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Abstract—This research presents the first constant approximation
algorithm to the p-median network design problem with multiple
cable types. This problem was addressed with a single cable type and
there is a bifactor approximation algorithm for the problem. To the
best of our knowledge, the algorithm proposed in this paper is the first
constant approximation algorithm for the p-median network design
with multiple cable types. The addressed problem is a combination of
two well studied problems which are p-median problem and network
design problem. The introduced algorithm is a random sampling
approximation algorithm of constant factor which is conceived by
using some random sampling techniques form the literature. It is
based on a redistribution Lemma from the literature and a steiner tree
problem as a subproblem. This algorithm is simple, and it relies on the
notions of random sampling and probability. The proposed approach
gives an approximation solution with one constant ratio without
violating any of the constraints, in contrast to the one proposed in the
literature. This paper provides a (21 + 2ε)-approximation algorithm
for the p-median network design problem with multiple cable types
using random sampling techniques.

Keywords—Approximation algorithms, buy-at-bulk, combinatorial
optimization, network design, p-median.

I. INTRODUCTION

THE p-median problem is one of the well studied problems

in the literature. In a p-median instance we are given a

graph G = (V,E), a set of facilities F ⊆ V , a set of client

D ⊆ V , and an assignment cost cij for assigning client j
to facility i. The goal of this problem is to open at most p
facilities and assign each client to its nearest open facility

such that all the demands are satisfied and the total incurred

cost is minimized. There exist several variants of the p-median

problem such as the capacitated p-median [14], connected

p-median [17], matroid median [6], knapsack median [6],

p-median bilevel [5], planar p-median [20], and p-median

problem with uniform penalties [8]. In this paper, we consider

the p-problem which integrates with Buy-at-Bulk in network

design.

The Buy-at-Bulk network design problem was introduced

by Salman et al. [12]. They gave an O(log2 n) approximation

algorithm for the single sink buy-at-bulk network design

problem in Euclidean graph. Awerbuch and Azar [4]

also presented an O(log2 n) for the same problem but

in general metric space. Garg et al. [13] presented

an O(K)-approximation algorithm based on LP-rounding.

Guha, Meyerson and Munagala [18] presented the first
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constant-factor approximation algorithm, where K is the

number of cables. Then, this factor was improved to 2000
by Talwar [11], who also presented an LP based rounding

algorithm with a factor of 216. Gupta et al. [2] gave an 76.8
approximation algorithm which is simple and easy to analyse.

The capacitated-cable p-median in buy-at-bulk network

design problem (pMNDP) which was proposed by Ravi and

Sinha [16] has the two following variants:

Single cable case: We are given an undirected graph G =
(V,E) with non negative costs ce on edges, and a set D ⊆ V
of demands with dj representing the nonnegative weight of

j ∈ D. We are also given a single type of cable with specified

capacity and a cost per unit length. The capacitated-cable

p-median in Buy-at-Bulk network design problem with one

cable type was first studied by Ravi and Sinha [16], who gave

a bifactor approximation algorithm, of factor (ρpM + 2, 2),
where ρpM is the factor of the approximation algorithm for

the p-median problem. In general, a bifactor approximation

algorithm may violate the p-median constraint.

Multiple cable case: In an instance of capacitated cable

p-median problem we are given an undirected graph G =
(V,E) with non negative costs ce on edges, a set D ⊆ V
of demands where each demand j has a nonnegative weight

dj , and a set of K cable types where each type has a

specified capacity and a cost per unit length. These cables

satisfy the so-called “economy of scale”; namely, there exists

a break-point, beyond which it becomes more economic to use

the next cable type than copy the current one. We assume that

the flows among the nodes are unsplittable.

A thorough research of the relevant literature yielded no

article about multiple cable types. Hence, it is assumed that

this problem is only dealt with in this research paper. To the

best of our knowledge, the problem with multiple cable types

was not researched before and thus is it is dealt with for

the first time in this paper. We present a random sampling

approximation algorithm of constant factor by using some

techniques in [2].

The p-median in network design problem is NP-hard, since

it generalizes the well known NP-hard problem of p-median.

The problem is also a generalization of the Single-Sink

Buy-at-Bulk network design problem. which is a well studied

problem in the literature.

The p-median in network design problem has various

applications in transportation, computer network design and

hierarchical design of telecommunication network [9], [16].

For the pMNDP with K different cable types, we present
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a (21 + 2ε)-approximation algorithm by extending some

techniques used by [2] for the Single-Sink in Buy-at-Bulk

network design. The optimal solution to the pMNDP with

multiple type consists of:

1) A set of p open facilities,

2) a set of cables with sufficient capacity installed on the

edges to support the flow.

