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Constructive Proof of the Existence of an
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Sequentially Locally Non-Constant Excess Demand
Functions
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Abstract—In this paper we will constructively prove the existence
of an equilibrium in a competitive economy with sequentially locally
non-constant excess demand functions. And we will show that the
existence of such an equilibrium in a competitive economy implies
Sperner’s lemma. We follow the Bishop style constructive mathemat-
ics.
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I. INTRODUCTION

IT is well known that Brouwer’s fixed point theorem can not
be constructively proved1. Thus, the existence of an equi-

librium in a competitive economy can not be constructively
proved. Sperner’s lemma which is used to prove Brouwer’s
theorem, however, can be constructively proved. Some au-
thors have constructively presented an approximate version of
Brouwer’s theorem using Sperner’s lemma. See [8] and [9].
Thus, Brouwer’s fixed point theorem is constructively, in the
sense of constructive mathematics à la Bishop, proved in its
approximate version.

Also Dalen[8] states a conjecture that a uniformly continu-
ous function f from a simplex into itself, with property that
each open set contains a point x such that x �= f(x), which
means |x − f(x)| > 0, and also at every point x on the
boundaries of the simplex x �= f(x), has an exact fixed point.
Recently [2] showed that the following theorem is equivalent
to Brouwer’s fan theorem.

Each uniformly continuous function f from a com-
pact metric space X into itself with at most one fixed
point and approximate fixed points has a fixed point.

By reference to the notion of sequentially at most one maxi-
mum in [1] we consider a condition that a function is sequen-
tially locally non-constant. Sequential local non-constancy, the
condition in [8] and the condition that a function has at most
one fixed point in [1] are mutually different.

In this paper we present a proof of the existence of an exact
equilibrium in a competitive economy with sequentially locally
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1[5] provided a constructive proof of Brouwer’s fixed point theorem. But
it is not constructive from the view point of constructive mathematics à la
Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed
point theorem, that is, the intermediate value theorem is non-constructive. See
[3] or [8].

non-constant excess demand functions. Also we will show that
the existence of an equilibrium in a competitive economy with
sequentially locally non-constant excess demand functions
implies Sperner’s lemma.

In [6] we have constructively proved Brouwer’s fixed point
theorem for sequentially locally non-constant and uniformly
sequentially continuous functions without the fan theorem. It
is a partial answer to Dalen’s conjecture. Uniformly sequential
continuity is weaker than uniform continuity. Thus, the result
in [6] implies that we can constructively prove Brouwer’s
fixed point theorem for sequentially locally non-constant and
uniformly continuous functions. In this paper we apply the
procedure of the proof in that paper to the problem of the
existence of an equilibrium in a competitive economy with
sequentially locally non-constant excess demand functions.

II. EXISTENCE OF AN EQUILIBRIUM IN A COMPETITIVE

ECONOMY

In constructive mathematics a nonempty set is called an
inhabited set. A set S is inhabited if there exists an element
of S.

Note that in order to show that S is inhabited, we
cannot just prove that it is impossible for S to be
empty: we must actually construct an element of S
(see page 12 of [4]).

Also in constructive mathematics compactness of a set
means total boundedness with completeness. First we present
finite enumerability and ε-approximation to a set. A set S is
finitely enumerable if there exist a natural number N and a
mapping of the set {1, 2, . . . , N} onto S. An ε-approximation
to S is a subset of S such that for each p ∈ S there exists
q in that ε-approximation with |p − q| < ε(|p − q| is the
distance between p and q). S is totally bounded if for each
ε > 0 there exists a finitely enumerable ε-approximation to
S. Completeness of a set, of course, means that every Cauchy
sequence in the set converges.

Let p = (p0, p1, . . . , pn) be a point in an n-dimensional
simplex Δ, and consider a function ϕ from Δ to itself. Denote
the i-th components of p and ϕ(p) by pi and ϕi or ϕi(p).

According to [4] we have the following result.

Lemma 1: If Δ is an n-dimensional simplex, for each ε > 0
there exist totally bounded sets H1, . . . , Hn, each of diameter
less than or equal to ε, such that Δ = ∪n

i=1Hi.
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The notion that f has at most one fixed point in [2] is
defined as follows;

Definition 1 (At most one fixed point): For all p,q ∈ Δ, if
p �= q, then ϕ(p) �= p or ϕ(q) �= q.

