
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1261

Abstract—Functionalities and control behavior are both primary

requirements in design of a complex system. Automata theory plays

an important role in modeling behavior of a system. Z is an ideal

notation which is used for describing state space of a system and then

defining operations over it. Consequently, an integration of automata

and Z will be an effective tool for increasing modeling power for a

complex system. Further, nondeterministic finite automata (NFA)

may have different implementations and therefore it is needed to

verify the transformation from diagrams to a code. If we describe

formal specification of an NFA before implementing it, then

confidence over transformation can be increased. In this paper, we

have given a procedure for integrating NFA and Z. Complement of a

special type of NFA is defined. Then union of two NFAs is

formalized after defining their complements. Finally, formal

construction of intersection of NFAs is described. The specification

of this relationship is analyzed and validated using Z/EVES tool.

Keywords—Modeling, Nondeterministic finite automata, Z

notation, Integration of approaches, Validation.

I. INTRODUCTION

N this paper, a relationship between automata and Z

notation is investigated. Automata have various applications

in many areas of computer science and engineering. Modeling

control behavior, compiler constructions, modeling of finite

state systems, defining a regular set of finite words are some of

the traditional applications of automata. Automata have

emerged with several modern applications, for example,

optimization of logic based programs, verification of protocols

[1] and human computer interaction. The Z notation [2] is a

model oriented approach based on set theory and first order

predicate logic. It is used for specifying the abstract data types

and sequential programs. Z notation can also be used to define

state of a system and then defining operations over it.

The design of a complex system, not only requires the

techniques for capturing functionalities but it also needs to

N. A. Zafar is with the Faculty of Information Technology, University of

Central Punjab, Lahore, on leave from Pakistan Institute of Engineering

Applied Sciences, Islamabad, Pakistan (phone: +92-51-9290273-4; fax: +92-

51-2208070; e-mail: nazafar@pieas.edu.pk).

N. Sabir is in Faculty of Information Technology, University of Central

Punjab, Lahore, Pakistan (e-mail: nabeel.bloch@ucp.edu.pk).

A. Ali is a student of PhD in Faculty of Information Technology,

University of Central Punjab (e-mail: amiralishahid@ucp.edu.pk).

model control behavior [3]. Functions over any of the systems

can be decomposed in terms of operations and the constraints,

and, hence, Z notation is an ideal application for this purpose.

Control over a system can be viewed in terms of visual

flows in between the system’s functions. Automata theory is

very powerful thereat. Consequently, it requires an integration

of automata and Z to increase modeling power for a complex

system, which is one of the objectives of this research.

The design of a complex system, not only requires the

techniques for capturing functionalities but it also needs to

model control behavior [3]. Functions over any of the systems

can be decomposed in terms of operations and constraints, and

hence Z notation is an ideal application for this purpose.

Control over a system can be viewed in terms of visual flows

in between the system’s functions. Automata theory is very

powerful thereat. Consequently, it requires an integration of

automata and Z to increase modeling power for a complex

system, which is one of the objectives of this research.

As we know that nondeterministic and deterministic finite

automata are equivalent in power, in a sense, that if a language

is recognized by one, it is also recognized by the other.

Nondeterministic finite automata (NFA) are sometimes useful

because constructing an NFA is easier than constructing

deterministic finite automata (DFA). This is because the

complexity of mathematical work is reduced using NFA.

Further, many important properties in automata can be

established easily using NFA. For example, to prove that a

union or concatenation of regular languages is regular using

NFA is much easier than using DFA [4]. This is another reason

that NFA is selected to be integrated with Z notation.

Nondeterministic finite automata are abstract models of

machines which can be represented using diagrams. These

models can be used to perform computations on inputs by

moving through a sequence of configurations. An NFA

consumes the entire input of symbols and for each input

symbol it transforms to a new state until all symbols have been

consumed. If we are able to reach any of the accepting state

after consuming whole input then the input is accepted.

At this level of integration, we have defined two NFAs and

their complements are described. As we know that

complement of an NFA is not well defined in general

therefore, in this paper, we have proposed it only for particular

cases. Union of the complemented NFAs is constructed and

formal specification of their relationships is given. Finally

intersection of the given NFAs is constructed by taking

complement of the resultant. Formal specification of the whole

Construction of Intersection of Nondeterministic

Finite Automata using Z Notation

Nazir Ahmad Zafar, Nabeel Sabir, and Amir Ali

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1262

set of activities and the relationship between Z and automata is

analyzed and validated using Z/EVES tool [5]. The main

objectives of this paper are: (i) an integration of automata and

Z notation by giving a syntactic and semantics relationship, (ii)

linking constructs of NFA and Z notation such that both of

these notations can be used in a cohesive way and (iii)

reducing implementation issues of NFA.