Our approach gives an approximation solution with constant

unifactor ratio for multiple cable types that does not violate

any of the constraints. We first present lower bounds of the

total expected cost of installing cables incurred by p-median,

p-Steiner tree, and redistributing demands. Then, we prove the

performance guarantee of the given approximation algorithm.

II. p-MEDIAN IN BUY-AT-BULK NETWORK DESIGN

PROBLEM

The p-median in network design problem (pMNDP) with

multiple type is defined on a graph G = (V,E), where V
denotes the set of nodes with |V | = n, and E denotes the set

of edges. There are clients at a subset C ⊆ V of nodes in

the graph, and each client has a unit demand. There are also

facilities at a subset F ⊆ V and a set of different cable types.

Each cable k has a limited capacity uk and a set-up cost γk per

unit length. There is also a weight function ce ∈ Z≥0 for each

edge e ∈ E. Cables are indexed such that u1 ≤ u2 ≤ ... ≤
uK , γ1 ≤ γ2 ≤ ... ≤ γK , and γ1/u1 ≥ γ2/u2 ≥ ... ≥ γK/uK .

Let the flow dependent cost of cable k be �k = γk

uk
, where

1 ≤ k ≤ K.

A solution to the pMNDP with multiple type consists of

opening at most p facilities, assigning each client to an open

facility and installing a combination of cables on the edges of

the network.

For each edge, we create a pair of anti-parallel directed arcs,

with the same characteristics as the original one. We denote by

E the set of edges e which is the undirected version of the set

of arcs a ∈ A, where A is the set of arcs. The edge between

nodes l and m is e = (l,m), and the arc between the same

nodes is a = (l,m) or a = (m, l). Let δ+(u) = (u, v) ∈ A
and δ−(v) = (u, v) ∈ A. Let xk

e indicate whether or not cable

of type k is installed on edges e. Let yi indicate whether or

not facility i is opened. Let f j
uv indicate if there is a flow

from client j on edge (u, v) or not. We have the following

integer linear programming (IP) formulation for the pMNDP

with multiple cable type problem.

A. Integer Programming Formulation

min
∑
e∈E

∑
k∈K

γklkex
k
e∑

i∈F

yi ≤ p, (1)

∑
ē∈δ+(j)

f j
ē ≥ 1, j ∈ D, (2)

∑
ē∈δ+(j)

f j
ē =

∑
ē∈δ−(j)

f j
ē , ∀j ∈ D, v ∈ V \ F, v �= j, (3)

∑
ē∈δ−(i)

f j
ē − ∑

ē∈δ+(i)

f j
ē ≤ yi, ∀j ∈ D, ∀i ∈ F, (4)

∑
j∈D

dj(f
j
(l,m) + f j

(m,l)) ≤
K∑

k=1

ukx
k
(m,l), xk

e ∈ Z
+ ∪ {0}.

(5)

The first constraint imposes that the number of open

facilities does not exceed p. The second constraint ensures that

at least one unit of flow leaves each client. The third constraint

imposes the conservation of flow at non-facility nodes. The

forth constraint states that the flow can only terminate at an

opened facility. The last constraint imposes that the capacity

of the cables installed on each edge is sufficient to support the

flow on this edge.

III. APPROXIMATION ALGORITHM FOR p-MEDIAN IN

BUY-AT-BULK NETWORK DESIGN WITH MULTIPLE CABLE

TYPES

Let us assume, w.l.o.g, that the number of demands is power

of 2, also all values uk, γk and dj are powers of 2. The

last assumption can be accounted by losing a factor 2 in the

approximation ratio. This idea of rounding is generalized from

[2].

The following lemma is the Redistribution Lemma, that

allows us to divide the nodes in a tree into clusters.

Lemma 1: [15](Redistribution lemma) Let T be a tree

rooted at r with each edge having capacity U . For each

vertex j ∈ T , let w(j) < U be the weight located at

j with
∑
j

w(j) which is a multiple of U . Then there is

an efficiently computable (random) flow on the tree that

redistributes weights without violating edge capacities, so that

each vertex receives a new weight w
′
(j) that is either 0 or U .

Moreover, Pr[j has w
′
(j) >= U ] = w(j)/U.

Proof: Let us replace each edge in T by two oppositely

directed arcs. we first show that the Lemma holds in this

bidirected tree. First, we take an Euler tour of the vertices,

yielding a cycle C. We also pick a value Y drawn uniformly at

random from (0, U ]. We maintain a counter Q, which initially

is set to 0.