By reference to the notion of sequentially at most one
maximum in [1], we define the property of sequential local
non-constancy as follow;

Definition 2 (Sequential local non-constancy of functions):
There exists ε̄ > 0 with the following property. For each
ε > 0 less than or equal to ε̄ there exist totally bounded
sets H1, H2, . . . , Hm, each of diameter less than or equal
to ε, such that Δ = ∪m

i=1Hi, and if for all sequences
(pn)n≥1, (qn)n≥1 in each Hi, |ϕ(pn) − pn| −→ 0 and
|ϕ(qn)− qn| −→ 0, then |pn − qn| −→ 0.

If ϕ is a uniformly continuous function from Δ to itself,
according to [8] and [9] it has an approximate fixed point.
This means

For each ε > 0 there exists x ∈ Δ such that |p−ϕ(p)| < ε.

Since ε > 0 is arbitrary,

inf
p∈Δ

|p− ϕ(p)| = 0.

Then,
inf

p∈Hi

|p− ϕ(p)| = 0,

for some Hi such that ∪n
i=1Hi = Δ. Since n is finite, we can

find such an Hi.
Now we show the following lemma.

Lemma 2: Let ϕ be a uniformly continuous function from
Δ to itself. Assume infp∈Hi ϕ(p) = 0. If the following
property holds:

For each ε > 0 there exists η > 0 such that if p,q ∈
Hi, |ϕ(p)− p| < η and |ϕ(q)− q| < η, then |p−
q| ≤ ε.

Then, there exists a point r ∈ Hi such that ϕ(r) = r.
Proof: Choose a sequence (pn)n≥1 in Hi such that

|ϕ(pn)−pn| −→ 0. Compute N such that |ϕ(pn)−pn| < η
for all n ≥ N . Then, for m,n ≥ N we have |pm − pn| ≤ ε.
Since ε > 0 is arbitrary, (pn)n≥1 is a Cauchy sequence in Hi,
and converges to a limit r ∈ Hi. The continuity of ϕ yields
|ϕ(r)− r| = 0, that is, ϕ(r) = r.

Consider a competitive exchange economy. There are n+1
goods X0, X1, · · · , Xn. n is a finite positive integer. The
prices of the goods are denoted by pi(≥ 0), i = 0, 1, · · · , n.
Let p̄ = p0 + p1 + · · ·+ pn, and define

p̄i =
pi
p̄
, i = 0, 1, · · · , n.

Denote anew p̄0, p̄1, · · · , p̄n, respectively, by p0, p1, · · · , pn.
Then,

p0 + p1 + · · ·+ pn = 1. (1)

p = (p0, p1, · · · , pn) represents a point on an n-dimensional
simplex. It is usually assumed that consumers’ excess demand
(demand minus supply) for each good is homogeneous of

degree zero. It means that consumers’ excess demand for each
good is determined by relative prices of the goods, and above
notation of the prices yields no loss of generality. We denote
the vector of excess demands for the goods when the vector
of prices is p by f(p) = (f1, f2, . . . , fn). We require the
following condition;

pf(p) = p0f0 + p1f1 + · · ·+ pnfn = 0 (Walras Law). (2)

fi is equal to the sum of excess demands of all consumers for
the good Xi. By the budget constraint of each consumer, in
a competitive exchange economy the sum of excess demands
of all consumers for each good must be 0. Adding the budget
constraints for all consumers yields (2). We assume that the
excess demand function f(p) is uniformly continuous about
the prices of the goods. Uniform continuity of f means that
for any p, p′ and ε > 0 there exists δ > 0 such that

If |p′ − p| < δ,we have |f(p′)− f(p)| < ε.

δ depends only on ε not on p and p′. It implies that a slight
price change yields only a slight excess demand change. An
equilibrium in a competitive exchange economy is a state
where excess demand for each good is not positive.

Next we assume the following condition.

Definition 3: (Sequential local non-constancy of excess
demand functions) There exists ε̄ > 0 with the following
property. For each ε > 0 less than or equal to ε̄ there exist
totally bounded sets H1, . . . , Hn, each of diameter less than
or equal to ε, such that Δ = ∪n

i=1Hi, and if for all sequences
(pm)m≥1, (qm)m≥1 in each Hi, |max(fi(pm), 0)| −→ 0 and
|max(fi(qm), 0)| −→ 0 for all i, then |pm − qm| −→ 0.

Consider the following function from the set of price vectors
p = (p0, p1, · · · , pn) to the set of n+1 tuples of real numbers
v = (v0, v1, · · · , vn).

vi = pi +max(fi, 0) for all i.

