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Constructing Distinct Kinds of Solutions for the
Time-Dependent Coefficients Coupled
Klein-Gordon-Schrodinger Equation
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Abstract—We seek exact solutions of the coupled Klein-Gordon-
Schrodinger equation with variable coefficients with the aid of Lie
classical approach. By using the Lie classical method, we are able
to derive symmetries that are used for reducing the coupled system
of partial differential equations into ordinary differential equations.
From reduced differential equations we have derived some new exact
solutions of coupled Klein-Gordon-Schrodinger equations involving
some special functions such as Airy wave functions, Bessel functions,
Mathieu functions etc.
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[. INTRODUCTION

N the study of nonlinear partial differential equations, the

discovery of explicit solutions has great theoretical and
practical importance. These explicit solutions for nonlinear
systems are used as models for physical or numerical investi-
gations and often reflect qualitatively on the behaviour of more
complicated solutions. As the scientific literature grew richer,
the task of determining these special solutions posed ever
increasing challenge to the scientists and researchers. It was in
this quest that over the years, a variety of methods for finding
these special solutions by reducing the partial differential
equations (PDEs) to one or more odinary differential equations
(ODEs) have been devised. Included are the methods of group-
invariant solutions, based on the theory of continuous group
of transformations, better known as “Lie groups”, acting on
the space of independent and dependent variables for the
system. The method is originally due to Sophus Lie [1],
who eastablished that in the case of ODEs, invariance under
a one-parameter symmetry group implies that the order of
the equation can be reduced by one and in the case of
PDEs, symmetry group implies the reduction of number of
independent variables by one.

Because of the wide range of applications in several
branches of physics, the variable coefficients Klein-Gordon-
Schrodinger (VCKGS) equations are always the subject of
studies both in physical and mathematical contexts. In this
direction, we shall obtain the general set of determining equa-
tions for the infinitesimals of the Lie point symmetry groups
[1-8] leaving VCKGS equation invariant. The symmetries will
then be used to obtain physically interesting solutions of the
equation. In this paper, we will consider the following form
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of coupled Klein-Gordon-Schrodinger equation [9, 10] with
variable coefficients:

U + f(#) Uy + g(t)u+ h(t)|v]|? =0,

g + p(t)Vze + q(t)uv =0, M

where v(z,t) is a complex function, u(z,t) is a real one and
i2 = —1. Here, the coefficients f(t), g(t), h(t),p(t), q(t) are
the functions of independent variable ¢ that corresponds to new
or more realistic physical conditions. In the form of constant
coefficients with f(t) = —c%,g(t) = 1,h(t) = 1,p(t) =
1,¢(t) = 1, this system is a classical model which describes
the interaction between conservative complex neutron field and
neutral meson Yukawa in quantum field theory.

In the literatures, the existence, uniqueness, and asymptotic
behaviour of global solution of Klein-Gordon-Schrodinger
equations are considered in [9, 10] and the exact solitary
wave solution is given in [11]. Numerically, two conserva-
tive difference schemes are constructed in [12, 13] and the
multisymplectic method is considered in [14]. In [15], the
modified decomposition method was used for finding the
solutions for the coupled KGS equations with initial conditions
and the approximate solutions to the equations have been
calculated without any need to a transformation techniques and
linearization of the equations. Wang [16] established a rational
physical model for controlling KGS dynamics system. In the
case of perturbation caused by disturbances and uncertainties
in control field, numerical quantum approach is presented for
finding the quantum optimal control pairing of perturbative
system. In [17], a class of discrete-time orthogonal spline
collocation schemes for solving coupled KGS equations with
initial and boundary conditions are considered. Some new gen-
eralized solitary solutions of the KGS equations are obtained
by Wang et al. [18] using the Exp-function method, which
include some known solutions obtained by the F-expansion
method and the homogeneous balance method. Darwish et
al. [19] devised an algebraic method to uniformly construct
a series of explicit exact solutions for the coupled KGS
equations. By applying the Jacobi elliptic function expansion
method, the periodic solutions for a class of coupled nonlin-
ear Klein-Gordon equations, which include coupled nonlin-
ear Klein-Gordon equation, coupled nonlinear Klein-Gordon-
Schrodinger equations and coupled nonlinear Klein-Gordon-
Zakharov equations, are obtained in [20]. Anjan Biswas and
Houria Triki [21] obtains the 1-soliton solution of the KGS
equation with power law nonlinearity. The solitary wave ansatz
is used to carry out the integration. With the aid of Lie classical
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approach and modified (G’/G)-expansion method, we have
obtained the exact traveling wave solutions of the coupled
KGS equation in [22].