Although integration of approaches is a well researched area

[6], [7], [8], [9], [10], [11] but there does not exist much work

on formalization of graphical based notations. The work [12],

[13] of Dong et al. is close to ours in which they have

integrated Object Z and Timed Automata for some aspects of

automata. Another piece of good work is listed in [14], [15] in

which R. L. Constable has given a constructive formalization

of some important concepts of automata using Nuprl. Some

work of interest is also reported in [16]. In [17], a combination

of Z with statecharts is established. A relationship is

investigated in between Z and Petri Nets in [18], [19]. An

integration of UML and B is given in [20], [21].

In section 2, applications of formal methods are discussed.

In section 3, applications and limitations of NFA are analyzed.

Integration of NFA and Z is given in section 4. Conclusion and

future work are discussed in section 5.

II. APPLICATIONS OF FORMAL METHODS

Formal Methods (FM) refers to mathematically rigorous

techniques and tools for the specification, design and

verification of software and hardware systems [22]. FM uses

mathematical notations for writing specifications of the system

to be developed. These mathematical notations are particularly

derived from the area of set theory, discrete mathematics or

graph theory. Thus formal specifications are mathematical

expressions with well-defined syntax and semantics [23]. Once

formal specifications are written it can be refined into actually

implemented system by a process of stepwise refinement. The

validation and verification technique offered by FM is applied

at each phase of the development process, which ensures the

correctness and consistency by giving a high confidence in the

system to be developed. Unlike traditional approaches, formal

specification uses mathematical notations those have same

interpretation throughout the globe [24]. The use of

mathematics in writing specifications helps having deeper

insight of a system to be developed and provides an excellent

medium for its modeling.

One of the major limitations of traditional approaches is that

they lack the ability to prove the specifications. The errors and

inconsistencies are hidden behind graphical requirements

specifications [25], and are usually identified only during

implementation and testing phases. Implementation errors are

difficult and costly to fix [26]. On the other hand, the

mathematical nature of specifications enables to carry out

proves. The worth of conducting proves is that it explores the

entire state space of the system. FM makes it possible to prove

and analyze certain properties of the system during early

stages of the development process so that errors in the

requirement specifications can be identified and removed.

Studies have suggested that FM have tremendous potential for

improving the clarity and precision of requirements

specification, and in finding important and subtle errors [27].

Therefore FM is an emerging and future technology with its

focus to develop high quality and reliable systems [28].

There are several ways in which formal methods may be

classified. One frequently-made distinction is between model

oriented and property oriented methods [29]. Model oriented

methods are used to construct a model of a system’s behavior.

Property oriented methods are used to describe software in

terms of a set of properties, or constraints, that must be

satisfied. The Z notation [30] is a model oriented approach,

which is based on set theory and first order predicate logic.

Although formal methods are being applied successfully in

many research areas of computer science and engineering but

at the current stage of development, it requires an integration

of formal and informal approaches.

III. LIMITATIONS OF NONDETERMINISTIC FINITE AUTOMATA

Nondeterministic finite automata are abstract models based

on mathematical notations which can be represented using

diagrams. These models can be used to perform computations

on inputs by moving through a sequence of configurations. If

we are able to reach any of the accepting state by using a series

of computation then the input is accepted.

An extension of NFA is the NFA with ε (epsilon, a null

string) defined by NFA ∪ {ε} in which the transition function

is allowed to a new state without consuming any input symbol.

For example, it can move from state A to the next state B by

reading ε (without consuming any input symbol) and it creates

an ambiguity. To remove this ambiguity, it is more

understandable to talk of a set of possible states in which the

transition function enters. We have supposed that our

nondeterministic finite automaton is based on the set of

alphabets in addition to the epsilon symbol and is denoted by

NFA. The addition of epsilon, in the set of alphabets of NFA,

increases more complexity in conversion from NFA to DFA.

