
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

777

Abstract—As a term for characterizing a process of devising a
service system, the term ‘service engineering’ is still regarded as an
‘open’ research challenge due to unspecified details and conflicting
perspectives. This paper presents consolidated service engineering
ontologies in collecting, specifying and defining relationship between
components pertinent within the context of service engineering. The
ontologies are built by way of literature surveys from the collected
conceptual works by collating various concepts into an integrated
ontology. Two ontologies are produced: general service ontology and
software service ontology. The software-service ontology is drawn
from the informatics domain, while the generalized ontology of a
service system is built from both a business management and the
information system perspective. The produced ontologies are verified
by exercising conceptual operationalizations of the ontologies in
adopting several service orientation features and service system
patterns. The proposed ontologies are demonstrated to be sufficient to
serve as a basis for a service engineering framework.

Keywords—Engineering, ontology, service, SoaML.

I. INTRODUCTION

IVEN its nature as a multidiscipline endeavour,
establishing a common paradigm is quite problematic in

the service science field. Varying perspectives emerged from
different contributors with their own set paradigm influenced
by particular academic backgrounds. Despite the research
contribution over two decades, service science still
experiences a lack of standard ontology for ‘service’, and
‘service system’ concepts [1]. Therefore, one of the challenges
in service science is to consolidate the perspectives into a
shared and cohesive perspective [2].

Within the research context of “Service Engineering
Framework” [3], a series of ontology is developed. Three
ontologies are presented in this paper: (1) Service Oriented
Architecture (SOA) Ontology, (2) General Service Ontology,
and (3) Software Service Ontology and. The first ontology is
built from the SOA stream, which is later adapted and
generalized to cover non-technical perspectives originated
from classic service engineering into the second ontology. The

Purnomo Yustianto is with the School of Information Technology - Deakin

University, Geelong, VIC, Australia (corresponding author, e-mail:
pyustian@deakin.edu.au).

Robin Doss is with the School of Information Technology Deakin
University, Geelong, VIC, Australia (e-mail: robin.doss@deakin.edu.au).

Suhardi is with the School of Electrical Engineering and Informatics-
Institut Teknologi Bandung, Indonesia (e-mail:suhardi@stei.itb.ac.id).

Novianto B. Kurniawan is with the School of Electrical Engineering and
Informatics - ITB, Indonesia (e-mail: noviantobudik@students.itb.ac.id).

third ontology is an adjustment and refinement of the first
ontology as a special case for software service.

The term ‘ontology’ is defined as a set of structured
(abstract) concepts and relationship between concepts within a
defined domain [4]. Ontology serves a basis for a language, to
be used as a communication tool to share an understanding
regarding a specific domain. Therefore, ontology definition is
often linked with a modelling activity.

A ‘model’ is defined as representation of a reality within a
definite purpose. To facilitate a common understanding
between multiple parties, a model is usually built based on a
specific modelling language, i.e. a metamodel. The metamodel
specifies a palette of concepts and constraint rules for a valid
model for a specific modelling language [5].

Fig. 1 shows the relation between ontology and model.
Ontology is an explicit and formal specification of a shared
conceptualization, in both model and metamodel level. Two
types of ontology are involved: (1) ontology of meta models,
and (2) ontology of problem domain, or a ‘domain ontology’
[6]. A model is an instantiation of a ‘meta model’ and
similarly, a ‘domain ontology’ is an instantiation of a ‘meta
model ontology’. Both are semantically interpreted by their
respective ontology. Ontologies presented in this paper are in
the category of ‘metamodel ontology’.

Fig. 1 Model, metamodel, and ontologies [6]

II. RELATED WORK

Several ontology propositions of ‘service’ emerged from
IS/IT contributors. One of early attempts in defining a service
ontology is found as a ‘service system metamodel’ within the
context of a SOA methodology [7]. While the focus is on
software-service, it already relates to one non-IT concept:
‘business process’.