The layout of this paper is as follows. In section 2, we
have investigated the symmetries of VCKGS equation by
using Lie classical approach and in section 3, we utilized the
obtained symmetries to reduce the no of independent variables
in studied equation and futher constructed their different kinds
of solutions. Certain conclusions and discussions are made in
last section.

II. CLASSICAL LIE SYMMETRIES AND OPTIMAL SYSTEM

The concept of similarity connected with the idea of in-
variance under a group transformation is quite fundamental in
theoretical physics, not only for obtaining new solutions but
also for elucidating some obscure branches of physical laws
and for a detailed study of Lie group theory the interested
reader is referred to the well-known books [2-4]. In this
paper, in virtue of classical Lie group method, we will discuss
the classical similarity reductions and exact solutions for
the VCKGS equation (1). First of all, we take the complex
function v(x,t) as

v(z,t) = r(x,t) +is(x, t), )

which decomposes the system (1) into the following system
of equtaions:

Ut + f(t)uzm + g(t)u + h(t)(?“2 + 52) = 07
7t + p(t) Szx + q(t)us = 0, 3)
=8¢ + p(t)ree + q(t)ur = 0.

To find the symmetries, let us consider the Lie group of point
transformations as

u* =u+ep(z,t,u,r,s) + O(2),
r* =r+ep(z,t,u,r, 8)+ O(?),
s* = s+ en(z,t,u,r,8) + O(e?), )
x* =2z +ef(x,t,u,r,8) + O(e?),

t* =t +er(z,t,u,r,s) + O(2),

which leaves the system (3) invariant. The method for de-
termining the symmetry group of (3) consists of finding

the infinitesimals ¢, v, n,& and 7, which are functions of

x,t,u,r,s. Assuming that the system (3) is invariant under
the transformations (4), we get the following relation from
the coefficients of the first order of e:

O+ FO)O™ + T f ()t + g(0)d + urg'(t) + 2h() e
+r27h () + 2h(t)sn + s*Th'(t) = 0,

Y+ p()n™ + 7' (t)sz0 + gt
=" +pO)Y™ + 7P (t)rae + 4

—~—

where nt, n%%, ¢t ™% ¢ and ¢ are extended (prolonged)
infinitesimals acting on an enlarged space that includes all
derivatives of the dependent variables s;, Syz, T't, "oz, Uz, and
us; . The infinitesimals are determined from invariance con-
dition (5), by setting the coefficients of different differentials
equal to zero. We obtain a large number of PDEs in ¢, ¢, 7, &
and 7 that need to be satisfied. The general solution of this

un + q(t)¢s + 7¢'(t)us = 0,
t)uz/) + q(t)cb?‘ + Tq,(t)’LLT — 0’ Z5 Z1 Z2 — €Z5 Z3 Z4 Zs Zs
&)

large system provides following forms for the infinitesimal
elements ¢, 1, n, £ and 7:

§=cor+cs5, T=czt+ce, = cau, Y =c1m, =18,

(6)

where c¢1,co,c3,c4,c5 and cg are arbitrary constants and

time variables f(t),g(t), h(t),p(t), q(t) satisfy the following

conditions:

