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Abstract—Functionalities and control behavior are both primary 

requirements in design of a complex system. Automata theory plays 

an important role in modeling behavior of a system. Z is an ideal 

notation which is used for describing state space of a system and then 

defining operations over it. Consequently, an integration of automata 

and Z will be an effective tool for increasing modeling power for a 

complex system. Further, nondeterministic finite automata (NFA) 

may have different implementations and therefore it is needed to 

verify the transformation from diagrams to a code. If we describe 

formal specification of an NFA before implementing it, then 

confidence over transformation can be increased. In this paper, we 

have given a procedure for integrating NFA and Z. Complement of a 

special type of NFA is defined. Then union of two NFAs is 

formalized after defining their complements. Finally, formal 

construction of intersection of NFAs is described. The specification 

of this relationship is analyzed and validated using Z/EVES tool. 

 

Keywords—Modeling, Nondeterministic finite automata, Z 

notation, Integration of approaches, Validation. 

 

I. INTRODUCTION 

N this paper, a relationship between automata and Z 

notation is investigated. Automata have various applications 

in many areas of computer science and engineering. Modeling 

control behavior, compiler constructions, modeling of finite 

state systems, defining a regular set of finite words are some of 

the traditional applications of automata. Automata have 

emerged with several modern applications, for example, 

optimization of logic based programs, verification of protocols 

[1] and human computer interaction. The Z notation [2] is a 

model oriented approach based on set theory and first order 

predicate logic. It is used for specifying the abstract data types 

and sequential programs. Z notation can also be used to define 

state of a system and then defining operations over it. 

The design of a complex system, not only requires the 

techniques for capturing functionalities but it also needs to  
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model control behavior [3]. Functions over any of the systems 

can be decomposed in terms of operations and the constraints, 

and, hence, Z notation is an ideal application for this purpose. 

Control over a system can be viewed in terms of visual 

flows in between the system’s functions. Automata theory is 

very powerful thereat. Consequently, it requires an integration 

of automata and Z to increase modeling power for a complex 

system, which is one of the objectives of this research. 

The design of a complex system, not only requires the 

techniques for capturing functionalities but it also needs to 

model control behavior [3]. Functions over any of the systems 

can be decomposed in terms of operations and constraints, and 

hence Z notation is an ideal application for this purpose. 

Control over a system can be viewed in terms of visual flows 

in between the system’s functions. Automata theory is very 

powerful thereat. Consequently, it requires an integration of 

automata and Z to increase modeling power for a complex 

system, which is one of the objectives of this research. 

As we know that nondeterministic and deterministic finite 

automata are equivalent in power, in a sense, that if a language 

is recognized by one, it is also recognized by the other. 

Nondeterministic finite automata (NFA) are sometimes useful 

because constructing an NFA is easier than constructing 

deterministic finite automata (DFA). This is because the 

complexity of mathematical work is reduced using NFA. 

Further, many important properties in automata can be 

established easily using NFA. For example, to prove that a 

union or concatenation of regular languages is regular using 

NFA is much easier than using DFA [4]. This is another reason 

that NFA is selected to be integrated with Z notation. 

Nondeterministic finite automata are abstract models of 

machines which can be represented using diagrams. These 

models can be used to perform computations on inputs by 

moving through a sequence of configurations. An NFA 

consumes the entire input of symbols and for each input 

symbol it transforms to a new state until all symbols have been 

consumed. If we are able to reach any of the accepting state 

after consuming whole input then the input is accepted.  

At this level of integration, we have defined two NFAs and 

their complements are described. As we know that 

complement of an NFA is not well defined in general 

therefore, in this paper, we have proposed it only for particular 

cases. Union of the complemented NFAs is constructed and 

formal specification of their relationships is given. Finally 

intersection of the given NFAs is constructed by taking 

complement of the resultant. Formal specification of the whole 
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set of activities and the relationship between Z and automata is 

analyzed and validated using Z/EVES tool [5]. The main 

objectives of this paper are: (i) an integration of automata and 

Z notation by giving a syntactic and semantics relationship, (ii) 

linking constructs of NFA and Z notation such that both of 

these notations can be used in a cohesive way and (iii) 

reducing implementation issues of NFA. 