Purnomo Yustianto, Robin Doss, Suhardi, Novianto Budi Kurniawan

Consolidating Service Engineering Ontologies
Building Service Ontology from SOA Modeling

Language (SoaML)

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

778

As visualized in Fig. 2, service is differentiated based on
participant type: (1) For service consumers, a service is a unit
of expected functionality with a service level agreement as
‘Target Service’. (2) For service providers, a service is a unit
of deployed functionality as ‘Publishable Service’. ‘Service
Interface’ serves as a front-end for ‘Service Component’,
which can be in an atomic or a composite form.

Fig. 2 Metamodel of service system [7]

Another ontology proposition from software service-

orientation perspective is found in [8]. It defines three
successive abstractions of a service: (1) single interaction, (2)
multiple interactions (choreography), and (3) multi-provider
(orchestration). Five overlapping aspects of a service model
were also defined: (1) structure, (2) behaviour, (3)
information, (4) goal, and (5) quality. The structural aspect of
a service is conceptualized as a metamodel in Fig. 3, covering
12 concepts entirely from a SOA perspective.

As an attempt to consolidate the non-orthogonality of
competing SOA concepts, a literature survey on SOA concepts
is performed in [1]. Nine core identifiers which characterize a
service-orientation were extracted: (1) architecture, (2)
binding, (3) capability, (4) composition, (5) contract, (6)
delivery, (7) distributed sources, (8) identity, and (9)

interoperability.
From these previous works, selected concepts that can be

considered as a potential component for targeted ontology are:
(1) architecture, mostly for software level abstraction, (2)
binding, related to ‘role’ concept, (3) capability, as user
perspective of business function, (4) composition, related to
atomicity or composite nature of service, and (5) contract, as
terms and conditions agreement of a service. Additionally, [9]
suggests that service structural model is consisted of: (1)
service operation, (2) service component, and (3) service
interface.

To produce an integrative perspective, a more practical
approach is hence taken to use collaborative SOA conception
as the source for ontology building. Over the years, several
standard groups have produced SOA open standards: OASIS,
The Open Group, The International Organization for
Standardization (ISO/IEC) and Object Management Group
(OMG).

The standards published are not always compatible to each
other, and actually competing in its overlapping terminology
[10]. As illustrated in Fig. 4, two products can be considered
as the state-of-the-art: (1) OMG’s SoaML [11], as the
definitive SOA metamodel originated from OASIS stream,
and (2) ISO/IEC’s SOA Reference Architecture [12], as the
definitive SOA ontology definition originated from The Open
Group stream. Unfortunately, these two are not semantically
related.

III. SOA ONTOLOGY

SoaML is one of many specifications produced by OMG.
SoaML was first formalized in 2009, with minor updates later
in 2012 [11]. SoaML is conceived based on the limitations of
UML in representing SOA concepts [13]. While its popularity
in the industry is very limited, SoaML is consistently
referenced in academic publication as the definitive
metamodel for SOA. Table I lists SOA concepts covered by
SoaML.

Fig. 3 Metamodel of service concept [8]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

779

Fig. 4 Succession of SOA open standard [10]

TABLE I
SOAML CONCEPTUAL COMPONENTS [11]

 Concept Description

1 Participant
Entities (physical or software) that provide or use

services

2 Port
Participant’s service interaction points in providing or

consuming services

3
(UML)

Interface
A type of service interaction description for

synchronous unidirectional interaction

4
Service

Interface
A type of service interaction description for (multiple)

asynchronous interaction

5
Service

Contract.
A type of service description based on roles and rules

as an agreement for multi-party interaction

6 Capability
Ability owned, or required, by participant to affect

some changes.

7 Role
A specific functionality assumed by participant in an

instance of service interaction

8
(Role)

Binding
A pairing instance of a participant with a role within a

specific service interaction context

9
Interaction

protocol
Sequential arrangement of operation invocation

between role/interface that may involve rules

9 Operation
An atomic invokable software behaviour with input-

output message passing feature

10
Message

type
Data values that can be sent between participants

11
Service

Architecture

High level description of connection between
participants through service contracts within a specific

service community
12 Method Owned behaviour of a participant

While providing a formal specification of its stereotyping

extension from the original UML specification, SoaML
specification document is surprisingly lacks an ontological
definition. The specification actually offers two types of
service modelling approaches: (1) Interface-based and, (2)
Contract-based [11], and therefore multiple forms of service
abstraction is permissible [14]-[16].

