 2αhκ1)) + e7(x7(x2(z11 - z2z11κ2) - κ2x5))  
 + e12(x7(z2z5x2 - z12κ2 - m(z5κ2 + κ1))) + e5(κ2(z5(κ2x7 + m)  
 - z2(1 + κ1x3) - z7κ1m) + x7x3)) + T(e1(x1(8α2h2(h2  

 + α(-h2 - h2
2 + 2h2h + z2z16)) + (-1 + z2 - z15 - z9 + 2z10  

 + 8α3h2z16)κ2) + z3(κ2 + κ1m(2κ2 + κ1m(-1 + κ2)))  
 + (1 + z15)(κ2

2 + m(2κ2 + m)) + (m(z12(-1 + κ2
2x7)  

 - 2α(h + h2)κ1) + (2z10  (-κ2
2 + m(x7 - m + κ2(κ1 - 1)))  

 + z9(κ2
2 + κ1m(-2κ2 + κ1m))) + z2(-2 + m(2 - m)))  

 + κ2(κ2 - 2κ1m)) + e10(1 - 4α2z8)((1 - κ2)(κ2 - m2)  
 + m(1 + κ2

2) - 2κ2m) + ((1 - κ2)(κ2 - κ1
2m2)  

 + κ1m(-1 + 2κ2 - κ2
2))) + (e2 + e17)(-z3x2(κ2x3 + z2x3)  

 + x4x5) + (1 - κ2)(e11x2x5 - x4x3)))))/Δ (A6) 
B2=(P(z5(e12x2x7 + e5(κ2x7 + m)) + x7(e7(-z2z11x2 - x5) + e6x3)  
 + e5(-z2(1 + κ1x3) - z7κ1m)) + T(x2(-z3x3(e2 + e17)  
 + e10(-1 - 4α2z16)  x4 - e11x5) + x3(e10x5 + x4)  
 + e1(x1(-z9 + 2z10 - 8α3h2z8 + (-1 - z15 + z2)) + z3(1 + κ1mx3)  
 + z12(m(1 + κ2x7)) + z4κ1m)))/Δ (A7) 
αC2=(.5(P(x7(x2(-e12z5(1 + κ2z2) + e7(z2z11 - κ2 z12)) + e12κ2x5  

 + e7m(κ1 - κ2)) + e5(z2(x7 + m(-1 + κ1
2))  

-4.00 -2.00 0.00 2.00 4.00 6.00

0.00

0.20

0.40

0.60

0.80

1.00

(1)
(2)

(3)

(1)
(2)

(3)

(1)  b/h=0.5

(2)  b/h=1.0

(3)  b/h=1.5

y/h

σx /po



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:1, No:1, 2007

6

 

 

 + x7(z12κ2 + m(z7 - κ1κ2))) + e6(-z11κ2(κ2x7 + m)  
 - z2κ2(1 + κ1x3) - x7x3 - z4κ1κ2m)) + T(e1(x1(8α2h2(-h2  

 + α(-h2 - h2
2 + 2h2(h + αz8))) + κ2(1 + z2 + z15 + z9  

 + 8α2h2(-h - αz8))) + z6(κ2 + m2(-1 + κ1
2κ2))  

 + κ1m((-1 - z2z6)(κ1m - 2κ2) + 2α(-h - h2))  
 + 2(κ2((-1 + z10)(κ2 + m(1 - κ1)) + 2α2κ2(-h2 - h2

2))  
 + z2(-x2 + 2αhm(-1 - κ1 + m)) + m(.5z12(κ2

2x7 - 1)  
 + .5z15(-2κ2 - m)))) + e9((1 - 4α2z8)((κ2 - 1)(κ2 - m2)  
 + m(-1 + κ2(2 - κ2))) + (x3(κ2

2 + κ1m) - κ2(κ1m(κ1m + 2)  
 + 1))) + (e2 + e17)(x2x3z6(z2 - κ2) - x5x4)  

 + (1 - κ2)(-e4x2x5 + e3x4x3)))))/Δ (A8) 
D2=(-(P(x7(x2(e7z11 + e12z2z5) - e12x5 + e5x3)  
 + e6(z4κ1m + z11(m + κ2x7) + z2(1 + κ1x3)))  
 + T(x2(z6(e17 + e2)x3 - e4x5) + e3x4x3 + e1(-z6(2x2 + κ1mx3  