With this we define a function from an n-dimensional simplex
Δ to itself ϕ(p) = (ϕ0, ϕ1, · · · , ϕn) as follows;

ϕi =
1

v0 + v1 + · · ·+ vn
vi, for all i

Since ϕi ≥ 0, i = 0, 1, · · · , n and

ϕ0 + ϕ1 + · · ·+ ϕn = 1,

(ϕ0, ϕ1, · · · , ϕn) represents a point on Δ. By the uniform
continuity of f , ϕ is also uniformly continuous. From the
sequential local non-constancy of excess demand functions we
obtain the following results.

For each ε such that 0 < ε < ε̄ if for all sequences
(pm)m≥1, (qm)m≥1 in each Hi above defined
|ϕ(pm) − pm| −→ 0 and |ϕ(qm) − qm| −→ 0,
then |pm − qm| −→ 0.

Therefore, ϕ is a sequentially locally non-constant function.
Now we show the following theorem.

Theorem 1: In a competitive exchange economy, if the
excess demand functions for the goods are uniformly con-
tinuous about their prices and satisfy the Walras law and the
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condition of sequential local non-constancy, then there exists
an equilibrium.

Proof: Assume infp∈Hi |p − ϕ(p)| = 0. Choose a
sequence (rm)m≥1 in Hi ⊂ Δ such that |ϕ(rm)− rm| −→ 0.
We will prove the following condition.

For each ε > 0 there exists η > 0 such that if p,q ∈
Hi, |ϕ(p)− p| < η and |ϕ(q)− q| < η, then |p−
q| ≤ ε.

Assume that the set

K = {(p,q) ∈ Hi ×Hi : |p− q| ≥ ε}
is nonempty and compact2. Since the mapping (p,q) −→
max(|ϕ(p)−p|, |ϕ(q)−q|) is uniformly continuous, we can
construct an increasing binary sequence (λm)m≥1 such that

λm = 0 ⇒ inf
(p,q)∈K

max(|ϕ(p)− p|, |ϕ(q)− q|) < 2−m,

λm = 1 ⇒ inf
(p,q)∈K

max(|ϕ(p)− p|, |ϕ(q)− q|) > 2−m−1.

It suffices to find m such that λm = 1. In that case, if |ϕ(p)−
p| < 2−m−1, |ϕ(q)− q| < 2−m−1, we have (p,q) /∈ K and
|p− q| ≤ ε. Assume λ1 = 0. If λm = 0, choose (pm,qm) ∈
K such that max(|ϕ(pm)−pm|, |ϕ(qm)−qm|) < 2−m, and
if λm = 1, set pm = qm = rm. Then, |ϕ(pm) − pm| −→ 0
and |ϕ(qm)−qm| −→ 0, so |pm−qm| −→ 0. Computing M
such that |pM − qM | < ε, we must have λM = 1. Note that
ϕ is a sequentially locally non-constant uniformly continuous
function from Δ to itself. Thus, in view of Lemma 2.2 we
have completed the proof of the existence of a point which
satisfies

p = ϕ(p). (3)

Let p∗ = (p∗0, p
∗
1, . . . , p

∗
n) be one of the points which satisfy

(3). Let us consider the relationship between the price and
excess demand for each good in that case. From the definitions
of ϕ and v, and

∑n
j=0 vj = 1 +

∑n
j=0 max(fj , 0)(because∑n

j=0 p
∗
j = 1), (3) means

p∗i +max(fi, 0)

1 +
∑n

j=0 max(fj , 0)
= p∗i

Let γ =
∑n

j=0 max(fj , 0). Then, we have

max(fi, 0) = γp∗i .

From
∑n

j=0 p
∗
j = 1 there is a k such that p∗k > 0. If for all

such k max(fk, 0) = fk = γp∗k > 0 holds, that is, excess
demands for all goods with positive prices are positive, we
can not cancel out p∗kfk > 0 because the price of any good
can not be negative, and the Walras law (2) is violated. Thus,
we have γ = 0 and

max(fi, 0) = 0 for each i. (4)

This means that excess demand for each good is not positive.
Such a state is an equilibrium in a competitive economy. In
the equilibrium when pi > 0 we must have fi = 0 because
if fi < 0 we have pifi < 0, and then the Walras law is
violated. We have completed the proof of the existence of an
equilibrium in a competitive economy with sequentially locally
non-constant excess demand functions.

2See Theorem 2.2.13 of [4].

III. FROM THE EXISTENCE OF A COMPETITIVE

EQUILIBRIUM TO SPERNER’S LEMMA

In this section we will derive Sperner’s lemma from the
existence of an equilibrium in a competitive economy3. Let
partition an n-dimensional simplex Δ. Let K be the set of
small n-dimensional simplices of Δ constructed by partition.
Vertices of these small simplices of K are labeled with the
numbers 0, 1, 2, . . . , n according to the following rules.