Further, diagrams in NFA have been difficult to be used

except the very trivial cases, which is one of the major issues

in representation of NFA diagrammatically. It is a fact that a

given NFA may have different implementation methodologies

and consequently its time and space complexity may vary for

different implementation, which is another issue in modeling

using NFA. Further, automata cannot be used for defining

functions and constraints and consequently it is not possible to

model a complete system by this single approach. As a result,

its integration will be very useful with Z notation increasing

modeling power for a complex system. If we are able to

formalize this relationship, then it would be very useful tool

not only at academic but at an industrial level as well. This is

because the study of automata in class room, after this

integration, will increase clarity of concepts. A formal linkage

between these approaches is given in the next section

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1263

IV. FORMAL CONSTRUCTION OF INTERSECTION OF NFAS

A formal construction of intersection of two NFAs is

demonstrated. An NFA is a five tuple (Q, ∑, δ, q0, F), where

(i) Q is a finite non-empty set of states, (ii) ∑ is a finite set of

alphabets, (iii), δ is a transition function, (iv) q0 is the initial

state and (v) F is a finite set of final states.

The above 5-tuple is an NFA because for each state q1, and

for every alphabet a, there is a set of states s, such that δ(q1,a)

= s. The definitions used here are based on well known books

on Automata and Computation Theory [31], [32].

Let us suppose that L is a language over a set of alphabets

∑, and is accepted by a machine NFA = (Q, ∑, δ, q0, F). We

define complement of language L as the language of all the

strings that are not words in L. Mathematically we define as:

L
c
 = {s, s is a string based on set of alphabets of ∑ | s ∉ L}.

In order to take compliment of deterministic automata we

simply swap the accepting and non-accepting states but this is

not true in case of an NFA. For example, the NFA1 in Fig. 1

accepts all strings of length greater than or equal to 2. The

NFA2, in Fig., is obtained by swapping the final and non-final

states of NFA1 which accepts all the strings of any length and

hence it is not complement of NFA1. If we suppose that our

NFA accepts all the strings of length n and no self loop is

allowed on a state then we can take compliment of it by simply

swapping the final and non-final states. In this paper such

NFAs for constructing intersection are supposed.

Fig. 1 NFA accepting strings of length at least two

Fig. 2 Complement of the NFA given in Fig. 1

Let NFA1 and NFA2 be two NFAs accepting the languages

L1 and L2 respectively. We construct the NFAs accepting the

languages L1
c
 and L2

c
. Then a new NFA will be designed

accepting all the words of L1
c
 and L2

c
. By deMorgon’s Law:

L1 ∩ L2 = (L1
c

∪ L2
c
)

 c
 is the intersection of two given

languages for which a new NFA is required.

A. Complementing First NFA

The first non-deterministic finite automata consists of 5-

tuple (Q1, ∑1, δ1, q01, F1), where Q1 and ∑1 are represented

as Q and Sigma respectively.
[Q, Sigma]

In modeling using sets in Z, we do not impose any

restriction upon the number of elements and a high level of

abstraction is supposed. As a consequent, our Q and Sigma

are sets over which we cannot define any operation, for

example, cardinality to know the number of elements in a set.

To describe a set of states, a variable states1 is

introduced. Since a given state q is of type Q therefore

states1 is of type of power set of Q. Similarly, a set of

alphabets alphabets1 is of type of power set of Sigma. As

we know that δ1 relation is a function because for each input

(q1, a), where q1 is a state and a is in set of alphabet1 there

must be a unique output s of type PQ, which is image of (q1, a)

under the transition function δ1. Hence we can declare δ1 as,

δ1: Q x Sigma→PQ. The initial state q01 is of type Q.

The F1, set of final states, is represented by finals1 and is a

type of power set of Q.

The schema structure is used here for composition of these

objects because it is very powerful at abstract level of

specification. All of the components of NFA1 are encapsulated

and put in the schema named as Nondeterministic1. We also

need to compute the set of all the strings generated by a given

alphabets which is declared as: Strings == seq Sigma.