 + m2) - z12(m(1 + κ2x7)) - z7κ1m) + e9((-1 + 4α2z8)x4x2  

 + x3x5) + e1((-z15 - z9 + 2z10 + 8α3h2z8)x1))))/Δ (A9) 
where 

h)(-2
1 ee α= ,  )h(-2

2
2ee α= ,  h)(-4

3 ee α= ,  )h(-4
4

2ee α= ,  h)(-
5 ee α= , 

h)(-3
6 ee α= ,  )h2+h(-3

7
2ee αα= ,  )h2+h(-4

8
2ee αα= ,  )h2-h(-2

9
2ee αα= , 

)h2+h(-2
10

2ee αα= ,  )h4+h(-4
11

2ee αα= ,  )h2-h(-
12

2ee αα= , 
)h2+h(-

13
2ee αα= ,  )h4+h(-3

14
2ee αα= ,  )h2-h(-3

15
2ee αα= , 

)h4-h(-
16

2ee αα= ,  )h2+h(-4
17

2ee αα=                 (A10) 
z1=(-1-4α2h2

2),    z2=2αh2,   z3=(-1+2αh2),    z4=(-1+2αh), 
z5=(-1+2α(-h+h2)),    z6=(1+2αh2),   z7=(1+2αh), 

z8=(-h2+h2(2h-h2)),   z9=4α2h2
2,   z10=4α2hh2, 

z11=(-1+2α(h-h2)),   z12=2α(h-h2),   z13=(1+2α2h(h-2h2)),   
z14=2α2h,   z15=4α2h2,   z16=(h2

2+h(h-2h2))       (A11) 
x1=(1+m(-2+m)),   x2=(1-m),   x3=(1+κ1m),   x4=(κ2+m), 

x5=(κ1m-κ2),   x6=(1+κ2),   x7=(1+κ1)             (A12) 

m=μ2/μ1 ,   T=-(1/2μ2) ∫
c

b
t)dtq(t)cos(α , 

P=-p0sin(αa)/2μ1α                           (A13) 

k(x,t)= ∫
∞

0

((e10(κ2(x2((-1 - 4α2z16)x4) + x3x5) - .5(κ1(-1 + 2κ2  

 - κ2
2)m + (1 - κ2)(κ2 - κ1

2m2) + (1 - 4α2z8)(-2κ2m  
 + (1 + κ2

2)m + (1 - κ2)(κ2 - m2))))  
 + (-κ2 - .5(1 - κ2))(-x2x5(-e11 + e4) + x3(e3x4  

 + (e2 + e8)2z2x2)) + e9(-κ2((-1 + 4α2z8)x2x4 + x3x5)  
 - .5(x3(κ2

2 + κ1m) - κ2(1 + κ1m(2 + κ1m))  
 + (1 - 4α2z8)((-1 + (2 - κ2)κ2)m + (-1 + κ2)(κ2 -m2))) ) 
 + e1(-x1(-8α3h2z16 + κ2(z2(1 + 4α2z16) - 4α2(h2 + 2z2z16)))  
 + z3(κ2(1 + κ1mx3) - .5(κ2 + κ1m(+2κ2 + κ1(-1 + κ2)m)))  
 + z6(κ2(2x2 + m(m + κ1x3)) - .5(κ2 + (-1 + κ1

2κ2)m2))  
 + ((2αh + z2)κ1m - z12(-1 + x7κ2

2)m + 2κ2(z12(1 + x7κ2)m  
 + 2αhκ1m)) + κ2((-1 - z15 + z2)x1) - .5((κ2(κ2 - 2κ1m)  
 + (1 + z15)(κ2

2 + m(2κ2 + m)) + 2α(h2(-2 + (2 - m)m)  
 + z2(2h(-κ2

2 + (x7 + (-1 + κ1)κ2 - m)m) + h2(κ2
2  

 + κ1m(-2κ2 + κ1m))))) + (κ1m((-1 - z2z6)(-2κ2 + κ1m))  
 + ((z15(-2κ2 -m))m + 2z2(-1 + m + 2αhm(-x7 + m))  
 + κ2(-(z15 + z 9)κ2 + 2(-1 + z10)(κ2 + (1 - κ1)m))))))  
 + .5x3x4x6)/delta + .5x6) [sinα(t + x) - sinα(t - x)] dα 

(A14) 

l(x)= ∫
∞

0

1/α((x7(e7(x2(z11(-κ2 - .5z6) + κ2α((1 - z12)h2  

 - (-h + h2))) + .5(-x5κ2 - (κ1 - κ2)m)) + e12(x2z5(-κ2z3 - αh2)  
 +.5 (z5(κ2m + (1 + z2κ2)x2) + (κ1m + κ2(x5 + z12))))  
 + x3(.5 + κ2)(e6 - e5)) + .5(e5(-(z2(x7 + (-1 + κ1

2)m)  
 + x7(z12κ2 + (z7 - κ1κ2)m)) + κ2(z5(x7κ2 + m)  
 - z2(1 + κ1x3) - z7κ1m)) + e6(-z2(1 + κ1x3)x6  

 - (m(2αhκ1 + x7(-1 + κ1κ2))) + (-z4(κ1κ2m))  
 + (x7κ2 + m)(κ2 - z12x6))))/delta)  
 . [cosα(a - x) - cosα(a + x)] dα (A15) 
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