Although integration of approaches is a well researched area 

[6], [7], [8], [9], [10], [11] but there does not exist much work 

on formalization of graphical based notations. The work [12], 

[13] of Dong et al. is close to ours in which they have 

integrated Object Z and Timed Automata for some aspects of 

automata. Another piece of good work is listed in [14], [15] in 

which R.  L. Constable has given a constructive formalization 

of some important concepts of automata using Nuprl. Some 

work of interest is also reported in [16]. In [17], a combination 

of Z with statecharts is established. A relationship is 

investigated in between Z and Petri Nets in [18], [19]. An 

integration of UML and B is given in [20], [21]. 

In section 2, applications of formal methods are discussed. 

In section 3, applications and limitations of NFA are analyzed. 

Integration of NFA and Z is given in section 4. Conclusion and 

future work are discussed in section 5. 

II. APPLICATIONS OF FORMAL METHODS 

Formal Methods (FM) refers to mathematically rigorous 

techniques and tools for the specification, design and 

verification of software and hardware systems [22]. FM uses 

mathematical notations for writing specifications of the system 

to be developed. These mathematical notations are particularly 

derived from the area of set theory, discrete mathematics or 

graph theory. Thus formal specifications are mathematical 

expressions with well-defined syntax and semantics [23]. Once 

formal specifications are written it can be refined into actually 

implemented system by a process of stepwise refinement. The 

validation and verification technique offered by FM is applied 

at each phase of the development process, which ensures the 

correctness and consistency by giving a high confidence in the 

system to be developed. Unlike traditional approaches, formal 

specification uses mathematical notations those have same 

interpretation throughout the globe [24]. The use of 

mathematics in writing specifications helps having deeper 

insight of a system to be developed and provides an excellent 

medium for its modeling. 

One of the major limitations of traditional approaches is that 

they lack the ability to prove the specifications. The errors and 

inconsistencies are hidden behind graphical requirements 

specifications [25], and are usually identified only during 

implementation and testing phases. Implementation errors are 

difficult and costly to fix [26]. On the other hand, the 

mathematical nature of specifications enables to carry out 

proves. The worth of conducting proves is that it explores the 

entire state space of the system. FM makes it possible to prove 

and analyze certain properties of the system during early 

stages of the development process so that errors in the 

requirement specifications can be identified and removed. 

Studies have suggested that FM have tremendous potential for 

improving the clarity and precision of requirements 

specification, and in finding important and subtle errors [27]. 

Therefore FM is an emerging and future technology with its 

focus to develop high quality and reliable systems [28].   

There are several ways in which formal methods may be 

classified. One frequently-made distinction is between model 

oriented and property oriented methods [29]. Model oriented 

methods are used to construct a model of a system’s behavior.  

Property oriented methods are used to describe software in 

terms of a set of properties, or constraints, that must be 

satisfied. The Z notation [30] is a model oriented approach, 

which is based on set theory and first order predicate logic. 

Although formal methods are being applied successfully in 

many research areas of computer science and engineering but 

at the current stage of development, it requires an integration 

of formal and informal approaches. 

III. LIMITATIONS OF NONDETERMINISTIC FINITE AUTOMATA 

Nondeterministic finite automata are abstract models based 

on mathematical notations which can be represented using 

diagrams. These models can be used to perform computations 

on inputs by moving through a sequence of configurations. If 

we are able to reach any of the accepting state by using a series 

of computation then the input is accepted. 

An extension of NFA is the NFA with ε (epsilon, a null 

string) defined by NFA ∪ {ε} in which the transition function 

is allowed to a new state without consuming any input symbol. 

For example, it can move from state A to the next state B by 

reading ε (without consuming any input symbol) and it creates 

an ambiguity. To remove this ambiguity, it is more 

understandable to talk of a set of possible states in which the 

transition function enters. We have supposed that our 

nondeterministic finite automaton is based on the set of 

alphabets in addition to the epsilon symbol and is denoted by 

NFA. The addition of epsilon, in the set of alphabets of NFA, 

increases more complexity in conversion from NFA to DFA. 

Further, diagrams in NFA have been difficult to be used 

except the very trivial cases, which is one of the major issues 

in representation of NFA diagrammatically. It is a fact that a 

given NFA may have different implementation methodologies 

and consequently its time and space complexity may vary for 

different implementation, which is another issue in modeling 

using NFA. Further, automata cannot be used for defining 

functions and constraints and consequently it is not possible to 

model a complete system by this single approach. As a result, 

its integration will be very useful with Z notation increasing 

modeling power for a complex system. If we are able to 

formalize this relationship, then it would be very useful tool 

not only at academic but at an industrial level as well. This is 

because the study of automata in class room, after this 

integration, will increase clarity of concepts. A formal linkage 

between these approaches is given in the next section 
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IV. FORMAL CONSTRUCTION OF INTERSECTION OF NFAS 

A formal construction of intersection of two NFAs is 

demonstrated. An NFA is a five tuple (Q, ∑, δ, q0, F), where 

(i) Q is a finite non-empty set of states, (ii) ∑ is a finite set of 

alphabets, (iii), δ is a transition function, (iv) q0 is the initial 

state and (v) F is a finite set of final states. 

