
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3243

Abstract— Signal processing applications which are iterative in

nature are best represented by data flow graphs (DFG). In these

applications, the maximum sampling frequency is dependent on the

topology of the DFG, the cyclic dependencies in particular. The

determination of the iteration bound, which is the reciprocal of the

maximum sampling frequency, is critical in the process of hardware

implementation of signal processing applications. In this paper, a

novel technique to compute the iteration bound is proposed. This

technique is different from all previously proposed techniques, in the

sense that it is based on the natural flow of tokens into the DFG

rather than the topology of the graph. The proposed algorithm has

lower run-time complexity than all known algorithms. The

performance of the proposed algorithm is illustrated through

analytical analysis of the time complexity, as well as through

simulation of some benchmark problems.

Keywords— Data flow graph, Iteration period bound, Rate-

optimal scheduling, Recursive DSP algorithms.

I. INTRODUCTION

he data flow graph (DFG) has proven to be a successful

model for exhibiting the parallelism of algorithms. The

dataflow graph model is represented by nodes and edges.

Digital signal processing algorithms which are repetitive in

nature are best represented by iterative data-flow graphs,

where nodes represent computations and edges represent

communication paths. Iterative applications have inherent

parallelism among operations from consecutive iterations. The

iteration is defined as the execution of the entire program to

consume one input from each input line and produce one

output on each output line. Operations from successive

iterations can obviously be overlapped. A schedule that

achieves the minimum iteration period is called rate-optimal.

That is, it minimizes the average time between successive

outputs, and thus achieves the highest possible throughput.

For all recursive DSP algorithms, there exists a fundamental

lower bound on the iteration period, referred to as the iteration

bound [1]. Recursive DSP algorithms are typically represented

by cyclic DFGs. Determining the iteration bound for signal

processing algorithms (described by iterative data-flow

graphs) is a critical problem. This bound is fundamental to an

algorithm and is independent of its implementation

Manuscript received Feb 9, 2004

Ali Shatnawi is with the Jordan University of Science and Technology,

Irbid 22110, Box 3030 JORDAN (phone: 962-79-666-9076; fax: 962-2-702-

2440; e-mail: ali@just.edu.jo).

architecture. In other words, it is impossible to achieve an

iteration period less than the bound, regardless of the number

or power of the used processing elements. Thus, for DSP

applications, it is a crucial design requirement to compute the

iteration bound if a rate optimal implementation is sought. In

this case, the maximum sampling rate of an algorithm running

on any implementation is upper-bounded by the reciprocal of

the iteration bound. In other words, to design a compile-time

multiprocessor system, implementing an iterative digital signal

processing algorithm, one has to compute this bound.

Several researchers have tackled the problem of finding the

iteration bound [2]-[7]. A thorough analysis of these

techniques and some others is found in [8]. Most researchers,

who tackled the problem of finding the iteration bound, have

focused on the graph structure or topology characteristics in

their algorithms. Some of them, however, applied

combinatorial techniques such as the path length analysis in

their algorithms. In this paper, a completely different approach

is being used in the proposed algorithm. The approach is

based on the natural flow of data into the communication links

of the data flow graph.

II. THE DFG MODEL

The DFG is a directed graph G=(V,E), which is uniquely

represented by its node set V(G) and its edge set E(G). An

edge),(TI vve is said to be incident out of its source

node Iv and incident into its target node Tv . The source and

target nodes of an edge are said to be its end nodes. The set of

all edges incident into a node are said to be its incoming edge

set (IE); whereas the set of all edges incident out of a node are

its outgoing edge set (OE). The number of edges incident into

a node are referred to as its indegree, and the number of

outgoing edges is its outdegree [9].

The DFG considered in this paper is assumed to be a proper

graph, that is, in the graph there is a path to every node from

some input node, and a path from every node to some output

node. A node that does not achieve this criterion is redundant,

and has no contribution to the input/out behavior of the

underlying algorithm.