A peculiar feature of SoaML is the absence of specific
abstraction for ‘service’. Three abstractions are offered
superimposed to service description components [11], as:
1. Interface, accommodating atomic services containing

only self-contained operations.
2. Service Contract, accommodating atomic services and

composite services by combining interfaces into a service
contract.

3. Service Interface, accommodating atomic services and
composite services by combining interfaces

Consequently, there are three versions of an ontological
structure that can be inferred from the specification: (1)
Interface-based, (2) Service Interfaced-based, and (3)
Contract-based. These versions are elaborated in the following
paragraph.

To highlight the differences between these versions, a
special visualization technique is employed where: (1)
Compositional relationship is visualized in the form of a Venn
diagram, in which member components are placed inside a
container representing its compositional parent, (2) a service
abstraction is symbolized inside a thick border around the
superimposed service description components.

Fig. 5 represents the first version, in which the ‘service’
abstraction is superimposed to the (UML) ‘interface’ concept.
The approach is used for simple SOA where the whole
architecture is composed of flat atomic services without the
possibility of a service composition. Each interaction is
synchronous and involving exactly two participants with an
interface embedded with a specific role; either as a service
requester in a consumer role or as a service responder in a
provider role.

Fig. 6 shows the second ontological version where a
‘service’ is abstracted with the ‘service contract’ concept.
Service contract is equipped with an interaction protocol as an
internal logic that governs invocation sequences, both
synchronous and asynchronous, between participants. The
approach is able to accommodate a service interaction with
more than two participants. Service composition is possible in
the form of a composite participant or compound service
contract [11], [15].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

780

Fig. 5 Interface-based SoaML ontology

Fig. 6 Service Contract-based SoaML ontology

Fig. 7 Service Interface-based SoaML ontology

Fig. 7 shows the third version in which a ‘service’ is

abstracted as both ‘interface’ (for atomic service) and ‘service
interface’ (for composite service). Service interface has an
interaction protocol as an internal logic to govern invocation
sequencing in both synchronous and asynchronous invocation
between participants. Service interface can also accommodate
an interaction service with more than two participants.

The ontology structure in Fig. 8 is built based on the third
version of the ontology (service interface-based). It
sufficiently covers all of the components emerged in the
related works section. Most of the components are an abstract
design concept, except for three components denoted with
darker shade in Fig. 8: (1) participant, to become a software
component, (2) simple interface, and (3) service interface to
be implemented as an atomic or a composite software service,
e.g. web service and WSDL interface.

Fig. 8 SoaML ontological structure

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

781

ISO/IEC 18384:2016 is based on the products of The Open

Group: SOA Ontology (2010), and SOA Reference
Architecture (2011). The ontology produced is quite simple,
and its coverage is superficial if compared to SoaML ontology
[12]. The coverage is lacking in a detailed level of (software)
service abstraction, i.e. port, operation, role, and interaction
protocol. The ontology is also missing some of the concepts
defined in the terminology part, i.e. Capability, Service
Architecture, and Role.

Despite these differences, correlation with SoaML ontology
occurs in: (1) Service Interface, (2) Service Contract, (3)
Information Type, and (4) Element (Participant in SoaML).
The relationships are also consistent:
 Element perform Service (via Port and Role in SoaML)
 Service has Service Contract and Service Interface as

service description
 Service Interface has Information Type as attribute (via

Operation and Parameter in SoaML)
It can be observed that the produced SoaML ontology is

relatively consistent with the other software service
ontologies. It is also a superior ontology compared to the
ISO/IEC 18384:2016’s ontology, in coverage and level of
detail. The produced SoaML ontology is therefore established
as an intermediary for a true Software Service Ontology.

IV. GENERAL SERVICE ONTOLOGY

Despite the fact that the adoption of service-oriented
concepts is not apparent beyond the technological sphere, its
conception always strives to provide a generalized abstraction
covering both IT-based and non-IT-based systems. While in
reality the distinction for IT and non-IT context of a service
system needs to be made, the generality feature of SOA
conceptions is useful to build the General Service Ontology.