1) The vertices of Δ are respectively labeled with 0
to n. We label a point (1, 0, . . . , 0) with 0, a point
(0, 1, 0, . . . , 0) with 1, a point (0, 0, 1 . . . , 0) with 2, . . . ,
a point (0, . . . , 0, 1) with n. That is, a vertex whose k-th
coordinate (k = 0, 1, . . . , n) is 1 and all other coordi-
nates are 0 is labeled with k for all k ∈ {0, 1, . . . , n}.

2) If a vertex of K is contained in an n − 1-dimensional
face of Δ, then this vertex is labeled with some number
which is the same as the number of a vertex of that face.

3) If a vertex of K is contained in an n − 2-dimensional
face of Δ, then this vertex is labeled with some number
which is the same as the number of a vertex of that face.
And similarly for cases of lower dimension.

4) A vertex contained inside of Δ is labeled with an
arbitrary number among 0, 1, . . . , n.

Denote vertices of an n-dimensional simplex of K by
x0, x1, . . . , xn, the j-th component of xi by xij , and the label
of xi by l(xi). Let τ be a positive number which is smaller
than xil(xi) for all i, and define a function f(xi) as follows4.

f(xi) = (f0(x
i), f1(x

i), . . . , fn(x
i)),

and

fj(x
i) =

{
xij − τ for j = l(xi),
xij +

τ
n for j �= l(xi).

(5)

fj denotes the j-th component of f . From the labeling rules
xil(xi) > 0 for all xi, and so τ > 0 is well defined. Since∑n

j=0 fj(x
i) =

∑n
j=0 x

i
j = 1, we have

f(xi) ∈ Δ.

We extend f to all points in the simplex by convex combina-
tions of its values on the vertices of the simplex. Let y be a
point in the n-dimensional simplex of K whose vertices are
x0, x1, . . . , xn. Then, y and f(y) are represented as follows;

y =
n∑

i=0

λix
i, and f(y) =

n∑
i=0

λif(x
i), λi ≥ 0,

n∑
i=0

λi = 1.

It is clear that f is uniformly continuous. We verify that f is
sequentially locally non-constant.

1) Assume that a point z is contained in an n − 1-
dimensional small simplex δn−1 constructed by partition
of an n − 1-dimensional face of Δ such that its i-th
coordinate is zi = 0. Denote the vertices of δn−1 by

3Our result in this section is a variant of Uzawa equivalence theorem ([7])
which (classically) states that the existence of a competitive equilibrium and
Brouwer’s fixed point theorem are equivalent.

4We refer to [10] about the definition of this function.
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zj , j = 0, 1, . . . , n− 1 and their i-th coordinate by zji .
Then, we have

fi(z) =

n−1∑
j=0

λjfi(z
j), λj ≥ 0,

n∑
j=0

λj = 1.

Since all vertices of δn−1 are not labeled with i, (5)
means fi(z

j) > zji for all j = {0, 1, . . . , n − 1}.
Then, there exists no sequence (z(m))m≥1 such that
|f(z(m)) − z(m)| −→ 0 in an n − 1-dimensional face
of Δ.

2) Let z be a point in an n-dimensional simplex Hi.
Assume that no vertex of Hi is labeled with i. Then

fi(z) =

n∑
j=0

λjfi(x
j) = zi +

(
1 +

1

n

)
τ, (6)

and so z �= f(z). Then, there exists no sequence
(z(m))m≥1 such that |f(z(m))− z(m)| −→ 0 in Hi.

3) Assume that z is contained in a fully labeled n-
dimensional simplex Hi, and rename vertices of Hi so
that a vertex xi is labeled with i for each i. Then,

fi(z) =

n∑
j=0

λjfi(x
j) =

n∑
j=0

λjx
j
i +

∑
j �=i

λj
τ

n
− λiτ

= zi +

⎛
⎝ 1

n

∑
j �=i

λj − λi

⎞
⎠ τ for each i.

Consider sequences (z(m))m≥1 = (z(1), z(2), . . . ),
(z′(m))m≥1 = (z′(1), z′(2), . . . ) such that |f(z(m))−
z(m)| −→ 0 and |f(z′(m))− z′(m)| −→ 0.
Let z(m) =

∑n
i=0 λ(m)ix

i and z′(m) =∑n
i=0 λ

′(m)ix
i. Then, we have

1

n

∑
j �=i

λ(m)j − λ(m)i −→ 0, and

1

n

∑
j �=i

λ′(m)j − λ′(m)i −→ 0 for all i.