∪_Nondeterministic1________________________

→states1: Π Q

→alphabets1: Π Sigma

→apsi1: Sigma

→delta1: Q ξ Sigma ϕ Π Q

→q01: Q

→null1: Π Q

→finals1: Π Q

→strings1: Π Strings

∩__________________

→apsi1 ε alphabets1

→q01 ε states1

→finals1 ζ states1

→Αq1, q2: Q; a: Sigma | q1 ε states1 ƒ q2 ε states1 ƒ a ε alphabets1

→∞ Εs1, s2: Π Q | s1 ζ states1 ƒ s2 ζ states1

→ ƒ ((q1, a), s1) ε delta1

→ ƒ ((q2, a), s2) ε delta1 ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε strings1 ∞ ran st ζ alphabets1

∠__________________________________

Invariants: (i) The empty string apsi1 is a member of set of

alphabets1. (ii) The initial state q01 must be an element of set

of states1. (iii) The set of final states is a subset of set of total

states. (iv) For each (q, a), where q is an element of states1 and

a is member of alphabets1 there is a unique set of states s such

that: delta1(q, a) = s. (v) Any string given as input to an NFA

must be based on the set of alphabets of the same NFA.

After designing NFA1, we need to take its complement. For

this purpose a schema ComplementOfNFA1 is defined. It

contains NFA1 and some other components in addition to it,

which are required in defining complement of an NFA. A

relation is defined between the NFA and its complement.
∪_ComplementOfNFA1 ______________________

→ΞNondeterministic1

→states1c: Π Q

→alphabets1c: Π Sigma

→apsi1c: Sigma

→delta1c: Q ξ Sigma ϕ Π Q

→q01c: Q

→null1c: Π Q

→finals1c: Π Q

→strings1c: Π Strings

∩___________________

→states1c = states1 ƒ alphabets1c = alphabets1

→apsi1c = apsi1 ƒ q01c = q01 ƒ null1c = null1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1264

→finals1c = states1 \ finals1

→strings1c = strings1

→apsi1c ε alphabets1c

→q01c ε states1c ƒ finals1c ζ states1c

→Αq1, q2: Q; a: Sigma | q1 ε states1c ƒ q2 ε states1c ƒ a ε alphabets1c

→∞ Εs1, s2: Π Q | s1 ζ states1c ƒ s2 ζ states1c ƒ ((q1, a), s1) ε delta1c

→ ƒ ((q2, a), s2) ε delta1c ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε strings1c ∞ ran st ζ alphabets1c

∠__________________________________

Invariants: (i) The set of states and alphabets in the given NFA and

its complement are same. (ii) The null strings, initial states and the sets of

dead states in the NFAs and its complement are identical. (iii) The set of

final states in complemented NFA is equal to difference of the sets

states1 and finals1. (iv) The sets of strings generated by both,

NFA and its complement, are equal because these are based on the same

alphabets. (v) The empty string apsi1 is a member of set of

alphabets1. (vi) The initial state q01 must be an element of set of

states1. (vii) The set of final states is a subset of set of total states.

B. Complementing the Second NFA

Let NFA2 = (Q2, ∑2, δ2, q02, F2) be a 5-tuple where all

components have the same meaning as defined in case of

NFA1. The NFA2 is represented by Nondeterministic2 as given

below and invariants over it are defined similar to NFA1.
∪_Nondeterministic2________________________

→states2: Π Q

→alphabets2: Π Sigma

→apsi2: Sigma

→delta2: Q ξ Sigma ϕ Π Q

→q02: Q

→null2: Π Q

→finals2: Π Q

→strings2: Π Strings

∩_______________

→apsi2 ε alphabets2

→q02 ε states2

→finals2 ζ states2

→Αq1, q2: Q; a: Sigma | q1 ε states2 ƒ q2 ε states2 ƒ a ε alphabets2

→∞ Εs1, s2: Π Q | s1 ζ states2 ƒ s2 ζ states2 ƒ ((q1, a), s1) ε delta2 ƒ

→ ((q2, a), s2) ε delta2 ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε strings2 ∞ ran st ζ alphabets2

∠__________________________________

After designing NFA2, its complement is defined which is

also a schema and represented as ComplementOfNFA2 as below.

The invariants over it are identified and defined as predicates

in the second part of the schema. The informal description of

the invariants is not given because it is nothing but a repetition

of properties as we defined in the schema ComplementOfNFA1.