Tf(t) = 2f ()& + 27 f(t) = 0,

' (t) + 7ep(t) — 2p(t)€x = 0,

7g'(t) + 2mg(t) = 0, (7

Th (t) + 27:h(t) — ¢y h(t) + 2h(t)ns = 0,

7¢'(t) + 1q(t) + q(t)pu = 0.
The infinitesimal generators of the corresponding Lie algebra
are given by

o) 9 o) 9
Zl:sag +7’m7022:.1}a, 23:t§7

Z{’):%, ZGZE

9
Z4:U/%7

®)
In general, there are infinite number of subalgebras of this
Lie algebra formed from any linear combination of generators
Zj;5 =1,2,3,4,5,6 and to any sublagebra one can get the
reduction using characterstic equations:

R g
To find the optimal system, we have to firstly compute the
commutator and adjoint relations. For the commutator table,
the Lie brackets are obtained using the expression [V;, V;] =
ViV; — V;V; and the adjoint action is given by the Lie series

€2

Ad(exp(eV))V; =V —elVi, Vi + 5 [Vi, [Vi, Vi = ... (10)
where € is a parameter. Using above relations, we can find
commutator and adjoint relations for (8) which are interpreted
in following tables:

TABLE 1
COMMUTATOR TABLE
Zl 22 Zg Z4 Zs ZG
Z1 0 0 0 0 0 0
Z3 0 0 0 0 —Zs 0
Z3 0 0 0 0 0 —Zs
Z4 0 0 0 0 0 0
Zs 0 Zs 0 0 0 0
Z6 0 0 Zg 0 0 0
TABLE 11
ADJOINT TABLE
Z1 Z2 Z3 24 Zs Ze
Z1 Z1 Za Z3 Zy Zs Zg
ZQ Z1 ZQ Z3 Z4 Zg',ef ZG
Z3 Z1 Z2 Z3 Z4 Z5 Z(jee
yn A Z2 Z3 Zy Z5 ZG
Zs | 21 Zo Z3 —€Zg | Za Zs Zs

Thus, the optimal system for (8) consists of following vector
fields:
(1) Z1 + aZy + BZ3 + vZs, (i1) Zz + pZ3 + qZ4,
(’LZZ) Z3 + CZ4 + Z57 (Z’U) Z3 -+ dZ4, (’U) Z4 + CLZ5 + Zs,
(’U’L) Z4 + Z)Z{,7 (1)Z'i)Z5 + ZG, (1)iii)Z5, (77]) ZG,
(1)
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III. SYMMETRY REDUCTIONS AND EXACT SOLUTIONS

In this section, we will make use of the optimal system
of vector fields (11) and reduce the Eq. (1) to ODEs. The
similarity variables and the similarity solutions of the Eq.
(1) can be obtained by solving characterstic equation (9)
and the coefficient functions are given by equation (7). The
general solution of these equations involves two constants, one
become independent variable ¢ and other plays the role of new
dependent variables F'(¢), G(¢), H(¢).

A. Vector Field 71 + aZy + /323 + ’7Z4

For this vector field, on solving the equations (7) and (9)
we obtain

ulz,t :t%F«), vz, t) = 5 9OH(C), ¢ =at™ 3,
FO) =Kot ™5, g(t) =52, ht) =Kot 5
£(t) et =4, ht) = K :
Rt =it
(t) K4t /3 s q(t) = K5t

ﬁ

(12)
where K5, Ko, K3, K4, K5 are arbitrary constants. Substitut-
ing (12) into Eq. (1), we have the functions F'({), G(¢), H(()
which must satisfy the following system of ODEs:

3G - DF©Q) - FF(Q) - 5057 ﬁ)CF’(C)
+%C2F”(C)+K1F”( () + K2F(¢) + K3H(C)* =0,
FH(C) — ﬁCH’(C)+2K4G’( 9 ’(C)+K4G”( JH(C) =0,
FCG(QH(Q) + K 4 1¢) -

(13)
To construct solutions for above system, let us suppose that
system (13) assumes the solution in the following form:

F(() = ap + a1¢ + a2(?,
G(¢) = bo + bi¢ + ba(?,
H(() = co+ 1€ + 23,

(14)

where ag, a1, as, by, b1, b2, cg, c1, co are constants to be deter-
mined. Using (14) in ODEs (13), we get a set of algebraic
equations which can be solved to get the following solution
of eq. (1):

2

Kyl 2K
K4_1,3_1> _a
cixt B,

(2 a+1)(a—1)(4 a?+2af—day—y B+Kz B2 +y )
K5 %12 Ky ’

u(az,t) = —1/9t7 (—a+2a%—-1)a? <t_%
o z( bo+1/6 (afl)xz(t’%) 2
= e

v(x,t) =

where K3 =1/9
K, =0.

