
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1708

Concept Abduction in Description logics with
cardinality restrictions

Viet-Hoang VU, Nhan LE-THANH
KEWI - Laboratory I3S - CNRS

Abstract—Recently the usefulness of Concept Abduction, a novel
non-monotonic inference service for Description Logics (DLs), has
been argued in the context of ontology-based applications such
as semantic matchmaking and resource retrieval. Based on tableau
calculus, a method has been proposed to realize this reasoning task in
ALN , a description logic that supports simple cardinality restrictions
as well as other basic constructors. However, in many ontology-based
systems, the representation of ontology would require expressive
formalisms for capturing domain-specific constraints, this language
is not sufficient. In order to increase the applicability of the abductive
reasoning method in such contexts, we would like to present in the
scope of this paper an extension of the tableaux-based algorithm for
dealing with concepts represented inALCQ, the description logic
that extends ALN with full concept negation and quantified number
restrictions.

Keywords—abductive reasoning, description logics, semantic
matchmaking, non-monotonic inference, tableaux-based method.

I. INTRODUCTION

Description Logics (DLs) [1] are a family of knowledge
representation formalisms that are used widely for building on-
tology, especially in the context of Semantic Web. Descendants
from earlier semantic networks and frame-based languages,
but equipped with a logic-based semantics, these languages
allow to represent the knowledge of an application domain in
a well-structured and formal way. Besides, to better support
the ontology engineering, description logics systems provides
as well tools to reason about its knowledge bases efficiently.
There are two kinds: standard reasoning services, mainly
monotonic, like concept satisfiability or concept subsumption;
and non-standard reasoning services, usually non-monotonic,
such as least-common subsumer or concept approximation.

Abduction is a popular technique of common sense
reasoning[12] to find back explanations from observations.
Despite it was well studied in the context of classical logics,
just recently this inference method have been begun to gain
the attention of the description logics community because
of its usefulness to deal with inferences that new ontology-
based applications would require [7], [6], [11]. In one of
such contexts [11], concept abduction has been proposed as a
novel inference service for ALN , the description logic that, in
addition to basic constructors like conjunction of concepts (�)
and value restriction on role (∀), supports unqualified number
restrictions. Derived from propositional abduction, the non-
monotonic reasoning method allows to, given two non-disjoint
concepts C, D and a TBox T , find a hypothesis H such that
C �H ≡T ⊥ and C �H �T D.

There are many applications that this abductive inference
service would be useful, ranging from resource retrieval [5]
to semantic matchmaking [10] as well as many others [7].
In order to realize it, an uniform tableaux-based method has
been proposed in [4] for the description logic ALN . However,
this language is rather inexpressive, in many domains the
representation of ontology would require more expressive
formalisms. Taking a tourism ontology, for example, according
to the classification of hotels in France [9], a three stars hotel
is an accommodation that must have :

1) at least 6 chambers of all categories,
2) 1 salon and elevators if the building has more than 3

floors,
3) 1 table or desk, 1 telephone and 1 color television in

every room,
4) private bathrooms with shower or bathtub, .etc.

Clearly, for capturing fully semantics of these constraints, at
least the quantified cardinality and the disjointness should be
used as shown below :

Accommodation � � 1hasRoom.Room
Hotel � Accommodation

3StarsHotel � Hotel� � 6hasRoom.3StarsRoom
3StarsRoom � Room

� � 1hasEquipment. (Table � Desk)
� � 1hasEquipment.Telephone
� � 1hasEquipment.ColorTelevison
� � 1hasBathRoom.PrivateBathRoom

PrivateBathRoom � BathRoom
� � 1hasEquipment. (Shower � BathTub)

Shower � ¬BathTub
3StarsHotel

� � 3hasF loor.� � � 1hasEvelator.Evelator

As a consequence, in order to increase the applicability of
abductive reasoning methods in such situations, there is a need
to extend the tableaux-based technique for more expressive
description logics. In the scope of this paper, we would like
to present an extension of the approach for solving the concept
abduction problem in ALCQ, the language that extends ALN
with full concept negation and quantified number restrictions.

The rest of this paper is organized as follows. Firstly, in the
section 2, we recall some preliminaries on the description logic
ALCQ. Next, we give an overview of abductive reasoning
tasks in description logics in the section 3. Then, the problem
of concept abduction in ALCQ as well as the tableaux-based

Nice-Sophia Antipolis University, France

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1709

algorithm for computing its solutions are presented in the
section 4. An example to illustrate how the algorithm works is
presented in the section 5. And finally, the section 6 is reserved
for some conclusions.

II. DESCRIPTION LOGIC ALCQ.

Like every other description logics, in ALCQ, knowledge
of domains is represented by means of concept descriptions
which denotes a group of individuals sharing some common
characteristics. Starting with a set NC of concept names
and a set NR of role names, these formulas are inductively
constructed by using a set of concept constructors.

For ALCQ, concepts are formed as follows :

C,D ::= � | A | ¬C | C �D | C �D | ∀r.C | ∃r.C |
� nr.C |� nr.C

As usual, the semantics of ALCQ concept descriptions is
defined in a model-theoretic way. Formally, an interpretation
is defined as a pair I =

(
I , .I
)
, where
I , a non-empty set,

is the domain of the interpretation and .I is an interpretation
function which assigns to every concept name A ∈ NC a
set AI ⊆
I and to every role name R ∈ NR a binary
relation RI ⊆
I ×
I . The function is then extended to
more complex concept descriptions according to the semantics
of specific constructors

�I =
I

⊥I = ∅
(A)

I
= AI

(¬C)
I

=
I \ CI

(C �D)
I

= CI ∩DI

(C �D)
I

= CI ∪DI

(∀r.C)
I

=
{
a ∈
I | ∀b. (a, b) ∈ RI → b ∈ CI}

(∃r.C)
I

=
{
a ∈
I | ∃b. (a, b) ∈ RI ∧ b ∈ CI}

(� nr.C)
I

=
{
a ∈
I | ∣∣b | (a, b) ∈ RI ∧ b ∈ CI∣∣ ≥ n

}

(� nr.C)
I

=
{
a ∈
I | ∣∣b | (a, b) ∈ RI ∧ b ∈ CI∣∣ ≤ n

}

Knowledge is represented in DLs by means of terminolog-
ical axioms and individual assertions. Terminological axioms
express relations between concept descriptions, they can be
either concept inclusions (C � D) or concept equivalence
(C ≡ D). An axiom is simple, if on the left-side of it, there
is only one concept name. The axiom is general, if both of
its sides are arbitrary complex descriptions. A simple concept
equivalence is also called a concept definition. Then, a finite
set of concept definitions T is a terminology , or a TBox, if
no concept name is defined more than once. In the TBox T ,
we say a concept C directly uses a concept D if D appears in
the right side of C’s definition. Then, T is cyclic if there is a
concept name in T that transitively uses itself. Otherwise, it’s
acyclic.