The goal is to generalize and enlarge the coverage of the
Software Service Ontology. The generalization is achieved by
applying the concept from a software-service context to the
general context of a service system, which includes the
physical and the manual system. The objective of the
enlargement is to cover concepts included in the classic
service engineering context but missing in informatics service
engineering, such as (1) ‘value’, (2) ‘business process’, (3)
‘business model’ and (4) ‘capability’. These four concepts are
the target components to be integrated with concepts already
covered within the Software Service Ontology.

The general ontology is built based on the available
standard documents published by ISO/IEC and OMG. Sixteen
standard documents were identified to cover the definition of
targeted concepts. The identified documents are originated
from both business and technical domain, including IT
domain.

Some of the source documents contain a partial ontological
view of concepts covered in the document, i.e. ISO 18384
(SOA-RA), ISO 19505 (OMG-UML), ISO 19510 (OMG-
BPMN) and OMG-BMM. In these cases, the targeted concept
definition is extracted, along with the available defined
relation between them. For other documents, only the concept

definitions were extracted. If available, the definitions were
captured from the formal terminology definition section. In the
other cases, the implied definition is extracted from the
descriptive narration. Table II lists the source document for
building the consolidated ontology.

TABLE II

SOURCE DOCUMENTS OF CONCEPT DEFINITIONS

 Name Description

1 ISO 2382 IT Vocabulary

2 ISO 9000 Quality Management Systems

3 ISO 14662 Open Electronic Data Interchange (EDI)

4 ISO 15288 System Life Cycle

5 ISO 15944 Business Operational View

6 ISO 16500 Digital Audio Visual (AVI) System

7 ISO 12207 Software Life Cycle

8 ISO 18384 SOA Reference Architecture

9 ISO 19505 Unified Modeling Language (OMG’s UML)

10 ISO 19510 Business Process Model & Notation (BPMN)

11 ISO 30102 Distributed Application Platforms & Services

12 ISO 90003 Software Engineering

13 ISO 14813 Intelligent Transport System

14 OMG - VDML Value Definition Modeling Language

15 OMG - BMM Business Motivation Model

16 OMG - SoaML Service Oriented Archit. Modeling Language

A total of 74 concept definitions are identified. These

concepts are arranged and grouped based on similarity.
Concepts observed to be covering similar idea are merged into
a single representative label. Table III collects the merged
concepts into a hierarchy of 17 concepts as the components of
the ontology.

The ontological relation between each merged concept is
visualized in Fig. 9. For ease of reference, the numbering in
the figure is correlated with the number in Table III.

As defined in Table III, service is a container for Interface
and its Operation. In Fig. 9, these service components are also
aggregated with the underlying process component, i.e.
Activity and Task, to form a larger abstraction of Service,
between the front-end interface and the back-end supporting
activities. This also reflects a SoaML perspective of the
relation between ‘process’ and ‘service’ as different views of a
similar object. ‘Process’ view focuses on the how and why of
the whole interaction, while ‘service’ focuses on participant
activities in provision and consumption of services [11].

A shaded background is introduced in Fig. 6 to define an
ownership boundary. Three components are extended beyond
the boundary: (1) Collaboration, as an abstraction of atomic or
composite interaction, (2) Choreography, where the
arrangement of interaction sequence is an agreement with
outside entity, and (3) Message, which is exchanged with
party outside ownership boundary.

A pair of concepts is merged in the ontology visual:
Choreography (7b) and Contract (7c). This merger is not only
implemented for visual simplification, but also to show the
strong intersection between the two related to an interaction
arrangement. To be precise, choreography refers to the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

782

sequencing aspect, while contract refers to the rule and constraint.

TABLE III
HIERARCHY OF MERGED CONCEPT DEFINITIONS

Concept Definition

1. Entity Individual element in a system which can act as a service provider or consumer.

1a. Interaction point Location at which information is received (or sent) to invoke an interaction

2. Business model A description of value creation, delivery, and capturing to fulfill the motivations

3. Process A set of business activities as steps to achieve a business objective

3a. Activity A collection of related (cohesive) tasks of a process

3b. Task An atomic activity that is included within a process, accomplishes a defined result.