B. Vector Field Zs + pZs + qZ4

For this case, the similarity variable, similarity solution and
coefficient functions are as follows:

u(w,t) = t5 F(Q), v(ut)zeiG@H(o, cf— wt" ¥,

ORI SUSEFIOES 3 A1) = :
p(t) = Kat 7, q(t) = Kt~ 7,

(16)

@ () F(Q) + K B{OH(C) = 0. f(1) =

Substituting (16) into Eq. (1), it follows the corresponding
reduced ODEs:

HPF(Q) = hCF/(Q) = SR (O) +
+K L F"(¢) 4+ Ko F(C) + K3H(C)* =0,

—LCH'(¢) +2K,G/(QH'(C) + KuG" (OH
LG (QH Q) + K4H" (¢) — KaG'(¢)?

LCF(()

(€) =0,

H(C) + K5F(C)H(C) = 0.
(17

Solving above system of equations using substitution (14), we

get the following values of u(z,t),v(z,t):

u(z,t) =

t% 9 Ksp®co® _
8 3—2q+p

-1 9 Ks co® (p+1-29)° (+77
16(3—2g+p) K1

3pco?Ks xt P
K
16(3—2 Q+P)\/*m
— 2
’1+1/612(t’p 1) KJ’p*])

)

. e
1<b0+2\/—9p+§i18qzt PR

vz, t) =e
co—1/12¢g xt?" —4p1),
V-t
(18)
a9 - 2
where K2 — 73d+34q791;21;79q +9pq, K5 _

—32K1(3—2q+p)
81K4(p+1—2q)K3p3co? "

C. Vector Field Zs + cZ4 + Zx

This case yields the following forms of invariants and
coefficient functions:

u(z,t) =t°F(C), v(z,t) = “CH((), ¢ =z—log(t),
Kit™2, g(t) = 52, h(t) = Kst*=2, p(t) = Kst™,
Q( ) K5t_c_17
(19)

On using (19) into eq. (1), it corresponds to the following
system of reuced ODEs:

cle=1)F(¢) — (2c = 1)F'(¢) + F"(¢) + K1 F"(¢)

+K2F(Q) + K3H(C)? =0,

—H'(¢) +2K4G"(Q)H'(¢) + KuG"(()H
G'(QH(¢) + KyH"(() — KuH P(Iz(g)) =0.

The variable coefficients Klein-Gordon-Schrédinger equation
has the following solution corresponding to above system of
ODEs:

(€) =0,
(O(G()* + K5 F(C)

) (022+4K42)
ule,t) = ~1/4 =g

z—2 z—log(t) \ —2 . —2
v(z,t) = —1/2¢ (1/2;(7?“)+02) fC4<e'137§m) (e%)

< z—log(t) Cc3\ 2
(e C2 ) (eCZ) +1],

(21)
where Co, C3, Cy are arbitrary constants and K; = —1, Ky =
24, K3=0.

D. Vector Field Z3 + dZ,
On solving the equations (7) and (9), we get
u(z,t) = t1F(C), v(x,t) = YOH((), (=,
f(t) = Kit72, g(t) = 52, h(t) = Kst?™2, p(t) = Kat™',
q(t) = Kst=4=1
(22)
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We get the following system of ODEs using above transfor-
mations:

d(d— 1)F(¢) + K1 F"(¢) + K2 F(¢) + K3 H(¢)? = 0,
2K,4G' () H'(¢) + K4G"(Q)H(¢) = 0,
K H"(¢) — K4(G'(¢))*H(C) + K5F(Q)H(C) = 0. o)

The above reduced system of ODEs corresponds to following
solution of eq. (1):

d 2
u(z,t) = —61 KaCs p(%ﬂrc 2.0.C1). N
_ e'“1 /K| K4 K3 K5Cs gJ(C4+C 2,0 01) ( )
v(x,t) = 0o
where C1,Cj, Cs are arbitrary constants, Ko = —d? + d and

o denotes WeirstrassP function.