∪_ComplementOfNFA2 ______________________

→ΞNondeterministic2

→states2c: Π Q

→alphabets2c: Π Sigma

→apsi2c: Sigma

→delta2c: Q ξ Sigma ϕ Π Q

→q02c: Q

→null2c: Π Q

→finals2c: Π Q

→strings2c: Π Strings

∩_________________

→states2c = states2 ƒ alphabets2c = alphabets2

→apsi2c = apsi2 ƒ q02c = q02 ƒ null2c = null2

→finals2c = states2 \ finals2 ƒ strings2c = strings2

→apsi2c ε alphabets2c ƒ q02c ε states2c ƒ finals2c ζ states2c

→Αq1, q2: Q; a: Sigma | q1 ε states2c ƒ q2 ε states2c ƒ a ε alphabets2c

→∞ Εs1, s2: Π Q | s1 ζ states2c ƒ s2 ζ states2c ƒ ((q1, a), s1) ε delta2c ƒ

→((q2, a), s2) ε delta2c ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε strings2c ∞ ran st ζ alphabets2c

∠__________________________________

C. Union of Complements

Now we can give a formal definition of union of the

complements of given NFAs. Mathematically, we can define:

L1
c
 ∪ L2

c
 = {s, a string based on ∑1 | s ∉ L1 ∨ s ∉ L2}. The

NFA accepting L1
c
 ∪ L2

c
, is given below following the set of

properties defining the union relationship
.

∪_NFA1uNFA2__________________________

→ΞComplementOfNFA1

→ΞComplementOfNFA2

→states: Π Q

→alphabets: Π Sigma

→apsi: Sigma

→delta: Q ξ Sigma ϕ Π Q

→q0: Q

→null: Π Q

→finals: Π Q

→strings: Π Strings

∩_________________

→alphabets1c = alphabets2c

→apsi1c = apsi2c

→strings1c = strings2c

→apsi ε alphabets

→q0 ε states

→finals ζ states

→Αq1, q2: Q; a: Sigma | q1 ε states ƒ q2 ε states ƒ a ε alphabets

→ ∞ Εs1, s2: Π Q | s1 ζ states

→ ƒ s2 ζ state ƒ ((q1, a), s1) ε delta

→ ƒ ((q2, a), s2) ε delta ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε strings ∞ ran st ζ alphabets

→states = states1c Υ states2c Υ {q0}

→alphabets = alphabets1c ƒ apsi = apsi1c

→Αq: Q; a: Sigma; ss1: Π Q | q ε states ƒ a ε alphabets ƒ ((q, a), ss1) ε

→delta ∞ (q ε states1c ⇒ (Εss2: Π Q | ((q, a), ss2) ε delta1c ∞ ss1 = ss2)) ƒ

→(q ε states2c ⇒ (Εss3: Π Q | ((q, a), ss3) ε delta2c ∞ ss1 = ss3))

→ ƒ (q = q0 ƒ a = apsi ⇒ ss1 = {q01c, q02c})

→ ƒ (q = q0 ƒ ! a = apsi ⇒ ss1 = null)

→null = null1c Υ null2c

→finals = finals1c Υ finals2c

→strings = strings1c

∠__________________________________

 Invariants:(i) The set of alphabets in NFA1 and NFA2 are

supposed to be same for simplicity of construction. (ii) The

null strings in NFA1 and NFA2 must be same. (iii) Since the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1265

alphabets are same for NFA1 and NFA2, therefore the possible

strings in both of the automata are also same. (iv) The empty

string apsi is a member of set of alphabets. (v) The initial state

q0 must be an element of set of states. (vi) The set of final

states is a subset of set of total states. (vii) For each (q, a) there

is a unique set of states s such that: delta(q, a) = s. (viii) Any

string given as input to an NFA must be based on the set of

alphabets of the same NFA. The empty string apsi is a member

of the set of alphabets of the resultant NFA. (ix) The set of

states of the resultant NFA is equal to the union of the sets of

states of NFA1, NFA2 and a set consisting of a single element

q0. The q0 is a new state introduced at the time of union and is

initial state in the resultant NFA. (x) The set of alphabets

(including null string) in the resultant NFA is same as in the

NFA1 or NFA2. (xi) For any state q of states and an element a

of the alphabets of the NFA, the transition function holds the,

(a) delta (q, a) = delta1 (q, a), if q∈ states1, (b) delta (q, a) = delta2 (q,

a), if q∈ states2, c) delta (q, a) = {q01, q02}, if q = q0 and a = apsi, (d)

delta (q, a) = null, if q = q0 and a ∉ apsi.(xii) The set of dead states of

the resultant NFA is equal to the union of the sets of dead states of NFA1

and NFA2. (xiii) The set of final states of the resultant NFA is equal to

the union of the sets of final states of NFA1 and NFA2. (xiv) As the

alphabets are same in the given NFA and its complement, therefore the

possible strings in these automata are also same.