3c. Rule A structured, discrete, specific, and practicable guidance for business process

4. Service A set of accessible ‘activities’ of a capabilities through an interface and constraints.

4a. Interface Shared boundary between two units, characterized by operations

4b. Operation A definition of messages consumed and, optionally, produced when called.

5. Capability Participant ability to act and produce an outcome

6. Value A measurable factor of benefit to a recipient, in association with a business item

7. Collaboration Predefined set of activities and/or processes initiated to accomplish a shared goal

7a. Role A defined set of activities assigned to an entity to performs a specific function

7b. Choreography An ordered sequence of message exchanges between two or more entity

7c. Contract Explicitly stated rule, that prescribes, limits, governs or specifies transaction

7d. Message The contents of a communication between two participants

Fig. 9 General Service Engineering Ontology

V. SOFTWARE SERVICE ONTOLOGY

The general service ontology combines concepts from a
software-service context with concepts from classic service
engineering, i.e. (1) ‘value’, (2) ‘business process’, (3)
‘business model’ and (4) ‘capability’. In practical engineering
level, different treatments are performed for each context: IT-
context and non-IT context.

The type of service encounter is a factor in differentiating
software and non-software service. Two types of service
encounters are defined in [17]: (1) Physical, and (2) Virtual. If
an interaction of an encounter is mediated by technical
devices, the encounter is categorized as a virtual encounter. In

this typology, technology may facilitate the encounter in
various forms, e.g. from e-mail to website. The software-
services context resides in a specific situation, in which a
software component offers service consumables by other
software components.

To focus on the software context, the ontology is trimmed
to only include software related concepts. Excluding the three
business analysis level components, i.e. (1) values, (2)
capability, and (3) business model, the 17 components in the
general context of Table III are reduced to 14 components for
software-service context, as listed in Table IV.

To achieve a uniformity and as a form of triangulation,
SoaML ontology (Fig. 8) is juxtaposed and adapted with the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

783

structure of the consolidated general-service ontology (Fig. 9)
into the resulting ontology in Fig. 10.

The term ‘service’ represents an abstraction of externally
accessible software components in the software service
context. Therefore, it covers both, the underlying software
component behaviour (3a and 3b) originated from the
‘process’ context, and the related published description (4a
and 4b). Similarly, the term ‘service contract’ merges the two
aspects of: internal process rule (3c), with the externally
shared and agreed rule (7c). These characteristics are derived
from SoaML’s feature in superimposing a service component
with its description. This merging is also coherent with
SoaML perspective that views ‘process’ and ‘services’ as
different perspective of the same object [11].

Two additional SoaML components are not represented in
this context: (1) Capability, and (2) Service Architecture. The
two are considered to be residing in the business analysis level
of service engineering.

TABLE IV
CONCEPTS FOR SOFTWARE SERVICE CONTEXT

General Context
Software-service

context
SoaML Label

1. Entity 1. Software component 1. Participant

1a. Interaction point 1a. Port 2. Port

3. Process 3. Software service* -

3a. Activity 3a. Composite service 3. Service Interface

3b. Task 3b. Atomic service 4. (UML) Interface

3c. Rule 3c. Service contract ** 5. Service Contract ^

4. Service 4. Software service * -

4a. Interface 4a. Service interface
3. (UML) Interface
4. Service Interface

4b. Operation 4b. Service operation 9. Operation

7. Collaboration 7. Software interaction 9. Interaction Protocol ^^

7a. Role 7a. Component role 7. Role

7b. Choreography 7b. Interaction Protocol 9. Interaction Protocol ^^

7c. Contract 7c. Service contract ** 5. Service Contract ^

7d. Message 7d. Message 10. Message type

Merged concepts are marked with pairs of *, **, ^ and ^^ symbols

Fig. 10 Software service ontology

VI. ONTOLOGY VERIFICATION

Components decoupling and its binding mechanism is an
important principal in SOA conception [18]. It is also the
underlying motive in introducing SoaML over UML limitation
[13]. Conceptual exercises for decoupling, binding and service
consumption is narrated in this section to demonstrate and
evaluate the capability of the software service ontology (Fig.
10) in covering basic SOA concepts.

