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Abstract—Latin hypercube designs (LHDs) have been applied in 

many computer experiments among the space-filling designs found in 

the literature. A LHD can be randomly generated but a randomly 

chosen LHD may have bad properties and thus act poorly in 

estimation and prediction. There is a connection between Latin 

squares and orthogonal arrays (OAs). A Latin square of order s 

involves an arrangement of s symbols in s rows and s columns, such 

that every symbol occurs once in each row and once in each column 

and this exists for every non-negative integer s. In this paper, a 

computer program was written to construct orthogonal array-based 

Latin hypercube designs (OA-LHDs). Orthogonal arrays (OAs) were 

constructed from Latin square of order s and the OAs constructed 

were afterward used to construct the desired Latin hypercube designs 

for three input variables for use in computer experiments. The LHDs 

constructed have better space-filling properties and they can be used 

in computer experiments that involve only three input factors. 

MATLAB 2012a computer package (www.mathworks.com/) was 

used for the development of the program that constructs the designs. 

 

Keywords—Computer Experiments, Latin Squares, Latin 

Hypercube Designs, Orthogonal Array, Space-filling Designs. 

I. INTRODUCTION 

ETERMINISTIC computer experiments are becoming 

more frequently used in many areas of science and 

engineering. This is mainly because the underlying physical 

experiments are too time consuming, expensive, or even 

impossible to perform.  

Rapid growth in computer power has made it possible to 

perform deterministic experiments on simulators. Since the 

emergence of the first computer experiment conducted by 

Enrico Fermi and colleagues [13] in Los Alamos in 1953, 

scientists in diverse areas such as engineering, cosmology, 

particle physics and aircraft design have turned to computer 

experiments as an effective tool to understand their respective 

processes. For instance, in the design of a vehicle, computer 

experiments are used to study the effect of a collision of the 

vehicle with a barrier before manufacturing the prototype of 

the vehicle, [1]. Space-filling design like Latin hypercube 

design (LHD) is popularly used in designing computer 

experiments. In this paper we are particularly interested in 

constructing orthogonal array-based LHDs. Space-filling 

designs are designs that spread points evenly throughout the 

experimental region. A Latin square of order s is an s × s array 
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of s symbols, each appearing s times, once in each row and 

once in each column.  

The s rows and s columns are labelled by the same set of 

symbols and are used to form an array in which each row 

contains the row-block symbol, the column-block symbol, and 

the Latin square treatment symbol for a cell in the orthogonal 

array constructed; this is simply an OA (s
2
, 3, s, 2). A Latin 

square of order s where s is a prime power therefore produces 

OA (s
2
, 3, s, 2). 

II. ORTHOGONAL ARRAYS 

Orthogonal arrays (OAs) were introduced by [11] followed 

by [2]. Orthogonal arrays (OAs) are essential in statistics and 

they are used in computer science and cryptography. In 

statistics they are primarily used in designing experiments 

which simply means that they are immensely important in all 

areas of human investigation. Orthogonal arrays are used in 

medicine, agriculture and manufacturing. Your automobile 

lasts longer today because of orthogonal arrays [3]. 

Pharmaceutical companies use orthogonal arrays to investigate 

the stability and shelf life of drugs which commonly involve 

many different factors.  

The use of orthogonal arrays can lead to more economical 

tests and provide better statistical information. An orthogonal 

array of N runs, k factors, s levels and strength t ≥ 2 is an N –

by- k matrix with entries from a set of s levels, usually taken 

as 0. . . s-1, such that for every N-by- t submatrix, each of the 

s
t
 level combinations occurs the same number of times. Such 

an array is denoted by OA (N, k, s, t). The number λ = N/s
t
 is 

called the index of the array. The rows of the array represent 

the experiments or tests to be performed, the columns 

correspond to the different variables whose effects are being 

analyzed and the entries in the array specify the levels at 

which the variables are to be applied. The construction of OA-

based Latin hypercube designs depends on the existence of 

orthogonal arrays. For an excellent review for the existence 

results of orthogonal arrays see, for example, [3] and [8]. A 

library of orthogonal arrays is also available on the N. J. A. 

Sloane website and the MktEx macro using the software SAS 

[5]. Another important problem in the study of OAs is to 

determine the minimal number of rows n in any OA (N, k, s, t) 

for given values k, s and t. 