III. ITERATION BOUND

For a cyclic DFG, the iteration bound is not only

constrained by the hardware resources, but also by the

Computing the Loop Bound in Iterative Data

Flow Graphs Using Natural Token Flow

Ali Shatnawi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3244

topology of the graph. If the hardware resources are unlimited

(in fact, higher than a certain lower bound), the iteration

period bound as constrained by the topology of the given

graph is given by

C

C

GCC N

D
T

i

max
)(

0

where CD is the total computational time of all the nodes in

the circuit C, CN is the total number of ideal delays in the

circuit C, and C(G) is the set of all circuits (loops) in G. CD

and CN are, respectively, given by

)(CVv

c

vC

j

j
dD

and

)(CEe

eC

j

j
nN

c

v j
d denotes the computational delay of node vi and

jen the

ideal delay of edge ie .

IV. THE ALGORITHM

All previous iteration-finding algorithms focused on the

DFG topology and the characteristics of the graph loops to

compute the iteration bound. In contrast, the idea of the

proposed algorithm depends on the natural flow of tokens to

compute the natural limit imposed by the graph structure on

the maximum attainable throughput. In other words, we will

let the graph handle tokens as they become available at the

input edges of the nodes. Then, based on the average time

between successive outputs of each node, we will compute the

value of the iteration bound.

The algorithm starts by performing a simple topological

sorting procedure. In this procedure, which is pseudo coded in

Figure 1, the indices of the nodes of the given graphs are

sorted such that the index of a source of every edge is less

than the index of its target. This is impossible to achieve in

cyclic graphs; but the algorithm will find a reasonable

topological sorting.

Topological-Sorting(G)

For each edge Ge
 If Source(e).index > target(e).index

 Swap(source(e).index, target(e).index)

Figure 1: A simple topological sorting algorithm.

The second procedure in the algorithm is depicted in Figure

2. This procedure is responsible for removing, form the graph,

all nodes that are not part of any loop. As these nodes are

insignificant in the calculation of the iteration bound,

removing them form the underlying graph will improve the

performance of the algorithm in the average case. This

procedure searches for a node whose indegree is zero. If such

a node is found, it is removed from the graph by removing all

edges outgoing of it. The same process is applied to any node

whose outdegree is zero. In this case, all incoming edges to

the node are also removed.

PureCyclic(G)

1. For each Gv set cyclic[v]=true

2. Pick a node v such that cyclic[v]=true. If there

is no such node STOP.

3. If indegree(v) 0 go to Step 5.

4. Remove from G all edges that are outgoing of

the node v. That is, set E(G)=E(G)-OE(v). Set

cyclic[v] =false. Go to Step 7.

5. If outdegree(v) 0 go to Step 2.

6. Remove from G all edges that are incoming

into node v. That is, set E(G)=E(G)-IE(v). Set

cyclic[v] =false.

7. If no node remained with (cyclic[v]=true)

AND (indegree(v)=0 OR outdegree(v)=0)

STOP

8. Go to Step 2.

Figure 2: The algorithm to reduce the graph to a pure

cyclic graph.

After refining the graph by applying topological sorting to

it and removing all nodes which are not part of any loop, the

main procedure to compute the iteration bound is applied. The

pseudo code program representing this procedure is given in

Figure 3, which is further detailed in the following

paragraphs. However, self explanatory steps are left without

discussion.

Step1: Initial tokens which are available at time zero are

placed on the queues of the edges which have nonzero ideal

delays. The number of tokens queued on each edge is exactly

equal to the number of ideal delays of this edge. Destinations

of edges whose ideal delay are greater than zero are more

likely to be ready for firing as some of their inputs are already

available. Thus, they are placed in a special queue called

LikelyReady.

Step 3: Since iterations may overlap, we define an iteration

index for each node separately.

Step 5: Get one of the likely to be ready nodes from the

LikelyReady queue and remove it from the queue.