A ‘service decoupling’ is implemented as a separation
between a published service description (component 4a and
4b) and its underlying supporting behaviours (component 3a
and 3b). Service behaviours (component 3) are actually a part
of a specific software component (component 1).

‘Binding’, or more precisely ‘role-binding’, is an execution
time instance when a software component (component 1)
assumes a role (component 7a) within a context of specific
software interaction (component 7), using a service interface
(component 4a) as the guidance in invoking its internal
behaviours (component 3a and 3b), via its defined port
(component 1a) as the location address, for message
(component 7d) passing operations (component 4b).

The ontology visualization structure is not only describing a
service providing software component. In a case where a
component requires services from other component within its
own composite behaviour (component 3a), it follows the
previously described role binding mechanism. The difference

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

784

is that the component (component 1) assumes consumer role
(component 7a) and adheres to a collaboration mechanism
(component 7), which is implemented by services (component
3a and 3b) in the providing components.

To demonstrate the feasibility of the general service
ontology (Fig. 6), several patterns of a service interaction are
applied to it. The patterns of service interaction are implied in
three abstraction level of service modelling: (1) simple
interaction, (2) business-to-business (B2B) interaction, and (3)
complex interaction [15]. These exercises can be seen as a
proto-operationalization of the metamodel ontology toward
domain ontology (Fig. 1).

In the first pattern, a simple interaction is occurred between
a service provider and a service user, e.g. individual end-user
consumer. Here, the whole ontology is positioned as the

service-providing entity. To illustrate the first pattern, the
ontology is paired with the existence of a simple consumer
outside the entity boundary in Fig. 11.

The resulting pattern covers the concepts of: (1) capability
offered by the service provider, (2) value offered and
requested by the consumer, (3) value brought by the consumer
(e.g. in the form of monetary asset), (4) choreographed
activity between the two entities, and value exchanged during
the transaction.

In the second pattern, choreography level of abstraction, a
service is modelled as a process with multiple interactions
between two entities. A B2B arrangement between a company
and its supplier is an example of this pattern. The pattern is
formed by pairing two ontology sets as two interacting
entities.

Fig. 11 Model of a Simple Service Pattern

Fig. 12 Model of a B2B Service Interaction Pattern

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

785

Fig. 12 shows a model of the second pattern which
visualizes pairs of external behaviour requested and offered by
each participant in the pattern. This pattern specifies and
analyses interoperability between two service participants. The
model structure also introduces the concept of ‘collaboration
space’ in which the interactions take place. It may reside (i.e.
owned) within one of the participant boundaries, or in
independent third-party location. In the software-service
context, the ‘collaboration space’ relates to the operator and
controller of software-service repository, i.e. service registry
and service publication.

In the third pattern, orchestration abstraction, an offered
service is modelled as a composition of other services. Fig. 10
illustrates this pattern by combining the first and second
pattern approaches with the introduction of both a simple
customer, and a partnering service co-provider.

The third pattern is related with indirect type of service
encounter in the typology of service encounter [17], where an

external party is involved in the service process, as co-
provider or intermediary, and may make a direct contact to the
service-consumer. In a more complex pattern, multiple co-
providers may form service architecture over a set of services.
Consequently, this model can be used to analyse and specify
possible implementation of the offered service.

The model also raises the issue of ‘collaboration spaces’. It
relates to the existence of a service coordinator, with the
central role of interacting and orchestrating other providers.
While the arrangement can be made to be in equal term
(distributed and federated), each particular of collaboration
tends to require a dominant participant role as the main
operator. Other types of service system patterns and
combinations may exist, related to elaboration of provider role
and components of collaboration space, but the three
illustrated patterns adequately demonstrate the feasibility and
flexibility of the produced ontology in covering various types
of service system.

Fig. 13 Model of a multi-provider service pattern

VII. CONCLUSION

This paper introduces an ontological basis for ‘Service
Engineering’ [19] by describing a process of ontology
building of a series of ontologies; service-oriented architecture
ontology, general service ontology, and software-service
ontology. Two final sets of ontologies were produced: general
service ontology (Fig. 9) and software-service ontology (Fig.
10). The two are correlated in which the software service
ontology is a specialization of general service ontology.