Named individuals are introduced in the knowledge base
by assertions. There are two kinds, concept and role asser-
tions denoted respectively by C (a) and R (b, c), where C
is some concept, R is a role and a, b, c are named distinct
individuals. A finite set of assertions A is also called an
ABox. The interpretation I is extended straightforwardly to
provide a semantics for the ABox’s assertions. Accordingly,

each individual name a is mapped to an element aI ∈
I

such that, if a, b are distinct names, then aI �= bI .
Then, the interpretation I satisfies a terminological axiom

C � D (C ≡ D) if CI ⊆ DI (CI = DI). I is a model of the
TBox T iff it satisfies all of its axioms. I satisfies an assertion
C (a) if aI ∈ CI and it satisfies R (b, c) if

(
aI , bI

) ∈ RI .
The interpretation is a model of the ABox A if it satisfies all
its assertions. Finally, I satisfies an assertion α or an ABox
A with respect to a TBox T if in addition to being a model
of α or of A, it’s also a model of T .

In addition to the means for representing and storing knowl-
edge about concepts, roles and individuals in the application
domain, DLs systems provide a set of standard inference
services to reason about them :

1) Concept satisfiability: Given a TBox T , a concept C is
satisfiable w.r.t T if there exists a model I of T such
that CI �= ∅ .

2) Concept subsumption: Given a TBox T , a concept C is
subsumed by a concept D w.r.t T , denoted as C �T D
if CI ⊆ DI for every model I of T .

3) Entailment: Given an ABox A, an assertion α is entailed
by A, denoted as A |= α, if every model of A satisfies
α.

4) Consistency : Given an ABox A and a TBox T . A is
consistent w.r.t T , if there is an interpretation I that is
a model of both A and T . A is called simply consistent
if it is consistent w.r.t the empty TBox.

Importantly, since full concept negation (¬) is allowed, the
problem of concept satisfiability and concept subsumption can
be reduced to each other, because :

• C is satisfiable iff C � A � ¬A is not hold, where A is
any concept name.

• And vice versa, C �T D iff C�¬D is unsatisfiable w.r.t
T .

Most popular reasoning techniques in DLs are tableaux-based
methods [2]. Accordingly, in order to verify the satisfiability
of a concept C w.r.t a TBox T , the algorithms try to construct
a consistent model I for C and CT , where CT is the
internalized concept of T which is defined as follows

CT := �
(Ci�Di)∈T

(¬Ci �Di)

To do that, tableaux or completion graphs are used for
representing candidates for I. These graph structures contains
nodes and edges that represent respectively individuals and
role instances in the domain of models. Each node and edge is
labeled with a set L () of concepts and roles of which they are
instances. If the tableau does not contain any clash (obvious
contradiction) in all its labels, then it’s open, otherwise it’s
closed. As any clash-free tableau τ corresponds to a consistent
canonical interpretation Iτ , if the algorithms can find an open
tableau for C and T then C is satisfiable w.r.t T , on the
contrary, C is unsatisfiable.

III. ABDUCTIVE REASONING IN DESCRIPTION LOGICS

Abduction is a well-known form of commonsense reasoning
that gives the ability to infer from observations to explanatory

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1710

hypotheses. This technique was introduced firstly by Charles
Sander Peirce in [12], since then it has been intensively studied
in classical logics. Recently, abduction has begun to gain the
attention of the DLs community because of its usefulness to
deal with inferences that new applications using DLs would
require [7], [6], [11].

In [7], abductive reasoning in DLs are divided into four
tasks :

1) Concept abduction : Given two concepts C and D rep-
resented in some description logic L, Γ is a knowledge-
base in L and supposing that C, D are satisfiable w.r.t
Γ. A solution to the (conditionalized) concept abduction
problem for 〈Γ, C,D〉 is any concept H in L′ such that
:

C �H �≡Γ ⊥ and C �H �Γ D

The set of all such solutions H is denoted by
SCCA 〈Γ, C,D〉.

2) ABox abduction : Let Γ be a knowledge-base in some
description logic L and α be an ABox assertion in L
such that Γ ∪ α in consistent. A solution to the ABox
abduction problem for given 〈Γ, α〉 is any finite set
SA = {β} of ABox assertions in L′ such that :

Γ ∪ SA |= α

The set of all such solutions is denoted by SA 〈Γ, α〉.
3) TBox abduction : Let Γ be a knowledge-base in some

description logic L, C and D be two concepts that are
satisfiable w.r.t Γ and supposing that Γ ∪ {C � D} is
consistent. A solution to the TBox abduction problem
for give 〈Γ, C,D〉 is any set ST = {Ei � Fj} of
terminological axioms in L′ such that :

C �Γ∪ST
D

The set of all such solutions is denoted by ST 〈Γ, C,D〉.
4) Knowledge-base abduction : Let L be some description

logic, Γ be a knowledge-base in L and γ be a TBox
axiom or ABox assertion such that Γ∪{γ} is consistent.
A solution to the knowledge-base abduction problem for
〈Γ, γ〉 is any finite set S = {δ} of TBox axioms or ABox
assertions such that :

Γ ∪ S |= γ

The set of all such solutions is denoted by SK 〈Γ, γ〉.
In the definitions, L is the source logic in which concept
descriptions are represented and L′ is the target logic in
which the solutions are searched. Without any restriction,
solutions to abductive reasoning problems can be very general,
trivial and even inconsistent. To prevent undesirable solutions,
several conditions have to be imposed in order to obtain worth
solutions [7].