Therefore, we obtain

λ(m)i −→ 1

n+ 1
, and λ′(m)i −→ 1

n+ 1
.

These mean

|z(m)− z′(m)| −→ 0.

Thus, f is sequentially locally non-constant
Now, using f , we construct an excess demand function as

follows;

gi(y) = fi(y)− yiμ(y), i = 0, 1, . . . , n. (7)

y ∈ Δ, and μ(y) is defined by

μ(y) =

∑n
i=0 yifi(y)∑n

i=0 y
2
i

.

Each gi(y) is uniformly continuous, and satisfies the Walras
law as shown below. Multiplying yi (the i-th component of y)

to (7) for each i, and adding them from 0 to n yields
n∑

i=0

yigi =

n∑
i=0

yifi(y)− μ(y)

n∑
i=0

y2i (8)

=
n∑

i=0

yifi(y)−
∑n

i=0 yifi(y)∑n
i=0 y

2
i

n∑
i=0

y2i

=
n∑

i=0

yifi(y)−
n∑

i=0

yifi(y) = 0.

Because of sequential local non-constancy of f , gi(y)’s are
sequentially locally non-constant as excess demand functions
described as follows;.

1) In an n− 1-dimensional face of Δ there exists
no sequence (z(m))m≥1 such that |f(z(m))−
z(m)| −→ 0, and so there exists no sequence
g(z(m))m≥1 such that μ(z(m)) −→ 1 and
max(g(z(m)), 0) −→ 0.

2) In an n-dimensional simplex which is not fully
labeled there exists no sequence (z(m))m≥1

such that |f(z(m)) − z(m)| −→ 0, and so
there exists no sequence g(z(m))m≥1 such that
μ(z(m)) −→ 1 and max(g(z(m)), 0) −→ 0.

3) In Δ for all sequences (x(m))m≥1,
(y(m))m≥1 such that |f(x(m))−x(m)| −→ 0
and |f(y(m)) − y(m)| −→ 0, we
have |x(m) − y(m)| −→ 0. When
|f(x(m)) − x(m)| −→ 0, we have
μ(x(m)) −→ 1 and max(g(x(m)), 0) −→ 0.
Similarly, when |f(y(m)) − y(m)| −→ 0,
we have μ(y(m)) −→ 1 and
max(g(y(m)), 0) −→ 0.

Therefore, g is sequentially locally non-constant, and there
exists an equilibrium. Let y∗ = {y∗0 , y∗1 , . . . , y∗n} be the
equilibrium price vector. Then,

gi(y
∗) ≤ 0 for all i,

and
gi(y

∗) = 0 for i such that y∗i > 0,

and so fi(y
∗) = μ(y∗)y∗i for all such i.

∑n
i=0 fi(y

∗) =∑n
i=0 y

∗
i = 1 implies μ(y∗) ≤ 1. On the other hand,

gi(y
∗) ≤ 0(for all i) means μ(y∗) ≥ 1. Thus, μ(y∗) = 1,

and we obtain
fi(y

∗) = y∗i for all i. (9)

Let Δ∗ be a simplex of K which contains y∗, and
y0, y1, . . . , yn be the vertices of Δ∗. Then, y∗ and f(y∗) are
represented as

y∗ =

n∑
i=0

λiy
i and f(y∗) =

n∑
i=0

λif(y
i), λi ≥ 0,

n∑
i=0

λi = 1.

(5) implies that if only one yk among y0, y1, . . . , yn is labeled
with i, we have

fi(y
∗)−y∗i =

n∑
j=0

λjy
j
i+

∑
j=0,j �=k

λj
τ

n
−λkτ−y∗i =

⎛
⎝ 1

n

∑
j=0,j �=k

λj − λk

⎞
⎠ τ
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yji is the i-th component of yj .
Since τ > 0, fi(y∗) = y∗i (for all i) is equivalent to

1

n

∑
j=0,j �=k

λj − λk = 0.

(9) is satisfied with λk = 1
n+1 for all k. On the other hand, if

no yj is labeled with i, we have

fi(y
∗) =

n∑
j=0

λjy
j
i = y∗i +

(
1 +

1

n

)
τ,

and then (9) can not be satisfied. Thus, for each i one and only
one yj must be labeled with i. Therefore, Δ∗ must be a fully
labeled simplex. We have completed the proof of Sperner’s
lemma.
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