The above 5-tuple is an NFA because for each state q1, and 

for every alphabet a, there is a set of states s, such that δ(q1,a) 

= s. The definitions used here are based on well known books 

on Automata and Computation Theory [31], [32]. 

Let us suppose that L is a language over a set of alphabets 

∑, and is accepted by a machine NFA = (Q, ∑, δ, q0, F). We 

define complement of language L as the language of all the 

strings that are not words in L. Mathematically we define as: 

L
c
 = {s, s is a string based on set of alphabets of ∑ | s ∉ L}. 

In order to take compliment of deterministic automata we 

simply swap the accepting and non-accepting states but this is 

not true in case of an NFA. For example, the NFA1 in Fig. 1 

accepts all strings of length greater than or equal to 2. The 

NFA2, in Fig., is obtained by swapping the final and non-final 

states of NFA1 which accepts all the strings of any length and 

hence it is not complement of NFA1. If we suppose that our 

NFA accepts all the strings of length n and no self loop is 

allowed on a state then we can take compliment of it by simply 

swapping the final and non-final states. In this paper such 

NFAs for constructing intersection are supposed.   

 

 

Fig. 1 NFA accepting strings of length at least two  

 

 

Fig. 2 Complement of the NFA given in Fig. 1 

 

Let NFA1 and NFA2 be two NFAs accepting the languages 

L1 and L2 respectively. We construct the NFAs accepting the 

languages L1
c
 and L2

c
. Then a new NFA will be designed 

accepting all the words of L1
c
 and L2

c
. By deMorgon’s Law: 

L1 ∩ L2 = (L1
c 

∪ L2
c
)

 c
 is the intersection of two given 

languages for which a new NFA is required. 

A. Complementing First NFA  

The first non-deterministic finite automata consists of 5-

tuple (Q1, ∑1, δ1, q01, F1), where Q1 and ∑1 are represented 

as Q and Sigma respectively. 
[Q, Sigma] 

In modeling using sets in Z, we do not impose any 

restriction upon the number of elements and a high level of 

abstraction is supposed. As a consequent, our Q and Sigma 

are sets over which we cannot define any operation, for 

example, cardinality to know the number of elements in a set.  

To describe a set of states, a variable states1 is 

introduced. Since a given state q is of type Q therefore 

states1 is of type of power set of Q. Similarly, a set of 

alphabets alphabets1 is of type of power set of Sigma. As 

we know that δ1 relation is a function because for each input 

(q1, a), where q1 is a state and a is in set of alphabet1 there 

must be a unique output s of type PQ, which is image of (q1, a) 

under the transition function δ1. Hence we can declare δ1 as, 

δ1: Q x Sigma→PQ. The initial state q01 is of type Q. 

The F1, set of final states, is represented by finals1 and is a 

type of power set of Q.  

The schema structure is used here for composition of these 

objects because it is very powerful at abstract level of 

specification. All of the components of NFA1 are encapsulated 

and put in the schema named as Nondeterministic1. We also 

need to compute the set of all the strings generated by a given 

alphabets which is declared as: Strings == seq Sigma. 

 

∪_Nondeterministic1________________________ 

→states1: Π Q 

→alphabets1: Π Sigma 

→apsi1: Sigma 

→delta1: Q ξ Sigma ϕ Π Q 

→q01: Q 

→null1: Π Q 

→finals1: Π Q 

→strings1: Π Strings 

∩__________________ 

→apsi1 ε alphabets1 

→q01 ε states1 

→finals1 ζ states1 

→Αq1, q2: Q; a: Sigma | q1 ε states1 ƒ q2 ε states1 ƒ a ε alphabets1 

→∞ Εs1, s2: Π Q | s1 ζ states1 ƒ s2 ζ states1 

→          ƒ ((q1, a), s1) ε delta1 

→          ƒ ((q2, a), s2) ε delta1 ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε strings1 ∞ ran st ζ alphabets1 

∠__________________________________ 

Invariants: (i) The empty string apsi1 is a member of set of 

alphabets1. (ii) The initial state q01 must be an element of set 

of states1. (iii) The set of final states is a subset of set of total 

states. (iv) For each (q, a), where q is an element of states1 and 

a is member of alphabets1 there is a unique set of states s such 

that: delta1(q, a) = s. (v) Any string given as input to an NFA 

must be based on the set of alphabets of the same NFA.  