Step 8: Search for every node whose all incoming edges

are loaded with tokens. Such a node is ready for firing. The

earliest firing time of the ready node will be the latest of all

token times located at the top of the queues of all incoming

edges.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3245

IterationBound(G)

1. For each edge Ge where G is the cyclic

version of the original:

a. Define Queue Tokens(e)=Empty

b. Tokens(e).append(0) as many times as

jen

c. If 0
jen

LikelyReady.append(target(e))

2. Set iteration_no =1

3. For each Gv set iteration[v]=0

4. If iteration_no > MAXITERATIONS go to

Step 11.

5. Set v = LikelyReadyQueue.Retrieve;

6. Set Ready=true

7. Set Latest= MINNUM

8. While (Ready=true and there is an unexamined

edge)(vINCOMINGe)

 If Tokens(e) is not empty, update

Latest=Max(Latest,

Tokens(e).earliest_time)

 Else set Ready=false

9. If (Ready=true)

a. dequeue one token from each edge

)(vINCOMINGe

b. set new_token_time= Latest + weight(v)

c. For each)(vOUTGOINGe

Tokens(e).append (new_token_time)

 LikelyReadyQueue.append(target(e))

d. Set iteration[v]=iteration[v]+1;

e. Set iteration_no=iteration[v];

f. If (iteration[v]=skips)

 skiptime[v]=new_token_time

g. Current_time(v)=new_token_time

10. Go to Step 4

11. For each cyclic node v set

skipsviteration

vtimeSkipvTimeCurrent
vT

][

)(_)(_
)(

skips being the number of skipped iterations

12. Set T= average of all T(v) computed in Step

11.

Figure 3: The Main Algorithm to compute the iteration

bound.

Step 9: Dequeue one token from each incoming edge and

queue one token on each outgoing edge of a ready node found

in the previous step. The token queued at the outgoing edges

of a node has a time stamp that is equal to the sum of the

earliest firing time of the node and its computational delay.

Advance the iteration index of this node by unity, and adjust

the iteration index accordingly.

Step 11: To minimize the transient behavior of the DFG, a

pre-specified number of iterations are ignored upon

computing the average iteration period. Thus, we compute the

iteration period using the formula given in this step of the

algorithm.

Step 12: Compute the iteration bound (T) as the average of

iteration periods with respect to all participating nodes (nodes

existing in loops and contributing to the input/output

relationship).

V. EXAMPLE

Consider the second order IIR filter shown in Figure 4. The

* symbol denotes a multiplication operation and the + symbol

represents an addition. The ideal delay of and edge is denoted

by 1D. It is assumed that the multiplication operation requires

2 cycles and the addition 1 cycle. The IIR filter is redrawn in a

data flow graph format as depicted in Figure 5. Applying the

PurCyclic procedure to the DFG will result in the graph

shown in Figure 6. To make the tracing of the algorithm

simpler, the delay of a node is marked as a label. The

diamonds on the edges of the DFG represent the data tokens.

Each token is labeled with the cycle index at which the token

has become available. The number of ideal delays associated

with an edge reflects the number of tokens available at cycle

0, before the consumption of any input has taken place. The

numbers in squares represent the number of outputs produced

by the designated nodes. By iteratively applying the main

procedure of the algorithm to the graph in Figure 6, the

results of this application are depicted in Figure 8 to Figure

14. Table 1 shows the number of outputs produced by each

node versus the cycle index. It is clear that after cycle 7, the

transient behavior of the DFG has disappeared and one output

is produced for each node exactly every 3 cycles. Thus, the

algorithm will exactly compute the iteration bound if enough

cycles are skipped. To give more insight about the operation

of the algorithm, let us consider the transition, for example,

from the DFG in Figure 7 to that in Figure 8. Node 1 can fire

twice at the end of cycle 2 resulting in 2 tokens at its output at

the end of cycle 3, as the node computational delay is 1 cycle.