E. Vector Field Z4+ aZs + Zg

Following the same way as above, we get

u(z,t) = e'F(C), v(z,t) = “OH((), (== —at,
(t)) = Ki, ( ) = Ky, h(t) = Kse', p(t) = Ky,
t 5(’ ,

(25)
Substituting (25) into eq. (1), it follows the following system
of reduced ODEs:

F(¢) = 2aF'(¢) + a*F"(¢) + K1 F"(¢) + K2 F(¢)
+E3H(C)® =0,

—aH'(¢) + 2K,G' (Q)H'(¢) + K4G" (Q)H(¢) = 0,
aG'(Q)H(¢) + K4H" (¢) — K4(G'(¢))*H(C)
+KsF(Q)H(¢) = 0.

(26)

On solving the above system of ODEs, we get the following
solution:

et(a?C. 2-t-4K 2
u(a, 1) = ~1/4 G,

. a(z—at) c—at\ —2 0\ —2
v(z,t) =—-1/2 61(1/2 T C) \/704 (6072) (e%)

()" (o) +1).

where Cy,C5,Cy are arbitrary constants and K
Ky =-1, K3 =0.

@7
—a2,

F. Vector Field Z, + bZs
For this case, the similarity variable, similarity solution and
coefficient functions are obtained as follows:
u(z,t) = et F(C), v(x,t) =S OH(), ¢=t,
f@)=f@), g(t)=g(t), h(t)=0, p(?)

On using (28), eq. (1) transforms to following system of
ODEs:

=p(t), q(t)
28

0,

VF"(C) + F(OF () + b*9(O)F(C)
H'(¢) =0,
G'(QH(C) = 0.

0,
29

For f(t) = t,g(t) = t2, we get the following solution of eq.
(1:
u(z,t) =
. i 2 2 —1/2it(1+b2t)
of (01 Fy(—1/16 =481, 1 jg, MAIRIEA) ) =

.
+eb

1 2
(02 Fy(gh =tz 3 B (24 ) eﬁ)) ,
v(x,t) = e'C2(Cy,

(30)
where Cy,C5 are arbitrary constants and Fj represents the
hypergeometric function. For f(¢) = sin(¢), g(t) = 1, eq. (1)
possesses the following solution:

u(z,t) = et (C1 C(4,—2b72, —1/47 +1/21)
+C3 S(4,—-2b72,—1/47 +1/21)),
v(z,t) = 20y,

€2))

where Ci,C5 are arbitrary constants and C,S represents
Mathieu Cosine and Mathieu Sine functions respectively.

G. Vector Field Zs + Zg

For this vector field, solving equations (7) and (9), we get

u(z,t) = F(), v(z,t) = “OH((), (=z—t,

f(t) =K, g(t) = K2, h(t) = Ks, p(t) = K4, q(t) 621)(5,
By using above transformations in VCKGS equation, we get
the following system of ODEs:

F'(Q) + K\FY(Q) + K F(Q) + K3 H(C)® = o
—H'(¢) + 2K4G'(Q)H'(C) + KuG" () H (C) =
G'(OH "(€)? +K5 (Q)H(E) = 0.
(33)
Solving above system of ODEs, we get the following solutions
of eq. (1):

(€) + Ky H"(C) = K4 H(Q)(G

(i) u(x,t)=-1/4 7“@5}1032,

o(at) = o (V2F4C) (11904 4 €y (sinh (Co + Cs (@ — 0)?),
(ii) u(w,t) = —1/4 LKL CoZ

v(z,t) = e7'(1/2 74+02) (—3/4Cy cosh(Cy + C3 (z — 1))

+Cy (cosh(Cy + C3 (z — 1)))?),
(34)
where Cy, C5, Cy are arbitrary constants and Ko = 0, K5 = 0.