D. Construction of Intersection

A formal construction of NFA accepting the language (L1
c

∪ L2
c
) is done in the sub-section 4.3. Now if we construct

complement of (L1
c

∪ L2
c
) then the resultant automata will

accept the language which is intersection of L1 and L2. The

schema is represented by ComplementOfUnionOfNFAs as given

below, which completes this formal construction.

∪_ComplementOfUnionOfNFAs___________________

→ΞNFA1uNFA2

→statesc: Π Q

→alphabetsc: Π Sigma

→apsic: Sigma

→deltac: Q ξ Sigma ϕ Π Q

→q0c: Q

→nullc: Π Q

→finalsc: Π Q

→stringsc: Π Strings

∩_______________

→statesc = states ƒ alphabetsc = alphabets

→apsic = apsi ƒ q0c = q0

→nullc = null

→finalsc = states \ finals

→stringsc = strings

→apsic ε alphabetsc

→q0c ε statesc

→finalsc ζ statesc

→Αq1, q2: Q; a: Sigma | q1 ε statesc ƒ q2 ε statesc ƒ a ε alphabetsc

→∞ Εs1, s2: Π Q | s1 ζ statesc ƒ s2 ζ statesc ƒ ((q1, a), s1) ε deltac

→ ƒ ((q2, a), s2) ε deltac ∞ (q1, a) = (q2, a) ⇒ s1 = s2

→Αst: Strings | st ε stringsc ∞ ran st ζ alphabetsc

∠__________________________________

Invariants: (i) The set of states in the given NFA and its

complement are same. (ii) The set of alphabets in NFA and its

complement are equal. (iii) The null strings in the NFAs are identical. (iv)

The initial states must be same as well. (v) The set of dead states in both

of the automata will remain same. (vi) The set of final states in the

complemented NFA is equal to difference of sets states and finals.

(vii) The sets of strings generated by both, NFA and its complement, are

equal because these are based on same alphabets. (viii) The empty string

apsic is a member of set of alphabetsc. (ix) The initial state q0c

must be an element of set of statesc. (x) The set of final states is a

subset of set of total states. (xi) For each (q, a), where q is an element

of statesc and a is member of alphabetsc there is a unique set of

states s such that: deltac(q, a) = s. (xii) Any string given as input

to an NFA must be based on the set of alphabets of the same NFA.

V. CONCLUSION

In this paper, we have identified a relationship between Z

notation and automata. Our idea is original and important

because we have observed, after integrating, that a natural

relationship exists there. An extensive survey of existing work

was done before initiating this research. There exists a lot of

work on integration of approaches, as discussed in the

introduction part of this paper. Some of the most relevant and

interesting work reported in [14], [15], [18], [19], [21] was

found but our work and approach are different because of

abstract and conceptual level integration of Z and automata.

Further, formalizing graph based notation is not easy, as there

has been little tradition of formalization in it due to

concreteness of the graphs [31].

Why and what kind of integration is required, were two

basic questions in our mind before initiating this research.

Capturing functionalities and modeling control behavior are

both, equally, important in design of a complex system.

Automata is best suited for modeling behavior of a system

while Z is an ideal notation to be used describing state space

and then defining operations over it. This proves a need and an

importance of integration of Z notation with automata. We

believe that this combined approach can be very useful in

development of integrated tools.

In this paper, we have described formal specification of an

algorithm which can be used to construct finite automata

accepting a language which is an intersection of two given

languages. Although a part of integration of automata and Z

notation is treated but we have observed that this approach can

be extended to give a formal specification of a more powerful

tool. Our work is useful for researchers interested in integrated

approaches because of the successful integration of Z notation

with automata. We also believe that this research is useful at

industrial as well as at academic level because it is focused on

general principles and concepts and this integration can be

used for modeling a particular application after an intelligent

reduction of this specification.

Formalization of some other important concepts in automata

is under progress and will appear soon. Further we have taken

some assumptions in this integration, for example, it was

assumed that the set of alphabets in both of the automata are

same. These assumptions were taken for simplicity of

construction. In our future work, a more generic integration

will be proposed after relaxing such assumptions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1266

REFERENCES

[1] M. Y. Vardi, and T. Wilke, “Automata - from logic to

algorithms,” Logic and Automata - History and Perspectives, 2007.