Theorem 1: (Rao’s Inequalities)  Rao’s [12] inequalities serve 

as an upper bound on the number of columns that can be 

included in an OA of given N, s and t or a lower bound on the 

number of rows required for an OA of given k, s and t: 

(i) � ≥ ∑ ��� �
	
�
� �
 − 1��)i

, if t = 2u and 
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(ii)  � ≥ ∑ ��� �
	
�
� �
 − 1�� + ����	 ��
 − 1�	��, if t = 

2u+1 for u ≥ 0 

III. LATIN HYPERCUBE DESIGNS 

Latin hypercube designs were the first type of design 

proposed specifically for computer experiments [7]. LHDs do 

not have repeated runs. Latin hypercube designs have one-

dimensional uniformity in that when projected on each 

dimension, each portion of the design region has a design 

point. However, random LHDs may not be a good choice with 

respect to some useful criteria such as maximin distance and 

orthogonality but can easily be constructed.  

The maximin distance criterion first introduced by [4] 

maximizes the smallest distance between any two design 

points so that no two design points are too close. A maximin 

distance design spreads out its points evenly over the entire 

design region. There are numerous reasons for the Latin 

hypercube popularity. One possible good reason is that it 

allows the creation of experimental designs with as many 

points as needed or desired and that is why Latin hypercube 

designs are very well accepted, particularly in studying 

computer experiments because of flexibility in terms of data 

density and location, and in addition, non-collapsing and 

space-filling properties.  

An N x k matrix D = (dij) is called a Latin hypercube of N 

runs for k factors if each column of D is a permutation of 1, . . 

. , N. There are two natural ways of generating design points 

in the unit cube [0, 1]
k
 based on a given Latin hypercube. The 

first is through Lij = (dij − 0.5)/N with the N points given by 

(li1, . . . , lNk) with i = 1, . . . , N, j = 1, . . .,k. The other is 

through, Lij = (dij − uij)/N with the N points given by (li1, . . . , 

lNk) with i = 1, . . . , N, j = 1, . . .,k where uij are independent 

random variables with a common uniform distribution on [0, 

1]. The discrepancy between the two methods can be seen as 

follows. When projected onto each of the k variables, both 

methods have the property that one and only one of the N 

design points fall within each of the N small intervals defined 

by [0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1]. The first method 

gives the mid-points of these intervals while the second 

method gives the points that are uniformly distributed in their 

corresponding intervals. The second method was adopted in 

this work following the method of [10]. The Latin Hypercube 

method is a compromise between spread of points and uniform 

spacing. This method produces designs that mimic the uniform 

distribution. It is good to avoid giving the same name for (N, 

k, s, t) as we do for an orthogonal array because they do not all 

have an explicit statistical interpretation [14]. The most 

important one is s which does not refer to the number of levels 

of the design since the design has N levels. The other 

parameters N, k and t have similar interpretations. 

IV. ORTHOGONAL ARRAY-BASED LATIN HYPERCUBE 

DESIGNS 

Orthogonal array-based Latin hypercube designs were 

proposed by [15]. Reference [9] also presented a paper on the 

algorithm for constructing space-filling designs for Hadamard 

matrices of Orders 4λ and 8λ. These designs achieve better 

space-filling property. Orthogonal Array (OA) can generate a 

sample with better space-filling property than LHDs in that the 

former tend to place points both in the interior and on the 

boundary of the design space while the latter is more likely to 

have design points on the boundary. Orthogonal arrays are 

used to construct LHDs in this study to achieve better space-

filling property. An OA based Latin hypercube design in the 

design space [0, 1)
k
 can be generated. In addition to the 

univariate maximum stratification, an OA (N, k, s, t)-based 

Latin hypercube has the t-dimensional projection property that 

when projected onto any t columns, it has exactly λ points in 

each of the s
t
 cells. [16] provided a way to obtain OA-based 

Latin hypercubes based on single replicated full factorial 

designs and showed that if the underlying orthogonal array is 

optimal with respect to the maximin distance criterion, so is 

the corresponding OA-based Latin hypercube. Reference [6] 

considered searching for optimal OA-based Latin hypercubes 

that minimize 
 

2
1

1N

i j i
ijd= ≠

∑∑
 

 

where dij is the Euclidean distance, defined as  

 

( 1)
2

, 1,... , 1,...
ij ij

N

ij
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N
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−
+ +

= = =
 

 

with t = 2, between the ith and jth design points.  