No other nodes can fire as their inputs are not all loaded with

tokens.

VI. TIME COMPLEXITY

Let in the given DFG, N be the number of nodes and M the

number of edges. The topological sorting procedure visits

each edge once and thus has a linear time complexity in terms

of the number of edges. That is TC(Topological-Sorting) =

O(M).

The PureCyclic has the following complexities. The first

step requires N operations while the second and the third steps

require constant time. The fourth step is repeated iteratively

but no edge will be removed more than once. Hence, the time

complexity of this step in all iteration will not exceed O(M).

Step 5 requires constant time. Step 6 is similar to step 4 and

thus requires O(M) operations. Steps 7 and 8 require constant

Time. Thus the overall time complexity of the PureCyclic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3246

procedure is O(M).

The time complexity of IterationBound main algorithm is

summarized in Table 2. The time complexity of the steps 4 to

10 combined for one iteration is given by

)()()(
)(

104 NOvODvIDOTC
GVv

ii

i

But MvODvID
GVv

i

GVv

i

ii

2)()(
)()(

Hence TC4-10 = O(M) + O(N). In a cyclic proper graph the

number of edges is greater than or equal to the number of

nodes. Hence, the time complexity of one iteration of the

algorithm is O(M). Since, the algorithm iterates for a pre-

specified number of iterations, the overall time complexity of

the algorithm is O(NI×M), where NI is the number of

iterations.

Simulation Results showed that the algorithm is extremely

fast and requires only a small number of iterations to converge

to the exact value of the iteration bound. Table 1 shows the

computed iteration period versus the total number of iterations

(NI) and number of skipped iterations (Skips) for each of the

three indicated benchmark problems.

The benchmarks are the second order IIR filter with 8

nodes, the fifth order elliptic filter with 34 nodes, and the

fourth order all-pole lattice filter with 15 nodes. Note that the

exact values of the iteration bound for each or the three

benchmarks are 3, 16, and 14, respectively.

Further, simulation results have shown that only a small

number of iterations are required to converge to the exact

value of the iteration bound.

VII. CONCLUSION

In this paper, a new approach for the formulation of the

problem of finding the iteration bound has been presented. It

has been shown that using the natural flow of tokens into the

data flow graph (representing a recursive DSP algorithm), the

iteration bound can be efficiently computed. The given DFG

is initially subjected to topological sorting, followed by

conversion to a pure cyclic graph. The individual iteration

period for every node is computed, and the average over all

cyclic nodes is obtained. It has been shown that each iteration

of the algorithm application requires an order of O(M)

operations. Simulation results has shown that only a few

number of iterations are required to converge to the exact

value of the iteration bound. With the very small number of

iterations required, the time complexity of the proposed

algorithm is superior to all previously developed algorithms.

Figure 4: Second Order IIR Filter

Figure 6: The cyclic version of the IIR filter

4
*

2
+

1D
Z-1

1D
Z-1

1
+ 8

+

6
+

7
*

3
*

5
*

4
*

2
+

1D

2D

1
+ 8

+

6
+

7
*

3
*

5
*

2D

1

1 2

0 0

0
0

 0

0

 0

2

Figure 5: The DFG reprsentation of the 2
nd

order

IIR filter

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3247

Figure 7: The filter after the end of cycle 2.

Figure 8: The filter after the end of cycle 3

Figure 9: The filter after the end of cycle 4

Figure 10: The filter after the end of cycle 6.

Figure 11: The filter after the end of cycle 7.

Figure 12: The filter after the end of cycle 9.

Figure 13: The filter after the end of cycle 10.

Figure 14: The filter at the end of cycle 12.

21

1 2

2 2

3
3

7

7
7

21

1 2

0 1

2
2

 2

 3

 3

21

1 2

1 1

2
2

 4

4

 3

21

1 2

1 2

3
2

6

6

 3

21

1 2

2 3

4
3

9

7

9

21

1 2

3 3

4
4

10

10

10

21

1 2

3 4

5
4

12

12

10

1

1 2

0 1

2
0

 2

 2 2

2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3248

Table 1: The number of outputs produced by each cyclic

node.