As conceptual models are composed from literature study

approach, the ontologies were verified with its ability to
represent features of service concepts. In another part of the
research, these defined ontologies are to be used to assess the
completeness of a service engineering framework in covering
on the aspects of a service system. The mapping of framework
artefacts with the ontology structure also serves as a bridge to
characterize the artefacts format.

REFERENCES
[1] M. Anjum and D. Budgen, “A mapping study of the definitions for

service oriented architecture,” in 16th International Conference on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

786

Evaluation & Assessment in Software Engineering (EASE 2012), 2012,
pp. 57–61.

[2] S. E. Sampson, “The unified service theory,” in Handbook of service
science, Springer, 2010, pp. 107–131.

[3] P. Yustianto, R. Doss, and Suhardi, “Activities and Artifacts in Service
Engineering Case Studies Report of Service Engineering Framework,”
Inf. Technol. Syst. Innov. (ICITSI), 2017 Int. Conf., no. 1, pp. 373–377,
2017.

[4] G. Guizzardi, “On ontology, ontologies, conceptualizations, modeling
languages, and (meta) models,” Front. Artif. Intell. Appl., vol. 155, p.
18, 2007.

[5] U. Aßmann, S. Zschaler, and G. Wagner, “Ontologies, meta-models, and
the model-driven paradigm,” in Ontologies for software engineering and
software technology, Springer, 2006, pp. 249–273.

[6] M. Saeki and H. Kaiya, “On relationships among models, meta models
and ontologies,” in Proceedings of the 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM 2006), 2006.

[7] S. H. Chang, “A systematic analysis and design approach to develop
adaptable services in service oriented computing,” in Services, 2007
IEEE Congress on, 2007, no. 2, pp. 375–378.

[8] D. A. C. Quartel, M. W. A. Steen, S. Pokraev, and M. J. Van Sinderen,
“COSMO: A conceptual framework for service modelling and
refinement,” Inf. Syst. Front., vol. 9, no. 2–3, pp. 225–244, 2007.

[9] M. Anjum and D. Budgen, “An investigation of modelling and design
for software service applications,” PLoS One, vol. 12, no. 5, p.
e0176936, 2017.

[10] H. Kreger and J. Estefan, “Navigating the soa open standards landscape
around architecture,” Jt. Pap. Open Group, OASIS, OMG, 2009.

[11] OMG, “Service oriented architecture Modeling Language (SoaML)
Specification,” Object Management Group (OMG) Specification, 2012.
(Online). Available: http://www.omg.org/spec/SoaML/. (Accessed: 07-
Jun-2017).

[12] International Organization for Standardization (ISO), “ISO/IEC
18384:2016 - Reference Architecture for Service Oriented Architecture
(SOA RA).” (Online). Available:
https://www.iso.org/standard/63104.html. (Accessed: 20-Apr-2018).

[13] I. Todoran, Z. Hussain, and N. Gromov, “SOA integration modeling: An
evaluation of how SoaML completes UML modeling,” in Enterprise
Distributed Object Computing Conference Workshops (EDOCW), 2011
15th IEEE International, 2011, pp. 57–66.

[14] B. Elvesæter, A.-J. Berre, and A. Sadovykh, “Specifying Services using
the Service Oriented Architecture Modeling Language (SoaML)-A
Baseline for Specification of Cloud-based Services.,” in CLOSER, 2011,
pp. 276–285.

[15] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language,” IBM, Tech. Artic. Ser. January-February, pp. 1–22,
2010.

[16] C. Casanave, “Service oriented architecture using the omg soaml
standard,” 2009.

[17] R. G. Qiu, Service science: The foundations of service engineering and
management. John Wiley & Sons, 2014.

[18] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Pearson Education, 2005.

[19] P. Yustianto, R. Doss, and Suhardi, “Consolidating service enginering
perspectives,” in Information Technology Systems and Innovation
(ICITSI), 2015 International Conference on, 2015, pp. 1–7.