V.  MATERIALS AND METHODS 

A computer program via MATLAB 2012a package was 

written to construct orthogonal array Latin hypercube designs 

(OALHDs). A Latin square of order s where s is a prime 

power produces OA (s
2
, 3, s, 2) . 

Orthogonal arrays (OAs) were constructed from Latin 

square of order s for two cases s= 3 and s= 7 and they are 

subsequently used to construct the desired orthogonal array-

based Latin hypercube designs (OALHDs) using  

Lij = (dij − Uij)/N. The program sorted and ranked the entries 

in the array column by column ignoring ties and then applied 

the formula to arrive at the desired OALHDs. This works for 

three input factors computer experiment only. Upper case 

letters D and L stand for the orthogonal array and the 

corresponding Latin hypercube designs constructed from 

orthogonal array respectively.  

VI. RESULTS 

1. Construction of OA (25, 3, 5, 2) LHD from Latin Square 

of Order 5  

[D,L]=oa_test (3,5) 

D = 

     0     0     0 

     0     1     1 

     0     2     2 

     0     3     3 
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     0     4     4 

     1     0     1 

     1     1     2 

     1     2     3 

     1     3     4 

     1     4     0 

     2     0     2 

     2     1     3 

     2     2     4 

     2     3     0 

     2     4     1 

     3     0     3 

     3     1     4 

     3     2     0 

     3     3     1 

     3     4     2 

     4     0     4 

     4     1     0 

     4     2     1 

     4     3     2 

     4     4     3 

 

L = 

 

    0.0200    0.0200    0.0200 

    0.0600    0.2200    0.2200 

    0.1000    0.4200    0.4200 

    0.1400    0.6200    0.6200 

    0.1800    0.8200    0.8200 

    0.2200    0.0600    0.2600 

    0.2600    0.2600    0.4600 

    0.3000    0.4600    0.6600 

    0.3400    0.6600    0.8600 

    0.3800    0.8600    0.0600 

    0.4200    0.1000    0.5000 

    0.4600    0.3000    0.7000 

    0.5000    0.5000    0.9000 

    0.5400    0.7000    0.1000 

    0.5800    0.9000    0.3000 

    0.6200    0.1400    0.7400 

    0.6600    0.3400    0.9400 

    0.7000    0.5400    0.1400 

    0.7400    0.7400    0.3400 

    0.7800    0.9400    0.5400 

    0.8200    0.1800    0.9800 

    0.8600    0.3800    0.1800 

    0.9000    0.5800    0.3800 

    0.9400    0.7800    0.5800 

    0.9800    0.9800    0.7800 

2. Construction of OA (49, 3, 7, 2) LHD from Latin Square 

of Order 7 

[D,L]=oa_test (3,7) 

 

D = 

     0     0     0 

     0     1     1 

     0     2     2 

     0     3     3 

     0     4     4 

     0     5     5 

     0     6     6 

     1     0     1 

     1     1     2 

     1     2     3 

     1     3     4 

     1     4     5 

     1     5     6 

     1     6     0 

     2     0     2 

     2     1     3 

     2     2     4 

     2     3     5 

     2     4     6 

     2     5     0 

     2     6     1 

     3     0     3 

     3     1     4 

     3     2     5 

     3     3     6 

     3     4     0 

     3     5     1 

     3     6     2 

     4     0     4 

     4     1     5 

     4     2     6 

     4     3     0 

     4     4     1 

     4     5     2 

     4     6     3 

     5     0     5 

     5     1     6 

     5     2     0 

     5     3     1 

     5     4     2 

     5     5     3 

     5     6     4 

     6     0     6 

     6     1     0 

     6     2     1 

     6     3     2 

     6     4     3 

     6     5     4 

     6     6     5 

L = 

    0.0102    0.0102    0.0102 

    0.0306    0.1531    0.1531 

    0.0510    0.2959    0.2959 

    0.0714    0.4388    0.4388 

    0.0918    0.5816    0.5816 

    0.1122    0.7245    0.7245 

    0.1327    0.8673    0.8673 

    0.1531    0.0306    0.1735 

    0.1735    0.1735    0.3163 

    0.1939    0.3163    0.4592 

    0.2143    0.4592    0.6020 

    0.2347    0.6020    0.7449 

    0.2551    0.7449    0.8878 

    0.2755    0.8878    0.0306 

    0.2959    0.0510    0.3367 

    0.3163    0.1939    0.4796 

    0.3367    0.3367    0.6224 

    0.3571    0.4796    0.7653 

    0.3776    0.6224    0.9082 

    0.3980    0.7653    0.0510 

    0.4184    0.9082    0.1939 

    0.4388    0.0714    0.5000 

    0.4592    0.2143    0.6429 

    0.4796    0.3571    0.7857 

    0.5000    0.5000    0.9286 

    0.5204    0.6429    0.0714 

    0.5408    0.7857    0.2143 
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    0.5612    0.9286    0.3571 