After designing NFA1, we need to take its complement. For 

this purpose a schema ComplementOfNFA1 is defined. It 

contains NFA1 and some other components in addition to it, 

which are required in defining complement of an NFA. A 

relation is defined between the NFA and its complement.  
∪_ComplementOfNFA1 ______________________ 

→ΞNondeterministic1 

→states1c: Π Q 

→alphabets1c: Π Sigma 

→apsi1c: Sigma 

→delta1c: Q ξ Sigma ϕ Π Q 

→q01c: Q 

→null1c: Π Q 

→finals1c: Π Q 

→strings1c: Π Strings 

∩___________________ 

→states1c = states1 ƒ alphabets1c = alphabets1 

→apsi1c = apsi1 ƒ q01c = q01 ƒ null1c = null1 
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→finals1c = states1 \ finals1 

→strings1c = strings1  

→apsi1c ε alphabets1c 

→q01c ε states1c ƒ finals1c ζ states1c 

→Αq1, q2: Q; a: Sigma | q1 ε states1c ƒ q2 ε states1c ƒ a ε alphabets1c 

→∞ Εs1, s2: Π Q | s1 ζ states1c  ƒ s2 ζ states1c ƒ ((q1, a), s1) ε delta1c 

→          ƒ ((q2, a), s2) ε delta1c ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε strings1c ∞ ran st ζ alphabets1c 

∠__________________________________ 

Invariants: (i) The set of states and alphabets in the given NFA and 

its complement are same. (ii) The null strings, initial states and the sets of 

dead states in the NFAs and its complement are identical. (iii) The set of 

final states in complemented NFA is equal to difference of the sets 

states1 and finals1. (iv) The sets of strings generated by both, 

NFA and its complement, are equal because these are based on the same 

alphabets. (v) The empty string apsi1 is a member of set of 

alphabets1. (vi) The initial state q01 must be an element of set of 

states1. (vii) The set of final states is a subset of set of total states. 

B. Complementing the Second NFA  

Let NFA2 = (Q2, ∑2, δ2, q02, F2) be a 5-tuple where all 

components have the same meaning as defined in case of 

NFA1. The NFA2 is represented by Nondeterministic2 as given 

below and invariants over it are defined similar to NFA1. 
∪_Nondeterministic2________________________ 

→states2: Π Q 

→alphabets2: Π Sigma 

→apsi2: Sigma 

→delta2: Q ξ Sigma ϕ Π Q 

→q02: Q 

→null2: Π Q 

→finals2: Π Q 

→strings2: Π Strings 

∩_______________ 

→apsi2 ε alphabets2 

→q02 ε states2 

→finals2 ζ states2 

→Αq1, q2: Q; a: Sigma | q1 ε states2 ƒ q2 ε states2 ƒ a ε alphabets2 

→∞ Εs1, s2: Π Q | s1 ζ states2 ƒ s2 ζ states2 ƒ ((q1, a), s1) ε delta2 ƒ 

→ ((q2, a), s2) ε delta2 ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε strings2 ∞ ran st ζ alphabets2 

∠__________________________________ 

After designing NFA2, its complement is defined which is 

also a schema and represented as ComplementOfNFA2 as below. 

The invariants over it are identified and defined as predicates 

in the second part of the schema. The informal description of 

the invariants is not given because it is nothing but a repetition 

of properties as we defined in the schema ComplementOfNFA1. 
 