There are many applications of abductive reasoning methods
in ontology-based systems using description logics, ranging
from resource retrieval [5], semantic matchmaking [10] to
medical diagnosis as well as many others [7]. In the scope
of this paper, we concentrate only on the concept reasoning
task.

Concept abduction is proposed as a novel inference ser-
vice for description logics firstly in the context of semantic
matchmaking[11], [10], an ontology-based process aimed to

find best matches for a request or a demand among available
supplies in the market. Formalizing this operation in the
context of description logics, matches between the request D
and a supply C with respect to a common ontology T can
be categorized into five classes which are listed below in the
order of the most preferable to the less :

1) Exact match corresponding to D ≡T C implies that
the match is perfect because D and C are equivalent
concepts.

2) Full match corresponding to C �T D suggests that all
features required by D can be entirely fulfilled by C .

3) Plug-in match corresponding to D �T C indicates that
what is demanded by D is more specific than C.

4) Potential match corresponds to C �D ��T ⊥ and thus
C and D share something in common.

5) Partial match corresponding to C � D �T ⊥ implies
the conflict between C and D.

From the traditional point of view, only the first three classes
are really interesting [8], [13], as a consequence the last two
ones are less considered. There is no method to rank potential
matches and partial matches are just ignored.

It turns out that abductive reasoning methods can bring
new measurements for potential matching. In fact, if there is
a potential match between C and D w.r.t T , the maximal
solution H to the abduction problem P = 〈T , C,D〉 can be
viewed as the semantic distance between C and D w.r.t T . If
there are several potential supplies C, then H can be used to
rank them for finding most promising ones[10].

For solving the concept abduction problem P = 〈T , C,D〉
when the logics are ALN , an uniform tableaux-based al-
gorithm has been proposed [4]. However, this language is
quite inexpressive, in many domains the representation of
ontology would require more expressive languages. That is the
reason why we would like to extend this method for ALCQ,
an extension of ALN with the full concept negation and
quantified cardinality. It will be the subject of discussion in
the next section.

IV. CONCEPT ABDUCTION IN ALCQ.

We consider the problem of concept abduction P for given
〈T , C,D〉 where concepts C, D and the TBox T are expressed
in ALCQ, solutions H are computed in the target logic ALN .
To recall, in the uniform tableaux-based method [4], instead
of using one labeling function L () as normally, two different
functions are employed , T () and F () , to denote respectively
concepts and roles that individuals and pairs of individuals
belong and do not belong to.

Hence, given a tableau τ and let Iτ be its canonical
interpretation, for each node v and each edge e = 〈v, w〉 of
τ , we have :

• if C ∈ T (v) and D ∈ F (v) then vIτ ∈ CIτ and vIτ �∈
DIτ ,

• if R ∈ T (e) and S ∈ F (e) then
〈
vIτ , wIτ

〉 ∈ RIτ and〈
vIτ , wIτ

〉 �∈ RIτ .
From these semantics, two kinds of clashes can be then
distinguished in τ :

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1711

1) Homogeneous clashes that occur inside T ’s or F ’s labels
and

2) Heterogeneous clashes that happen due to the intersec-
tion of two different T ’s and F ’s labels.

If the tableau contains a clash, Iτ will not be consistent and
thus the knowledge-base can not have a model with respect
to the tableau’s constraints. But more than that, separating
two types of clashes allow to determine if the unsatisfiability
is caused either by single concepts (homogeneous clashes)
or by both of them (heterogeneous clashes), which will be
translated to either by the self-contradiction of concepts or by
the subsumption between them.

Consequently, in order to build the solution H , we only
need to find concept descriptions that, when added to the root
of the original tableau, will generate clashes in every of its
derivations, in which at least one clash is heterogeneous. For
discovering such formulas, we perform abduction on the labels
of tableaux’s nodes.

For illustrating, let’s consider the following abduction prob-
lem where C := ∃r.A � ∀r.B, D := ∃r.C and T = ∅. Using
uniform tableaux transformation rules, a tableau for C � D
would be obtained as follows :

Since the tableau is open, C �� D. To engender a heteroge-
neous clash in it, obviously H := ∀r.C must be the finding
solution.

A. An uniform tableaux-based method for ALCQ
We start by extending uniform tableaux calculus for the

description logic ALCQ. To do that, we define a prefixed
tableau as a tree-like structure τ = (V,E, vr, T, F), where
:

• V is a finite set of nodes, vr ∈ V is the root of the
tableau.

• E is a finite set of edges.
• T () and F () are two labeling functions.

To distinguish, elements included in T () and F () are called
respectively T -labels and F -labels. Sometimes, we will use
wi �= wj when necessary for denoting that wi and wj are two
distinct individuals in τ .

For any e = 〈v, w〉 ∈ E, if either R ∈ T (〈v, w〉) or ¬R ∈
F (〈v, w〉), then w is called a R-successor of v, and v is
called the predecessor of w in τ . Then, as usual, ancestor is

the transitive closure of predecessors and descendant is the
transitive closure of successors.

Principally, from defined semantics of T () and F (), let
Iτ be the canonical interpretation of a prefixed tableau τ , the
followings hold :

1) If (C1 � C1) ∈ T (v) then vIτ ∈ (C1)
Iτ ∧ vIτ ∈

(C2)
Iτ .

If (C1 � C2) ∈ F (v) then vIτ ∈ (¬C1)
Iτ ∨ vIτ ∈

(¬C2)
Iτ .

2) If (C1 � C2) ∈ T (v) then vIτ ∈ (C1)
Iτ ∨ vIτ ∈

(C2)
Iτ .

If (C1 � C2) ∈ F (v) then vIτ ∈ (¬C1)
Iτ ∧ vIτ ∈

(¬C2)
Iτ .

3) If (∀R.C) ∈ T (v) and there is R-successor w of v then
wIτ ∈ (C)

Iτ .
If (∀R.C) ∈ F (v) then there must be a R-successor w
of v such that wIτ ∈ (¬C)

Iτ .
4) If (∃R.C) ∈ T (v) then there must be a R-successor w

of v such that wIτ ∈ (C)
Iτ .