    0.5816    0.0918    0.6633 

    0.6020    0.2347    0.8061 

    0.6224    0.3776    0.9490 

    0.6429    0.5204    0.0918 

    0.6633    0.6633    0.2347 

    0.6837    0.8061    0.3776 

    0.7041    0.9490    0.5204 

    0.7245    0.1122    0.8265 

    0.7449    0.2551    0.9694 

    0.7653    0.3980    0.1122 

    0.7857    0.5408    0.2551 

    0.8061    0.6837    0.3980 

    0.8265    0.8265    0.5408 

    0.8469    0.9694    0.6837 

    0.8673    0.1327    0.9898 

    0.8878    0.2755    0.1327 

    0.9082    0.4184    0.2755 

    0.9286    0.5612    0.4184 

    0.9490    0.7041    0.5612 

    0.9694    0.8469    0.7041 

    0.9898    0.9898    0.8469 

VII. DISCUSSION 

From our results, the following were observed in Sections I 

and II as discussed below. 1 shows the result of construction 

of OA (25, 3, 5, 2)-LHD for Latin square of order 5 and 2 

contains the result of construction of OA (49, 3, 7, 2)-LHD for 

Latin square of order 7. OA (25, 3, 5, 2)-LHD contains 25 

runs (rows) with 3 factors (columns) while OA (49, 3, 7, 2)-

LHD has 49 runs with 3 factors. In both cases we have been 

able to construct OALHDs for only 3 factors and strength of 2.  

 The program was initialized with U = 0.5 to achieve the 

desired orthogonal array Latin hypercube designs. The two 

cases constructed OALHDs for the strength of 2 only for 3 

factors. Table I summarizes the results.  
 

TABLE I 

ORTHOGONAL ARRAY BASED LATIN HYPERCUBE DESIGNS (N, K) 

CONSTRUCTED FROM LATIN SQUARE OF ORDER S 

OA (N, k, s, t) OALHD(N, k) 

(25, 3, 5, 2) (25, 3) 

(49, 3, 7, 2) (49, 3 ) 

VIII.  CONCLUSION 

Many authors and researchers have paid particular attention 

to the construction of Orthogonal Array Based Latin 

Hypercube Designs (OALHDs). There are several techniques 

and criteria available for the construction of space-filling 

designs. These include the use of special permutations, 

difference matrices, Galois fields and orthogonal arrays 

among others.  

This study employed a MATLAB program to construct 

orthogonal array based Latin hypercube designs from Latin 

square of order s for 3 factors computer experiment. A 

technique described by [3] was thereafter used, via the 

MATLAB program to obtain their corresponding orthogonal 

arrays which gave rise to OA (N, k, s, t)-LHD.  

All the two OALHDs constructed have space-filling 

properties and they achieve uniformity in low dimension as 

depicted in Figs. 1 and 2. We have made the construction of 

OALHDs easier by writing a computer program that runs in 

few seconds to get a desired design. The program is optimised 

using the maximin distance criterion as default. In conclusion, 

the designs constructed in this paper are more appropriate 

designs for computer experiments. They are also useful in 

control engineering. Research work is in progress to apply this 

method and utilize the design constructed in performing a 

simple pendulum experiment as a demonstrative example for 

computer experiments. We are also working on the extension 

of the method to incorporate more than three input variables 

computer experiments for future research. 

 

 

Fig. 1 The bivariate projections among x1, x2, x3 for OA (25, 3, 5, 2) 

LHD showing the space-filling properties of the experimental design 

 

 

Fig. 2 The bivariate projections among x1, x2, x3 OA (49, 3, 7, 2) 

LHD showing the space-filling properties of the experimental design 
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Fig. 3 MATLAB code for the construction of orthogonal array-based 

Latin hypercube designs 
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