We next go around the cycle, starting at the vertex j0 = r,

and visiting all the vertices j0, j1, ..., jm in (say) clockwise

order. When we visit a vertex jk, we set Q ← Qw(jk).
Suppose the counter Q, just before reaching jk was Qold, and

Qnew = Qold + wjk is the value after accounting for jk. If

xU + Y ∈ (Qold, Qnew) for some integer xi.e., the counter

crossed the point modulo then we mark jk, and ask that it

send Qnew − xU + Y weight to the next marked vertex lying

clockwise on the cycle. In the other case, we ask that the vertex

send all its weight to the next marked vertex lying clockwise

on the cycle. Note that the construction ensures that each arc

on the cycle carries at most U units of weight; furthermore,

a vertex j gets marked with probability W (j)/U , and this is

exactly the probability that it has U units of weight at the end

of the process. This process naturally induces a redistribution

of weights in the original tree as well; however, since each

edge of the tree was replaced by two opposite arcs a and

a. Suppose that both arcs carry flow, with a path from i to j
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using a. We can decrease the flow sent on these path by ε, and

instead sent ε flow from i to j′, and from i′ to j. This does not

change the amount of weight reaching a marked vertex, but

decreases the total flow crossing e. This process stops when

each edge is used in only one direction, at which point the

flow crossing each edge of T is at most U , completing the

proof of the lemma.

A. Algorithm Description

By extending the random sampling approximation algorithm

in [2], we give a constant-factor approximation algorithm

for pMNDP with multiple cable type. Our algorithm is

randomized and contains five main steps. In the first step, it

starts from the entire set of demands D. Then in each stage

k of the second step, iteratively, we use only cable of type k
and k+1 to collect the demands in Dk into a new set Dk+1.

This demand collection is performed using Lemma 1, which

ensures that the total demands in each node is a multiple of

uk+1. To carry out the third step, we solve a p-median instance

with facility set F and client set DK . Step 4 marks each client

in DK with a probability PK . Finally Step 5 opens facilities

such that there exist some marked clients which were assigned

to this facilities in Step 3.

Definition 1: let F ∗ be the set of open facilities in the

optimal solution and let l(h, j) be the distance between nodes

h and j in G. The distance between two nodes h and j is

defined by the length of shortest path joining them. Denote

l(h, F ) = minj∈F l(h, j).

B. Analysis

Let ρST be the approximation ratio of the approximation

algorithm for the Steiner tree problem. We need the following

lemmas given in [2] for analyzing the above algorithm.

Lemma 2: [2] For every client j ∈ D and Stage k, 1 ≤
k ≤ K, we have Pr[j ∈ Dk] = 1/Uk.

Lemma 3: [2] The expected cost incurred in stage k is at

most (ρST +3)γk+1E[C(Ťk], where Ťk is the optimal Steiner

tree on D′
k.

Let C∗
k be the cost of installing cable type k in the optimal

solution. The expected cost E[Bk] incurred in Stage k ∈
{1, . . . ,K} of Step 2 of the algorithm is bounded as follows.

Lemma 4:

E[Bk] ≤ γk+1(ρST + 3)

⎡
⎣∑

t>k

1

γt
C∗

t +
�k

γk+1

∑
t≤k

1

γt
C∗

t

⎤
⎦ .

Proof: Stage k of Step 2 of the algorithm builds a Steiner

tree Ťk whose cost is C(Ťk) and the cost of the cable built

on each edge of this Steiner tree is at most ρST .γk+1.C(Ťk).
Using an argument similar to the one used in Lemma 3, it can

be shown that the cable type k used to collect demands on

D
′
k incurs a cost of at most 2γk+1.C(Ťk) and the cost of the

cable type k+1 used to send back the demands to the random

node in Dk is at most γk+1.C(Ťk). Hence, the total expected

cost denoted Bk is bounded as follows:

E[Bk] ≤ γk+1(ρST + 3)C(Ťk). (6)

Algorithm 1 Algorithm pMNDP

Data: A graph G = (V,E), a set of facilities F , a set of

demands D and a set K of cable types.

Output: A number of cables xk
e installed on the edges, a

set of p opened facilities.

Step 1. Let D1=D;

Step 2. For stage k = 1, 2, ...,K do
1) Mark each client in Dk with probability Pk =

γk

γk+1
, and let D

′
k be the set of marked clients.

2) Construct a Steiner tree Tk on D
′
k, and build

cable type k + 1 on each of its edges.

3) Send the demands of each client to its nearest

j ∈ D
′
k via a shortest path using cable type k.