[2] J. M. Spivey, “The Z notation, A Reference Manual,” Englewood Cliffs,

NJ, Prentice-Hall, 1989.

[3] I. J. Holub, “Finding Common Motifs with Gaps using Finite

Automata,” In Implementation and Application of Automata, Springer-

Verlag, pp: 69-77, ISBN 3-540-37213-X, 2006.

[4] K. Brouwer, W. Gellerich and E. Ploedereder, “Myths and Facts about

the Efficient Implementation of Finite Automata and Lexical Analysis,”

Springer-Berlin, ISBN 978-3-540-64304-3, 2006.

[5] I. Meisels and M. Saaltink, “The Z/EVES Reference Manual,” TR-97-

5493-03, ORA Canada, CANADA, 1997.

[6] E. A. Boiten, J. Derrick and G. Smith, “Integrated Formal Methods

(IFM 2004),” Canterbury, UK, Springer-Verlag, 2004.

[7] J. Davies and J. Gibbons, “Integrated Formal Methods (IFM 2007),”

Oxford, UK, Springer-Verlag, 2007.

[8] J. Romijn, G. Smith and J. v. d. Pol, “Integrated Formal Methods (IFM

2005),” Eindhoven, The Netherlands, Springer-Verlag, 2005.

[9] K. Araki, A. Galloway and K. Taguchi, “Integrated Formal Methods

(IFM 99),” York, UK, Springer-Verlag, 1999.

[10] M. Butler, L. Petre and K. Sere, “Integrated Formal Methods (IFM

2002),” Turku, Finland, Springer-Verlag, 2002.

[11] W. Grieskamp, T. Santen and B. Stoddart, “Integrated Formal Methods

(IFM 2000),” Dagstuhl Castle, Germany, Springer-Verlag, 2000.

[12] J. S. Dong, R. Duke and P. Hao, “Integrating Object-Z with Timed

Automata,” 12th IEEE International Conference on Engineering

Complex Computer Systems (ICECCS 2005), pp: 488-497, 2005.

[13] J. S. Dong et al, “Timed Patterns: TCOZ to Timed Automata,” 6th

International Conference on Formal Engineering Methods (ICFEM’04),

LNCS, pp: 483-498, 2004.

[14] R. L. Constable, P. B. Jackson, P. Naumov and J. Uribe, “Formalizing

Automata II: Decidable Properties,” Cornell University, 1997.

[15] R. L. Constable, P. B. Jackson, P. Naumov and J. Uribe,

“Constructively Formalizing Automata Theory,” Foundations Of

Computing Series, MIT Press, ISBN:0-262-16188-5, 2000.

[16] R. Bussow and W. Grieskamp, “A Modular Framework for the

Integration of Heterogeneous Notations and Tools,” Integrated Formal

Methods (IFM 99), York, UK, Springer-Verlag, pp: 211–230, 1999.

[17] R. Büssow, R. Geisler and M. Klar, “Specifying Safety-Critical

Embedded Systems with Statecharts and Z: A Case Study,”

Fundamental Approaches to Software Engineering, Springer Berlin,

ISBN, 978-3-540-64303-6, 2004.

[18] M. Heiner and M. Heisel, “Modeling safety-critical systems with Z and

Petri nets,” International Conference on Computer Safety, Reliability

and Security, LNCS, Springer, pp: 361–374, 1999.

[19] X. He, “Pz nets a formal method integrating petri nets with z,”

Information & Software Technology, 43(1), pp: 1–18, 2001.

[20] H. Leading and J. Souquieres, “Integration of UML and B Specification

Techniques: Systematic Transformation from OCL Expressions into B,”

Proceedings of Asia-Pacific Software Engineering Conference

(APSEC02), Australia, 2002.

[21] H. Leading and J. Souquieres, “Integration of UML Views using B

Notation,” Proceedings of Workshop on Integration and Transformation

of UML models (WITUML02), Spain, 2002.

[22] C. Heitmeyer, “On the Need for Practical Formal Methods,” Lecture

Notes in Computer Science, Vol.1486, pp: 18-26, 1998.

[23] E. Ciapessoni, A. C. Porisini, E. Crivelli, D. Mandrioli, P. Mirandola

and A. Morzenti, “From Formal Models to Formally-Based Methods:

An Industrial Experience,” TOSEM, Vol.8, No.1, pp: 79-113, 1999.