If (∃R.C) ∈ F (v) and there is R-successor w of v then
wIτ ∈ (¬C)

Iτ .
5) If (� nR.C) ∈ T (v) then there must not be (n+ 1) dis-

tinct R-successors w1, . . . , wn+1 of v such that wIτ
i ∈

(C)
Iτ for 1 ≤ i ≤ n+ 1.

If (� nR.C) ∈ F (v) then there must be at least
(n+ 1) distinct R-successors w1, . . . , wn+1 of v such
that wIτ

i ∈ (C)
Iτ for 1 ≤ i ≤ n+ 1.

6) If (� nR.C) ∈ T (v) then there must be at least n
distinct R-successors w1, . . . , wn of v such that wIτ

i ∈
(C)

Iτ for 1 ≤ i ≤ n.
If (� nR.C) ∈ F (v) then there must not be n distinct
R-successors w1, . . . , wn such that wIτ

i ∈ (C)
Iτ for

1 ≤ i ≤ n.
Then, given two concepts C, D and a TBox T in ALCQ, for
verifying if C �T D, the uniform tableaux-based algorithm
works by starting with an initial τ0 = {V,E, vr, T, F} where
:

• V = {vr},
• E = ∅,
• T (vr) = {C � CT },
• F (vr) = {D}.

Then, the following transformation rules are applied to some
tableau τ until no rule can be used. We assume that all
concepts are already in the NNF, i.e the normal form in which
negations occur only in front of concept names. Using de
Morgan’s rules and other rules for quantifier, the normalization
can be done in linear time

¬ (C �D) �→ ¬C � ¬D
¬ (C �D) �→ ¬C � ¬D
¬∀R.C �→ ∃R.¬C
¬∃R.C �→ ∀R.¬C

Thus, in the following, ¬̇C will be used to denote the NNF
of ¬C.

1) �-rules:
• if (C1 � C2) ∈ T (v) , v is not blocked and

{C1, C2} � T (v) then T (v) = T (v) ∪ {C1, C2}.

Fig. 1. A tableau for ∃r.A � ∀r.B � ∃r.C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1712

• if (C1 � C2) ∈ F (v) , v is not blocked and
{C1, C2} � T (v) then F (v) = F (v) ∪ {C1, C2}.

2) �-rule:
• if (C1 � C2) ∈ T (v) , v is not blocked and

{C1, C2} ∩ T (v) = ∅ then:
– τ1 = {V,E, vr, T, F} where T (v) = T (v) ∪

{C1} .
– τ2 = {V,E, vr, T, F} where T (v) = T (v) ∪

{C2} .
• if (C1 � C2) ∈ F (v) , v is not blocked and

{C1, C2} ∩ F (v) = ∅ then:
– τ1 = {V,E, vr, T, F} where F (v) = F (v) ∪

{C1} .
– τ2 = {V,E, vr, T, F} where F (v) = F (v) ∪

{C2} .
3) ∃-rule:

• if (∃R.C) ∈ T (v), v is not blocked and there is
no R-successor w of v with either C ∈ T (w) or
¬C ∈ F (w) then :
– V = V ∪ {w}, E = E ∪ {〈v, w〉}, T (〈v, w〉) =

{R} and T (w) = {C} .
• if (∀R.C) ∈ F (v), v is not blocked and there is

no R-successor w of v with either C ∈ T (w) or
¬C ∈ F (w) then :
– V = V ∪ {w}, E = E ∪ {〈v, w〉}, F (〈v, w〉) =

{¬R} and F (w) = {C} .
4) ∀-rules:

• if (∀R.C) ∈ T (v), v is not blocked and there is a
R-successor w of v such that C /∈ T (w) then :
– T (w) = T (w) ∪ {C}.

• if (∃R.C) ∈ F (v), v is not blocked and there is a
R-successor w of v such that C /∈ F (w) then :
– F (w) = F (w) ∪ {C}.

5) choose-rule:
• if (� nR.C) ∈ T (v), v is not blocked and there is a

R-successor w of v such that {C, ¬̇C}∩T (w) = ∅
then :
– τ1 = {V,E, vr, T, F} where T (w) = T (w) ∪

{C} .
– τ2 = {V,E, vr, T, F} where T (w) = T (w) ∪

{¬̇C} .
• if (� nR.C) ∈ F (v), v is not blocked and there is a

R-successor w of v such that {C, ¬̇C}∩F (w) = ∅
then :
– τ1 = {V,E, vr, T, F} where F (w) = F (w) ∪

{C} .
– τ2 = {V,E, vr, T, F}, where F (w) = F (w) ∪

{¬̇C} .
6) �-rules:

• if (� nR.C) ∈ T (v) , v is not blocked and there
are not n R-successors w1, . . . , wn of v such that
C ∈ T (wk) for 1 ≤ k ≤ n and wi �= wj for
1 ≤ i < j ≤ n then :

– V = V ∪{wi}, E = E∪{〈v, wi〉}, T (〈v, wi〉) =
{R} , let T (wi) = {C} if C �= � and add wi �=
wj for 1 ≤ i < j ≤ n to τ .

• if (� nR.C) ∈ F (v), v is not blocked and there
are not n + 1 local R-successors w1, . . . , wn+1 of
v such that ¬̇C ∈ F (wk) for 1 ≤ k ≤ n + 1 and
wi �= wj for 1 ≤ i < j ≤ n+ 1 then :
– V = V ∪{wi}, E = E∪{〈v, wi〉}, F (〈v, wi〉) =

{¬R}, let F (wi) = {¬̇C} if C �= � and add
wi �= wj for 1 ≤ i ≤ n+ 1 to τ .

7) �-rules:
• if (� nR.C) ∈ T (v), v is not blocked and there

are n+1 R-successors w1, . . . , wn+1 of v such that
either C ∈ T (wk) or ¬̇C ∈ F (wk) for 1 ≤ k ≤
n+1 and there is not wi �= wj for some i �= j then
:
– for each pair wi, wj such that i < j , either C ∈

T (wi) ∩ T (wj) or ¬̇C ∈ F (wi) ∩ F (wj) and
there is not wi �= wj in τ , Merge (wi, wj).