∪_ComplementOfNFA2 ______________________ 

→ΞNondeterministic2 

→states2c: Π Q 

→alphabets2c: Π Sigma 

→apsi2c: Sigma 

→delta2c: Q ξ Sigma ϕ Π Q 

→q02c: Q 

→null2c: Π Q 

→finals2c: Π Q 

→strings2c: Π Strings 

∩_________________ 

→states2c = states2 ƒ alphabets2c = alphabets2 

→apsi2c = apsi2 ƒ q02c = q02 ƒ null2c = null2 

→finals2c = states2 \ finals2  ƒ strings2c = strings2 

→apsi2c ε alphabets2c  ƒ q02c ε states2c ƒ finals2c ζ states2c 

→Αq1, q2: Q; a: Sigma | q1 ε states2c ƒ q2 ε states2c ƒ a ε alphabets2c 

→∞ Εs1, s2: Π Q | s1 ζ states2c ƒ s2 ζ states2c ƒ ((q1, a), s1) ε delta2c ƒ 

→((q2, a), s2) ε delta2c ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε strings2c ∞ ran st ζ alphabets2c 

∠__________________________________ 

 

C. Union of Complements 

Now we can give a formal definition of union of the 

complements of given NFAs. Mathematically, we can define: 

L1
c
 ∪ L2

c
 = {s, a string based on ∑1 | s ∉ L1 ∨ s ∉ L2}. The 

NFA accepting L1
c
 ∪ L2

c
, is given below following the set of 

properties defining the union relationship
.
 

∪_NFA1uNFA2__________________________ 

→ΞComplementOfNFA1 

→ΞComplementOfNFA2 

→states: Π Q 

→alphabets: Π Sigma 

→apsi: Sigma 

→delta: Q ξ Sigma ϕ Π Q 

→q0: Q 

→null: Π Q 

→finals: Π Q 

→strings: Π Strings 

∩_________________ 

→alphabets1c = alphabets2c 

→apsi1c = apsi2c 

→strings1c = strings2c 

→apsi ε alphabets 

→q0 ε states 

→finals ζ states 

→Αq1, q2: Q; a: Sigma | q1 ε states ƒ q2 ε states ƒ a ε alphabets 

→   ∞ Εs1, s2: Π Q  | s1 ζ states 

→          ƒ s2 ζ state ƒ ((q1, a), s1) ε delta 

→          ƒ ((q2, a), s2) ε delta ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε strings ∞ ran st ζ alphabets 

→states = states1c Υ states2c Υ {q0} 

→alphabets = alphabets1c ƒ apsi = apsi1c 

→Αq: Q; a: Sigma; ss1: Π Q | q ε states ƒ a ε alphabets ƒ ((q, a), ss1) ε 

→delta ∞ (q ε states1c ⇒ (Εss2: Π Q | ((q, a), ss2) ε delta1c ∞ ss1 = ss2)) ƒ 

→(q ε states2c ⇒ (Εss3: Π Q | ((q, a), ss3) ε delta2c ∞ ss1 = ss3)) 

→     ƒ (q = q0 ƒ a = apsi ⇒ ss1 = {q01c, q02c}) 

→     ƒ (q = q0 ƒ ! a = apsi ⇒ ss1 = null) 

→null = null1c Υ null2c 

→finals = finals1c Υ finals2c 

→strings = strings1c 

∠__________________________________ 

 

    Invariants:(i) The set of alphabets in NFA1 and NFA2 are 

supposed to be same for simplicity of construction. (ii) The 

null strings in NFA1 and NFA2 must be same. (iii) Since the 
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alphabets are same for NFA1 and NFA2, therefore the possible 

strings in both of the automata are also same. (iv) The empty 

string apsi is a member of set of alphabets. (v) The initial state 

q0 must be an element of set of states. (vi) The set of final 

states is a subset of set of total states. (vii) For each (q, a) there 

is a unique set of states s such that: delta(q, a) = s. (viii) Any 

string given as input to an NFA must be based on the set of 

alphabets of the same NFA. The empty string apsi is a member 

of the set of alphabets of the resultant NFA. (ix) The set of 

states of the resultant NFA is equal to the union of the sets of 

states of NFA1, NFA2 and a set consisting of a single element 

q0. The q0 is a new state introduced at the time of union and is 

initial state in the resultant NFA. (x) The set of alphabets 

(including null string) in the resultant NFA is same as in the 

NFA1 or NFA2. (xi) For any state q of states and an element a 

of the alphabets of the NFA, the transition function holds the, 

(a) delta (q, a) = delta1 (q, a), if q∈ states1, (b) delta (q, a) = delta2 (q, 

a), if q∈ states2, c)  delta (q, a) = {q01, q02}, if q = q0 and a = apsi, (d)  

delta (q, a) = null, if q = q0 and a ∉ apsi.(xii) The set of dead states of 

the resultant NFA is equal to the union of the sets of dead states of NFA1 

and NFA2. (xiii) The set of final states of the resultant NFA is equal to 

the union of the sets of final states of NFA1 and NFA2. (xiv) As the 

alphabets are same in the given NFA and its complement, therefore the 

possible strings in these automata are also same. 