[24] J. P. Bowen, “Ten Commandments of Formal Methods,” IEEE

Computer, Vol.28, No.4, pp: 56-63, 1995.

[25] J. P. Bowen and M. G. Hinchey, “The Use of Industrial-Strength of

Formal Methods,” Proceedings of 21st International Computer Software

& Application Conference (COMPSAC'97), pp: 332-337, 1997.

[26] M. Barjaktarovic, “The State-of-the-Art in Formal Methods,” AFOSR

Summer Research Technical Report for Rome Research Site, Formal

Methods Framework-Monthly Status Report, F30602-99-C-0166,

WetStone Technologies, 1998.

[27] R. W. Butler, “What is Formal Methods?,” NASA LaRC Formal

Methods Program, 2001.

[28] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo and D.

Hamilton, “Experiences Using Lightweight Formal Methods for

Requirements Modeling,” IEEE Transactions on Software Engineering,

Vol.24, No.1, pp: 4-14, 1998.

[29] J. M. Wing, “A Specifier’s Introduction to Formal Methods,” IEEE

Computer, Vol.23, No.9, pp: 8-24, 1990.

[30] H. A. Gabbar, “Fundamentals of Formal Methods, Modern Formal

Methods and Applications,” Springer Netherlands, ISBN, 978-1-4020-

4222-5, 2006.

[31] J. E. Hopcroft, R. Motwani and J. D. Ullman, “Introduction to Automata

Theory, Language and Computation,” Addison-Wesley, Reading, 2001.

[32] M. Sipser, “Introduction to the Theory of Computation,” Course

Technology, ISBN-13: 9780534950972, 2005.

[33] C. T. Chou, “A Formal Theory of Undirected Graphs in Higher Order

Logic,” 7th International Workshop on Higher Order Logic Theorem

Proving and Application, pp: 144-157, 1994.

Nazir A. Zafar (QAU’91-KU’04) was born in Pakistan in 1969. He received

his M.Sc. degree in mathematics from Quaid-i-Azam University (QAU),

Islamabad, Pakistan in 1991. He did his M. Phil in mathematics from the

same university in 1993. He also did his M.Sc. nuclear engineering from the

QAU in 1994. He was awarded his PhD degree in computer science from

Kyushu University (KU), Fukuoka, Japan, in 2004. Currently, he is working

as a Full Professor at Faculty of Information Technology, University of

Central Punjab (UCP), Lahore, Pakistan. Before, he was working as an

Associate Professor at Department of Computer and Information Sciences,

Pakistan Institute of Engineering Applied Sciences, Islamabad, PAKISTAN.

He has served at various other universities and scientific organizations in

Pakistan. He is the founder and Chair of formal methods research group at

UCP. His current research interests are modeling of systems using formal

approaches, integration of approaches, etc.

Dr. Zafar is an active member of Pakistan Mathematical Society. Since

last few years, he has been involved, as a team member, in organizing the

conference with title “International Pure Mathematics Conference (IPMC)”

which is conducted every year and 9th IPMC is being held in August, 2008.

He has worked for IEEE and some other international and national

conferences as a member of technical committee. He has delivered various

lectures at national level promoting use and applications of formal methods at

academic as well as at industrial level in Pakistan.

Nabeel Sabir (UCP’03) was born in Pakistan in 1979. He received his

master in computer science from University of Central Punjab (UCP), Lahore,

Pakistan in 2003. He did his MS in computer science from the same

university in 2007. Currently, he is a faculty member and PhD student of Dr.

Zafar at University of Central Punjab, Lahore, Pakistan. Mr. Nabeel is an

active member of various technical and non-technical committees working for

UCP.

Amir Ali (BZU’03-QAU’05-NUML’07) was born in Pakistan in 1979. He

received his M.Sc. degree in mathematics from Baha-ud-din Zakriya

University (BZU), Multan in 2003. He did his post graduate diploma in

computer science from Quaid-i-Azam University (QAU), Islamabad,

Pakistan, in 2005. He did his master in computer science from National

University of Modern Languages (NUML), Islamabad, Pakistan, in 2007.

Currently, Mr. Ali is a PhD student of Dr. Zafar at University of Central

Punjab, Lahore, Pakistan.