• if (� nR.C) ∈ F (v), v is not blocked and there
are n R-successors w1, . . . , wn of v such that either
C ∈ T (wk) or ¬̇C ∈ F (wk) for 1 ≤ k ≤ n and
there is not wi �= wj for some i �= j then :
– for each pair wi, wj such that i < j, either C ∈

T (wi) ∩ T (wj) or ¬̇C ∈ F (wi) ∩ F (wj) and
there is not wi �= wj in τ , Merge (wi, wj).

In �-rules, we have used the operator Merge () in order to
merge a node with another :

• Merge (v, v′) where v and v′ are two nodes such that
there is not v �= v′ in τ :

– let T (v) = T (v) ∪ T (v′), F (v) = F (v) ∪ F (v′)
and E = E ∪ {〈v, w〉};

– let T (〈v, w〉) = T (〈v′, w〉) and F (〈v, w〉) =
F (〈v′, w〉) for each w is a successor of v′.

– let V = V \ {v′} and E = E \ {〈u, v′〉}, where u is
the predecessor of v and v′.

– add v �= v′′ for each v′′, v′ �= v′′ in τ .
We assign to each rule a priority in such a way that if there is
more than one can be applied, those on T -labels are always
executed first. To ensure the termination of the transformation,
a blocking strategy is required as usual: for any node v ∈ V ,
v is blocked by u if :

• u comes before v in some enumeration and
• either T (v) ⊆ T (u) or F (v) ⊆ F (u).

Some rules are non-deterministic, as a result a tableau τ can
be transformed into new tableaux τ1, . . . , τm . Because the
rules preserve the consistency, the canonical interpretation Iτ
of τ is consistent iff one of Iτ1 , . . . , Iτm is so.

Definition 1: (Clashes) A prefixed tableau
τ = (V,E, vr, T, F) contains a homogeneous clash if
one of the followings holds for some node v ∈ V :

• either {A,¬A} ⊆ T (v)or {A,¬A} ⊆ F (v);
• (� nR.C) ∈ T (v), v has mR-successors w1, . . . , wm

such that :
– m > n,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1713

– C ∈ T (wi) for 1 ≤ i ≤ m and
– wi �= wj for 1 ≤ i < j ≤ m;

• (� nR.C) ∈ F (v), v has m R-successors w1, . . . , wm

such that :
– m ≥ n,
– ¬̇C ∈ F (wi) for 1 ≤ i ≤ m and
– wi �= wj for 1 ≤ i < j ≤ m;

The tableau contains a heterogeneous clash if T (v)∩F (v) �=
∅.
Clashes are defined very similarly as in [4]. To distinguish,
we call homogeneous clashes happening in T -labels and
F -labels respectively T -homogeneous and F -homogeneous
clashes. Then, the tableau τ is complete if no rule can be
applied to it. It’s closed if it contains a clash, otherwise it’s
open. Finally, the following theorem establishes the soundness
and completeness of the algorithm :

Theorem 1: Let C, D be two ALCQ concepts, T be an
acyclic general TBox in ALCQ. Then C �T D iff all prefixed
tableau constructed by the uniform algorithm starting with
τ0 = (V,E, vr, T, F) where V = {vr}, E = ∅, T (v) = {C}
and F (v) = {D} are closed. Particularly, if every tableau
contains at least one T -homogeneous clash then C �T ⊥.
The complexity of the algorithm is derived directly from the
hardness of the normal tableaux-based algorithm for ALCQ.
Indeed, if we look at dual rules in detail, each of them
applied to T (v) = {C} and F (v) = {D} is equivalent to a
normal rule applied to L (v) = {C � ¬D}. Thus, the uniform
algorithm performs neither worse nor better than the ordinary
one.

Theorem 2: Let C and D be two ALCQ concepts, T be a
acyclic general TBox in ALCQ. Deciding if C �T D using
the uniform tableaux algorithm is EXPTIME-complete.

B. Computing abductive solutions.

As mentioned previously, in order to construct a solution H
to the concept abduction problem P for given 〈T , C,D〉, we
try to find concept descriptions that would generate clashes in
every tableau for C �T D such that among them at least one
clash is heterogeneous. To do that, let θ = {τ1, . . . , τn} be
the set of all open tableaux for verifying C �T D, if θ is not
empty, to compute H , we start by building for each τi ∈ θ,
two closing sets clT (τi) and clH(τi), which contains formulas
that will eventually close it :

Definition 2: (Closing sets) Let τ = (V,E, vr, T, F) be
any open and complete tableau. We define clT (τ) and clH (τ)
as two disjoint sets of concept descriptions built from labels
of τ such that, if we let τT and τH be respectively complete
tableaux derived from τ by adding any element of ctT (τ) and
clH (τ) into T (vr), then τT and τH are closed. Moreover,

• every clash in τT is T -homogeneous and,
• every clash in τH is heterogeneous.

It can be seen that any conjunctive expression H built from
elements of clT () and clH () such that, for each open tableau
at least one of its closing elements is appeared in H , will be
the finding solution if C � H ��T ⊥. We characterize these
conditions in the following theorem :

Theorem 3: Let P = 〈T , C,D〉 be a concept abduction
problem in the description logic ALCQ. Let θ = {τ1, . . . , τn}
be the set of open and complete prefixed tableaux for C �T D.
If θ is not empty, for each τi ∈ θ, let cl (τi) = clT (τi) ∪
clH (τi) and choice () be some choice function.

For any set S = 〈H1 = choice (cl (τi)) , . . . , Hn = choice (cl (τi))〉,
let H be a conjunctive expression built from elements of S,
H ::= H1 � · · · �Hn. If :

1) for every τi ∈ θ, S ∩ cl (τi) �= ∅ and
2) ∃τj ∈ θ such that S ∩ clT (τj) = ∅.

then H is a solution to the problem P .

For building the closing sets, from the definition of clashes,
it can be seen that there are two ways to generate a clash in
some node v of the tableau, the first one is the contradiction
of concept names. Thus,

• if A is a (maybe negated) concept name and A ∈ T (v),
then ¬̇A ∈ clT (v);

• if B is a (maybe negated) concept name, B ∈ F (v) and
¬̇B �∈ T (v), then B ∈ clH (v).