D. Construction of Intersection 

A formal construction of NFA accepting the language (L1
c 

∪ L2
c
) is done in the sub-section 4.3. Now if we construct 

complement of (L1
c 

∪ L2
c
) then the resultant automata will 

accept the language which is intersection of L1 and L2. The 

schema is represented by ComplementOfUnionOfNFAs as given 

below, which completes this formal construction. 
 

∪_ComplementOfUnionOfNFAs___________________ 

→ΞNFA1uNFA2 

→statesc: Π Q 

→alphabetsc: Π Sigma 

→apsic: Sigma 

→deltac: Q ξ Sigma ϕ Π Q 

→q0c: Q 

→nullc: Π Q 

→finalsc: Π Q 

→stringsc: Π Strings 

∩_______________ 

→statesc = states ƒ alphabetsc = alphabets 

→apsic = apsi ƒ q0c = q0 

→nullc = null 

→finalsc = states \ finals 

→stringsc = strings 

→apsic ε alphabetsc 

→q0c ε statesc 

→finalsc ζ statesc 

→Αq1, q2: Q; a: Sigma | q1 ε statesc ƒ q2 ε statesc ƒ a ε alphabetsc 

→∞ Εs1, s2: Π Q | s1 ζ statesc ƒ s2 ζ statesc ƒ ((q1, a), s1) ε deltac 

→          ƒ ((q2, a), s2) ε deltac ∞ (q1, a) = (q2, a) ⇒ s1 = s2 

→Αst: Strings | st ε stringsc ∞ ran st ζ alphabetsc 

∠__________________________________ 

Invariants: (i) The set of states in the given NFA and its 

complement are same. (ii) The set of alphabets in NFA and its 

complement are equal. (iii) The null strings in the NFAs are identical. (iv) 

The initial states must be same as well. (v) The set of dead states in both 

of the automata will remain same. (vi) The set of final states in the 

complemented NFA is equal to difference of sets states and finals. 

(vii) The sets of strings generated by both, NFA and its complement, are 

equal because these are based on same alphabets. (viii) The empty string 

apsic is a member of set of alphabetsc. (ix) The initial state q0c 

must be an element of set of statesc. (x) The set of final states is a 

subset of set of total states. (xi) For each (q, a), where q is an element 

of statesc and a is member of alphabetsc there is a unique set of 

states s such that: deltac(q, a) = s. (xii) Any string given as input 

to an NFA must be based on the set of alphabets of the same NFA.  

V. CONCLUSION 

In this paper, we have identified a relationship between Z 

notation and automata. Our idea is original and important 

because we have observed, after integrating, that a natural 

relationship exists there. An extensive survey of existing work 

was done before initiating this research. There exists a lot of 

work on integration of approaches, as discussed in the 

introduction part of this paper. Some of the most relevant and 

interesting work reported in [14], [15], [18], [19], [21] was 

found but our work and approach are different because of 

abstract and conceptual level integration of Z and automata. 

Further, formalizing graph based notation is not easy, as there 

has been little tradition of formalization in it due to 

concreteness of the graphs [31]. 

Why and what kind of integration is required, were two 

basic questions in our mind before initiating this research. 

Capturing functionalities and modeling control behavior are 

both, equally, important in design of a complex system. 

Automata is best suited for modeling behavior of a system 

while Z is an ideal notation to be used describing state space 

and then defining operations over it. This proves a need and an 

importance of integration of Z notation with automata. We 

believe that this combined approach can be very useful in 

development of integrated tools.   

In this paper, we have described formal specification of an 

algorithm which can be used to construct finite automata 

accepting a language which is an intersection of two given 

languages. Although a part of integration of automata and Z 

notation is treated but we have observed that this approach can 

be extended to give a formal specification of a more powerful 

tool. Our work is useful for researchers interested in integrated 

approaches because of the successful integration of Z notation 

with automata. We also believe that this research is useful at 

industrial as well as at academic level because it is focused on 

general principles and concepts and this integration can be 

used for modeling a particular application after an intelligent 

reduction of this specification.  

Formalization of some other important concepts in automata 

is under progress and will appear soon. Further we have taken 

some assumptions in this integration, for example, it was 

assumed that the set of alphabets in both of the automata are 

same. These assumptions were taken for simplicity of 

construction. In our future work, a more generic integration 

will be proposed after relaxing such assumptions.  
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