Cycle Node1 Node 2 Node3 Node4

0 0 0 0 0

2 2 1

3 2

4 1

6 3 2

7 3 2

9 4 3

10 4 3

12 5 4

Table 2: The time complexity for each step in the

IterationBound Algorithm.

Step Time

Complexity

Comments

1 O(M)

2 Constant

3 O(N)

4 Constant

5 Constant

6 Constant

7 Constant

8 ID(vi) In-Degree of the node vi

9 OD(vi) Out-Degree of the node vi

10 Constant

11 O(N)

12 O(N)

Table 3: The computed iteraton bound for different

benchmarks versus the number of algoirthm iterations.

2nd order

IIR Filter

5th order

elliptic

filter

4th order all-

pole lattice

filter

NI=5

Skips=2

3.2 16 14

NI=10

Skips =2

3.06 16 14

NI=100

Skips =2

3.005 16 14

NI=1000

Skips =2

3.0005 16 14

NI=10

Skips=5

3 16 14

REFERENCES

[1] M. Renfors, and Y. Neuvo, “The maximum sampling rate of digital

filters under hardware speed constraints,” IEEE Transactions on Circuits

and Systems, vol. CAS-28, no. 3, pp. 196-202, Mar. 1981

[2] D. Y. Chao and D. Y. Wang, “Iteration Bounds of Single-Rate Data

Flow Graphs for Concurrent Processing,” IEEE Trans. Circuits Syst.-I,

vol. CAS-40, pp. 629–634, Sept. 1993.

[3] S. H. Gerez, S. M. Heemstra de Groot, and O. E. Herrmann, “A

Polynomial-Time Algorithm for the Computation of the Iteration-Period

Bound in Recursive Data-Flow Graphs,” IEEE Trans. Circuits Syst.-I,

vol. CAS-39, pp. 49– 52, Jan. 1992

[4] K. Ito and K. K. Parhi, “Determining the Iteration Bounds of Single-Rate

and Multi-Rate Data-Flow Graphs,” in Proc. Of 1994 IEEE Asia-Pacific

Conf. on Circuits and Systems, Taipei, Taiwan, pp. 6A.1.1–6A.1.6, Dec.

1994.

[5] R. M. Karp, “A Characterization of the Minimum Cycle Mean in a

Digraph,” Discrete Mathematics, vol. 23, pp. 309–311, 1978.

[6] R. Govindarajan and G. R. Gao, “A Novel Framework for Multi-Rate

Scheduling in DSP Applications,” in Proc. 1993 Int. Conf. Application-

Specific Array processors, pp. 77–88, IEEE Computer Society Press,

1993.

[7] K. Ito and K. K. Parhi,” determining the minimum iteration period of an

algorithm” Journal of VLSI Signal Processing, 11, (Dec.1995) 229–

244.

[8] A. Dasdan, S. S. Irani and R. K. Gupta, "An Experimental Study of

Minimum Mean Cycle Algorithms", UCI-ICS TR #98-32, UIUC,

Urbana, USA.

[9] M. N. S. Swamy, and K. Thulasiraman, “Graphs, networks, and

algorithms,” John Wiley & Sons, Inc., New York, 1981.

Ali Shatnawi received the B.Sc and M.Sc in electrical and computer

engineering from the Jordan University of Science and Technology in 1989

and 1992, respectively; and the Ph.D. degree in electrical and computer

engineering from Concordia University, Canada, in 1996. He has been on the

faculty of the Jordan University of science and Technology since 1996. He is

presently on a leave and working as the dean of Information Technology as

well as a president assistant at the Hashemite University, Jordan. His present

research covers hardware design, high level synthesis of DSP applications,

algorithms, and wireless networks.