H. Vector Field Zs

For this vector field, solving the equations (7) and (9), we
get

u(z,t) = F(Q), v(x,t) =e“OH(), (=t
F@t) = f(t), g(t)=g(t), h(t)=h(t), p(t)=p(t), q((;f)j)—

The above forms of invariants and coefficient functions trans-
forms VCKGS equation to following system of ODEs:

F"(¢) + g(Q)F(¢) + M) H(C)® =0,
~G'(QOH(Q) + q(Q)F(Q)H(C) =0,
H'(¢) = 0.

q(t),

(36)
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For h(¢) = 0,9(¢) = ¢, eq (1) yields the following solution:

u(z,t) = Cy Ai(—t) + Cy Bi(—t),
o(@, ) = eil(Cs Ai(=)+Cs Bi(-t)awar+cn g, 7

where C1, Cy, C3, Cy are arbitrary constants and Ai(t), Bi(t)
are Airy wave functions. For h(¢0 = 0, g(¢) = (2, we get the
following solution:

u(z,t) = C1VEdy (1/287) + Co VY (1/21%),
Ja)( €1 vET L (1/242)+Co VEY 1 (1/2 t2)) dt+01)
4 027
(38)

where C1, Cy are arbitrary constants and J and Y are Bessel
functions of first and second kind respectively.

1
4

v(z,t) = ei(

1. Vector Field Zg

Following the same way as above, we get

’U‘(Ivt) = F(C)v U(.T, t) = eiG(C)H(C)v ¢ =u,

f(t) = Ky, g(t) = Ko, h(t) = K3, p(t) = K4, q(t) = Ks,

(39)
The above tranformations corresponds to the following reduc-
tions of eq (1):

K1F"(¢) + K2 F(¢) + K3 H(C)? = 0,
K4H"(¢) — K4H(Q)(G'())* + K5F(QH(C) =0,  (40)
2G' (O H'(¢) +G"(Q)H(C) = 0.

The above system of ODEs can be solved to get the following
solutions:

2Cy (sin(C14C5 1))*C5°—2 Cy (cos(C1+C5 7)) C5?)
)

. Ky
(Z) U(Z'7 t) = ( (—1/2 Cy4+Cy (cos(C1+C3 z)()2 Ks
v(x,t) = e <71/2 Cs+ Cy (cos (Cy + Cs x))z) ,
9 K4 Cat(eC1%982) 2052 ¢y Cy2
K5 Cyt(eC1+Ca =)' ’
v(z,t) = €10y (ecl+c3z)37
(it) u(z,t) : Ks (C4+I(,{*: (CC%12+C3 x))*?
’U(l‘, t) = i1 (C4 + 05 (01 + 03 I)) R

(11) u(z,t) =

41
where C1,Cy,C5,Cy4,C5 are arbitrary constants and Ko =
0,K3 = 0.

IV. DISCUSSIONS AND CONCLUDING REMARKS

Keeping in view the efficacy and physical importance of
the Klein-Gordon-Schrédinger equations, we have studied
here the coupled KGS equation in variable form. By the
Lie classical approach, we investigated the symmetries
of VCKGS equations and utilized these symmetries for
obtaining group infinitesimals that are helpful in the reduction
of a system of PDEs to a system of ODEs. After that by
solving the reduced ODEs, new exact solutions were obtained.

Remark 1: By applying the Lie classical approach, we are
able to find vector fields that are used to derive exact solutions
of the nonlinear system (1) in variable form. Corresponding to
certain vector fields, we obtained solutions involving special
functions such as Airy wave functions, Bessel functions,
Mathieu functions etc.

2517-9934
No:5, 2013

Remark 2: Here, the variable form of KGS equation has
been studied for new symmetry reductions and exact solutions
that is not found in the literature.

It is worth mentioning here that the authenticity of all the
solutions has been checked with the aid of Maple software.
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