• if v has a R-successor w and there is not another R-
successor w′ of v such that w′ �= w is included in τ then
:

– if R ∈ T (〈v, w〉) then ∀R.E ∈ clT (v), for each
E ∈ clT (w),

– otherwise ∀R.F ∈ clH (v), for each F ∈ clH (w) if
∀R.F �∈ clT (v).

The other way comes from the incompatibility of qualified
number restrictions. So,

• if v has n R-successors w1, . . . , wn such that n > 1 and
wi �= wj for 1 ≤ i < j ≤ n then :

– if R ∈ T (〈v, wi〉) for every 1 ≤ i ≤ n then :

∗ � (k − 1)R.� ∈ clT (v);

– otherwise :

∗ � (k − 1)R.� ∈ clH (v).

From the semantics of tableaux rules and the definition of
clashes, it can be verified that if one of these expressions
is added into T (v), a clash will be eventually produced in
some label of derived tableaux. Based on these descriptions,
we design a recursive algorithms for computing clT (v) as
follow.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1714

Algorithm 1 compute clT (v)

Input: v, a node in a prefixed tableau τ .
Output: The closing set clT (v).

1: clT (v) ← ∅.
2: if T (v) �= ∅ then
3: for each A ∈ T (v), A is a (maybe negated) concept

name do
4: clT (v) ← clT (v) ∪ {¬̇A}.
5: end for
6: end if
7: if v has n R-successor w1, . . . , wn such that n ≥ 2, wi �=

wj for 1 ≤ i < j ≤ n and R ∈ T (〈v, wi〉) for every
1 ≤ i ≤ n then

8: clT (v) ← clT (v) ∪ {� (k − 1)R.�}
9: end if

10: for each w, w is a R-successor of v and there is not w′

such that w �= w′ is present in τ do
11: for each E ∈ clT (w) do
12: clT (v) ← clT (v) ∪ {∀R.E}.
13: end for
14: end for
15: return clT (v).

In the same manner, clH (v) is built by the following
procedure.

Algorithm 2 compute clH (v)

Input: v, a node in an open and complete prefixed tableau τ .
Output: The closing set clH (v).

1: clH (v) ← ∅.
2: if F (v) �= ∅ then
3: for each B ∈ F (v), B is a (maybe negated) concept

name do
4: clH (v) ← clH (v) ∪ {B}.
5: end for
6: end if
7: if v has m R-successor w1, . . . , wm such that m ≥ 2,

wi �= wj for 1 ≤ i < j ≤ m and ¬R ∈ F (〈v, wi〉) for
some i, 1 ≤ i ≤ m then

8: clH (v) ← clH (v) ∪ {� (k − 1)R.�}.
9: end if

10: for each w, w is a R-successor of v and there is not w′

such that w �= w′ is present in τ do
11: for each F ∈ clH (w) do
12: clH (v) ← clH (v) ∪ {∀R.F}.
13: end for
14: end for
15: clH (v) ← clH (v) \ (clH (v) ∩ clT (v)

)
.

16: return clH (v).

Theorem 4: Given τ a prefixed tableaux for the description
logic ALCQ. The setsclT (vr) and clH (vr) computed respec-
tively by the algorithm 1 and 2are the closing sets of τ .
Let cT :=

⋃

τi∈θ

clT (τi) and cH :=
⋃

τi∈θ

clH (τi). For each

closing element Hi ∈ cT ∪ cH , we define τ − set (Hi) =
{τ | Hi ∈ cl (τ)}. Let S be a minimal set of cT ∪ cH such

that :

• θ ⊆ ⋃

Hi∈S

τ − set (Hi),

• {Hi, ¬̇Hi} �⊆ S,
• S ∩ cH �= ∅ .

Then, H :=
�

Hi∈S

Hi is a solution to the abduction problem

P = 〈T , C,D〉. We implement this process in the algorithm
3 below :

Algorithm 3 conceptAbduction
Input: C and D, two ALCQ concepts.
Input: T , a general acyclic TBox in ALCQ.
Output: H , a solution to the concept abduction problem

(T , C,D).
1: S ← ∅ and H ← ε.
2: Build θ = {τ1, . . . , τn}, the set of open and complete

prefixed tableaux for C �T D.
3: if θ = ∅ then
4: /*C �T D and thus no abductive solution is needed*/.
5: else
6: cT ← ∅ and cH ← ∅.
7: for each τj ∈ θ do
8: cT ← cT ∪ clT (τj).
9: cH ← cH ∪ clH (τj).

10: end for
11: Build S, the minimal subset of cT ∪ cH such that :

(i) θ ⊆ ⋃

Hi∈S

τ − set (Hi),

(ii) {Hi, ¬̇Hi} �⊆ S and
(iii) S ∩ cH �= ∅.

12: for each Hi ∈ S do
13: H ← H �Hi

14: end for
15: end if
16: return H .

Theorem 5: The concept description H returned by the
algorithm 3 is a solution the concept abduction problem P
for given 〈T , C,D〉
In [11], the complexity of any abductive algorithm is proved
to be bound by the complexity of the subsumption problem
in the corresponding description logics. For the description
ALCQ, it’s EXPTIME-complete.

It turns out that our algorithm do not perform worse than this
bound. Indeed, we observe that the complexity of algorithms
1 and 2 is equal to the complexity of verifying if a tableau
specifies a consistent model, which is shown to be exponential
in [1]. Then, for finding of the minimal set S which contains
sub-descriptions of the solution H , at the worst, we have to
investigate through all subsets of cT ∪cH . As this process does
not exceed the exponential bound neither, the complexity of
the algorithm 3can not be worse than EXPTIME.