Let dk(j) be the demands collected at j ∈ D
′
k

and Dk(j) be the clients sending demands to j
in stage k.

4) Redistribute demands in D
′
k by applying

Lemma 1, where T = Tk, U = Uk+1, and

w(j) = dk(j) mod uk+1. Demands are routed

using cable of type k+1 built at phase 2 of the

current stage.

5) Divide Dk(j) into groups of Uk+1/Uk nodes,

and each group sends an amount of Uk+1

demands back from k to a random member of

the group via the shortest paths. Build a new

cable of type k + 1, and the resulting demand

location is Dk+1.

Step 3. We solve a p-median instance on DK with

facility set F and client set DK , and the assignment

cost is Ckj = γK .l(j, k), ∀j ∈ Dk, k ∈ F .

Step 4. Mark each client in DK with probability

Pk = γK

uK
, and D

′
K is the set of marked clients,

and let Fu be the set of open facilities.

Step 5. Open facility k ∈ FU if some of the clients

assigned to it are marked. Let I be the set of open

facilities.

In order to find an upper bound for C(Ťk), we construct a

Steiner tree T with terminals set D
′
k in Step 2 (2). First, we

add edges with cable type k + 1 or higher in the optimal

solution OPT to T . It is clear that the cost of this subgraph

is at most
∑
t>k

1
γt
C∗

t . We augment T by adding all the missing

edges from paths connecting each client j to an open facility

i in OPT , where these edges have only cable of type t ≤ k.

For the sake of simplicity, we assume that only one cable type

t ≤ k is built on each of these edges. Hence by Lemma 2,

P [e ∈ T ] ≤ ut

uk
. γk

γk+1
. Finally, summing over all the edges

with cables of type at most k, the expected cost of edges

with cable of type t ≤ k is bounded by
∑
t≤i

ut

uk
. γk

γk+1
. 1
σt
C∗

t .

Now from T we extract a tree Ťk spanning D
′
k to obtain the

following inequality.

E[C(Ťk)] ≤ E[c(T )] ≤
∑
t>k

1

γt
C∗

t +
�k

γk+1

∑
t≤k

1

γt
C∗

t , (7)
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which implies the claimed bound.

We denote by CU the assignment cost incurred by the solution

of the p-median problem computed in Step 3. The following

lemma provides a lower bound for this assignment cost.

Lemma 5:

E[CU ] ≤ ρpM

K∑
k=1

�K
γk

C∗
k ,

where ρpM is the approximation ratio of the approximation

algorithm for the p-median problem
Proof: The expected cost of assigning each client to its

nearest open facility is at most

γKE

⎡
⎣ ∑
j∈DK

l(j, F ∗)

⎤
⎦ =

∑
j∈D

�K l(j, F ∗) ≤
∑

k=1,...,K

�K
γk

C∗
k .

(8)

Hence, the total cost of approximating the solution in Step 3
is at most

ρpM

(
K∑

k=1

�K
γk

C∗
k

)
, (9)

implying the desired bound.
Together with the above Lemmas, now we are ready to give

the approximation ratio of the Algorithm pMNDP.

Theorem 1: Algorithm pMNDP is a (21 +
2ε)-approximation algorithm for the pMNDP with multiple

cable type.
Proof: The total expected cost incurred

in Step 2 of the algorithm is bounded by

(ρST + 3)
K∑

k=1

(∑
t>k

γk+1

γk
+
∑
t≤k

�t

�k

)
C∗

k ≤ 4(ρST + 3)
∑
k

C∗
k .

Using Lemma 5 and the fact that �k and γk are powers of 2,

the total cost of building cables in Step 2 can be bounded by

4(ρST + 3)
∑
k

C∗
k . (10)

In addition, the total cost incurred by installing cable that

connects open facilities in the p-median instance can be

bounded by

2ρpM
∑
i

C∗
k . (11)

Together bounds (10) and (11) imply the following bound to

the pMNDP solution with multiple cable type:

(4ρST + 12 + 2ρpM )C∗. (12)

The currently best approximation ratio for the Steiner tree

problem is ρST = ln(4) [10], and the best approximation ratio

for the p-median problem is ρpM = 1 +
√
3 + ε [19]. Hence

the approximation ratio of Algorithm pMNDP is no more than

21 + 2ε.

IV. CONCLUSION

In this paper, we address the p-median in network design

with multiple cable types, that has not been addressed in

the literature before. We provide the first constant unifator

approximation algorithm for it. Our future interesting work is

to further improve the approximation factor for the problem

with single and multiple cable types, respectively.
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