V. EXAMPLE

To illustrate how the algorithms1, 2 and 3 work, let’s
consider the following abduction problem P = 〈T , C,D〉

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1715

where :

T =

{
Room1 � ∃hasEquipment. (Desk � Table)
Room2 � ∃hasInternet. (WiFi � ADSL)

}

C ::= Room1 � Room2

D ::= ∃hasEquipment.Desk � ∃hasInternet.WiFi

For computing the solution to P , the algorithm starts by
building tableaux for C �T D. The whole transformation of
tableaux is illustrated in the appendix. Accordingly, the set of
open and complete tableaux is

θ = {τ8, τ9, τ10, τ18, τ19, τ21, τ22, τ28, τ29, τ30, τ38, τ39, τ41, τ42}

As θ is not empty, C ��T D . We compute then closing sets
for these tableaux. The result is listed and then summarized
in two tables I and II :

τi clT (τi) clH (τi)

τ8

{ ¬Room1,Room2,
∀hasEquipment.¬Desk

}
∅

τ9

{ ¬Room1,Room2,
∀hasEquipment.¬Table

}
∀hasEquipment.Desk

τ10

{ ¬Room1,Room2,
∀hasEquipment.¬Table

}
∅

τ18

⎧⎨
⎩

¬Room1,
∀hasEquipment.¬Table,
∀hasInternet.¬WiFi

⎫⎬
⎭ ∀hasEquipment.Desk

τ19

⎧⎨
⎩

¬Room1,
∀hasEquipment.¬Desk,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasInternet.WiFi

τ21

⎧⎨
⎩

¬Room1,
∀hasEquipment.¬Table,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasEquipment.Desk

τ22

⎧⎨
⎩

¬Room1,
∀hasEquipment.¬Table,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasInternet.WiFi

τ28

⎧⎨
⎩

¬Room2,
Room1,

∀hasInternet.¬WiFi

⎫⎬
⎭ ∅

τ29

⎧⎨
⎩

¬Room2,
Room1,

∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasInternet.WiFi

τ30

⎧⎨
⎩

¬Room2,
Room1,

∀hasInternet.¬ADSL

⎫⎬
⎭ ∅

τ38

⎧⎨
⎩

¬Room2,
∀hasEquipment.¬Table,
∀hasInternet.¬WiFi

⎫⎬
⎭ ∀hasEquipment.Desk

τ39

⎧⎨
⎩

¬Room2,
∀hasEquipment.¬Desk,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasInternet.WiFi

τ41

⎧⎨
⎩

¬Room2,
∀hasEquipment.¬Table,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasEquipment.Desk

τ42

⎧⎨
⎩

¬Room2,
∀hasEquipment.¬Table,
∀hasInternet.¬ADSL

⎫⎬
⎭ ∀hasInternet.WiFi

Table I
CLOSING SETS OF OPEN TABLEAUX

Closing element (Hi) τ − set (Hi)

¬Room1 {τ12, τ13, τ14, τ18, τ19, τ21, τ22}
Room2 {τ12, τ13, τ14}

∀hasEquipment.¬Desk {τ12, τ18, τ30}
∀hasEquipment.¬Table {τ13, τ14, τ19, τ21, τ22, τ31, τ33, τ34}
∀hasInternet.¬ADSL {τ18, τ21, τ22, τ25, τ26, τ30, τ33, τ34}
∀hasInternet.¬WiFi {τ19, τ24, τ31}

¬Room2 {τ24, τ25, τ26, τ30, τ31, τ33, τ34}
Room1 {τ24, τ25, τ26}

∀hasEquipment.Desk {τ13, τ19, τ21, τ31, τ33}
∀hasInternet.WiFi {τ18, τ22, τ25, τ30, τ34}

Table II
CLOSING ELEMENTS AND ITS τ − set ()

From these elements, we build a concept descrip-
tion H = Room1 � Room2 � ∀hasEquipment.Desk �
∀hasInternet.WiFi. It can be verified that H is a solution
to the abduction problem P .

VI. CONCLUSIONS

We have studied in the scope of this paper the problem of
concept abduction in the context of ALCQ, the description
logic that is enough expressive for many ontology-based
applications with the support of full concept negation and
qualified number restrictions. Based on the already developed
tableaux-based method for solving the problem in ALN , we
have developed an extension of this technique for dealing with
concepts represented in ALCQ.

To do that, we have introduced firstly new expansion rules
to handle expressive formulas under the scope of full concept
negations and quantified cardinality. Then, using complements
of constraints in open tableaux, we compute concept descrip-
tions that will eventually lead to their closure. Finally, a
solution to the problem of concept abduction is built as a
consistent conjunction of such formulas.

We would like to develop the result of this paper in two
directions. Firstly, we would like to improve algorithms 1 and
2to obtain abductive solutions in more expressive languages,
such as ALQ. In the other direction, we want to extend the
concept abductive reasoning task to the distributed modular
formalisms, such as Package-based Description logics [3].
Thereby, semantic matchmaking can be performed in more
general contexts where requests and offers are specified in
different, distributed but related ontologies, which are quite
common in domains such as eTourism.

REFERENCES

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[2] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69:2001, 2000.

[3] Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar.
Package-based description logics.

[4] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello.
A uniform tableaux-based approach to concept abduction and contrac-
tion in aln. In Contraction in ALN . In Proc. of DL-04 (2004), CEUR
Workshop Proceedings, page 104, 2004.

[5] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M.
Donini, Agnese Pinto, and Azzurra Ragone. Semantic-based resource
retrieval using non-standard inference services in description logics.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1716

[6] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Marina
Mongiello, and Francesco M. Donini. Concept abduction and contraction
for semantic-based discovery of matches and negotiation spaces in an
e-marketplace. In ICEC ’04: Proceedings of the 6th international
conference on Electronic commerce, pages 41–50, New York, NY, USA,
2004. ACM.

[7] Corinna Elsenbroich, Oliver Kutz, and Ulrike Sattler. A case for
abductive reasoning over ontologies. In in ‘Proc. OWL: Experiences
and Directions, pages 10–11, 2006.

[8] Lei Li and Ian Horrocks. A software framework for matchmaking based
on semantic web technology. pages 331–339. ACM Press, 2003.

[9] Industry Minister of the Economy and Employment. Nouvelle grille de
classification hôtelière, 2009.

[10] Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini.
Semantic matchmaking as non-monotonic reasoning: A description logic
approach. Journal of Artificial Intelligence Research, 29:307, 2007.

[11] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and
Marina Mongiello. Abductive matchmaking using description logics.
In In Proc. of IJCAI 2003, pages 337–342. Morgan Kaufmann, 2003.

[12] Charles Sanders Peirce. Abduction and induction. In Justus Buchler,
editor, Philosophical writings of Pierce, pages 150–156. New York:
Dover Books, 1955.

[13] Katia Sycara, Widoff S, Klusch M, and Jianguo Lu. Larks: Dynamic
matchmaking among heterogeneous software agents in cyberspace. In in
Cyberspace. Autonomous Agents and Multi-Agent Systems, pages 173–
203, 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1717

APPENDIX

The initial tableau is :
τ0 = {V0, E0, v

r, T, F} where V0 = {vr}, E0 = ∅ with :

• T (vr) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Room1 � Room2,
¬Room1

�∃hasEquipment. (Desk � Table) ,
¬Room2

�∃hasInternet. (ADSL �WiFi)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;

• F (vr) = {∃hasEquipment.Desk � ∃hasInternet.WiFi}.
Tableaux developed on the first branch are :

1) τ1 = {V,E, vr, T, F} with :
• T (vr) = {. . . ,Room1};
• F (vr) = {. . . }.

2) τ2 = {V,E, vr, T, F} with :
• T (vr) = {. . . ,Room2};
• F (vr) = {. . . }.

3) τ3 = {V,E, vr, T, F} (CLASH) with :
• T (vr) = {. . . ,Room1,¬Room1};
• F (vr) = {. . . }.

4) τ4 = {V,E, vr, T, F} with :
• T (vr) = {. . . , ∃hasEquipment. (Desk � Table)}

;
• F (vr) = {. . . }.

5) τ5 = {V,E, vr, T, F} with :

• T (vr) =

⎧
⎨

⎩

. . . ,
∃hasEquipment. (Desk � Table)

¬Room2

,

⎫
⎬

⎭

;
• F (vr) = {. . . }.

6) τ6 = {V,E, vr, T, F} with :

• T (vr) =

⎧
⎨

⎩

. . . ,
∃hasEquipment. (Desk � Table) ,
∃hasInternet. (ADSL �WiFi)

⎫
⎬

⎭

;
• F (vr) = {. . . }.

7) τ7 = {V1, E1, v
r, T, F} (CLASH) with :

• T (vr) = {. . . };
• F (vr) = {. . . , ∃hasEquipment.Desk};
• T (v1) = {Desk � Table,Desk};
• F (v1) = {Desk} ;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅.

8) τ8 = {V1, E1, v
r, T, F} with :

• T (vr) = {. . . };
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Desk � Table,Desk};
• F (v1) = ∅;
• T (〈vr, v1〉) = {hasEquipment} ;
• F (〈vr, v1〉) = ∅.

9) τ9 = {V1, E1, v
r, T, F}with :

• T (vr) = {. . . };
• F (vr) = {. . . , ∃hasEquipment.Desk};
• T (v1) = {Desk � Table,Table};
• F (v1) = {Desk};
• T (〈vr, v1〉) = {hasEquipment} ;

• F (〈vr, v1〉) = ∅.
10) τ10 = {V1, E1, v

r, T, F} with :
• T (vr) = {. . . };
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Desk � Table,Table};
• F (v1) = ∅;
• T (〈vr, v1〉) = {hasEquipment} ;
• F (〈vr, v1〉) = ∅.

11) τ11 = {V2, E2, v
r, T, F} where V2 = {vr, v1, v2}, E2 =

{〈vr, v1〉 , 〈vr, v2〉} with :
• T (vr) = {. . . } ;
• F (vr) = {. . . };
• T (v1) = {Desk} ;
• F (v1) = ∅;
• T (v2) = {WiFi} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

12) τ12 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . };
• T (v1) = {Table} ;
• F (v1) = ∅;
• T (v2) = {WiFi} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

13) τ13 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . };
• T (v1) = {Desk} ;
• F (v1) = ∅;
• T (v2) = {ADSL} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

14) τ14 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . };
• T (v1) = {Table} ;
• F (v1) = ∅;
• T (v2) = {ADSL} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

15) τ15 = {V2, E2, v
r, T, F} (CLASH) with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasEquipment.Desk},

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1718

• T (v1) = {Desk} ;
• F (v1) = {Desk};
• T (v2) = {WiFi} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

16) τ16 = {V2, E2, v
r, T, F} (CLASH) with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Desk} ;
• F (v1) = ∅;
• T (v2) = {WiFi} ;
• F (v2) = {WiFi};
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

17) τ17 = {V2, E2, v
r, T, F} (CLASH) with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Table} ;
• F (v1) = ∅;
• T (v2) = {WiFi} ;
• F (v2) = {WiFi};
• T (〈vr, v1〉) = {hasEquipment}
• ; F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

18) τ18 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasEquipment.Desk};
• T (v1) = {Table} ;
• F (v1) = {Desk};
• T (v2) = {WiFi} ;
• F (v2) = ∅ ;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};

• F (〈vr, v2〉) = ∅.
19) τ19 = {V2, E2, v

r, T, F} with :
• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Desk} ;
• F (v1) = ∅;
• T (v2) = {ADSL} ;
• F (v2) = {WiFi};
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

20) τ20 = {V2, E2, v
r, T, F} (CLASH) with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasEquipment.Desk};
• T (v1) = {Desk} ;
• F (v1) = {Desk};
• T (v2) = {ADSL} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

21) τ21 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasEquipment.Desk} ;
• T (v1) = {Table} ;
• F (v1) = {Desk};
• T (v2) = {ADSL} ;
• F (v2) = ∅;
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

22) τ22 = {V2, E2, v
r, T, F} with :

• T (vr) = {. . . } ;
• F (vr) = {. . . , ∃hasInternet.WiFi};
• T (v1) = {Table} ;
• F (v1) = ∅;

Fig. 2. Transformation of tableaux

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1719

• T (v2) = {ADSL} ;
• F (v2) = {WiFi};
• T (〈vr, v1〉) = {hasEquipment};
• F (〈vr, v1〉) = ∅;
• T (〈vr, v2〉) = {hasInternet};
• F (〈vr, v2〉) = ∅.

In the very similar manner, τ2, τ23 , ..., τ42 are developed on
the second branch.

