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Abstract— Signal processing applications which are iterative in 

nature are best represented by data flow graphs (DFG).  In these 

applications, the maximum sampling frequency is dependent on the 

topology of  the DFG, the cyclic dependencies in particular.  The 

determination of the iteration bound, which is the reciprocal of the 

maximum sampling frequency, is critical in the process of hardware 

implementation of signal processing applications. In this paper, a 

novel technique to compute the iteration bound is proposed. This 

technique is different from all previously proposed techniques, in the 

sense that it is based on the natural flow of tokens  into the DFG 

rather than the topology of the graph. The proposed algorithm has 

lower run-time complexity than all known algorithms. The 

performance of the proposed algorithm is illustrated through 

analytical analysis of the time complexity, as well as through 

simulation of some benchmark problems.

Keywords— Data flow graph, Iteration period bound, Rate-

optimal scheduling, Recursive DSP algorithms.   

I. INTRODUCTION

he data flow graph (DFG) has proven to be a successful 

model for exhibiting the parallelism of algorithms. The 

dataflow graph model is represented by nodes and edges. 

Digital signal processing algorithms which are repetitive in 

nature are best represented by iterative data-flow graphs, 

where nodes represent computations and edges represent 

communication paths. Iterative applications have inherent 

parallelism among operations from consecutive iterations. The 

iteration is defined as the execution of the entire program to 

consume one input from each input line and produce one 

output on each output line. Operations from successive 

iterations can obviously be overlapped. A schedule that 

achieves the minimum iteration period is called rate-optimal. 

That is, it minimizes the average time between successive 

outputs, and thus achieves the highest possible throughput.  

For all recursive DSP algorithms, there exists a fundamental 

lower bound on the iteration period, referred to as the iteration 

bound [1]. Recursive DSP algorithms are typically represented 

by cyclic DFGs. Determining the iteration bound for signal 

processing algorithms (described by iterative data-flow 

graphs) is a critical problem. This bound is fundamental to an 

algorithm and is independent of its implementation 
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architecture. In other words, it is impossible to achieve an 

iteration period less than the bound, regardless of the number 

or power of the used processing elements. Thus, for DSP 

applications, it is a crucial design requirement to compute the 

iteration bound if a rate optimal implementation is sought. In 

this case, the maximum sampling rate of an algorithm running 

on any implementation is upper-bounded by the reciprocal of 

the iteration bound. In other words, to design a compile-time 

multiprocessor system, implementing an iterative digital signal 

processing algorithm, one has to compute this bound. 

Several researchers have tackled the problem of finding the 

iteration bound [2]-[7].  A thorough analysis of these 

techniques and some others is found in [8]. Most researchers, 

who tackled the problem of finding the iteration bound, have 

focused on the graph structure or topology characteristics in 

their algorithms. Some of them, however, applied 

combinatorial techniques such as the path length analysis in 

their algorithms. In this paper, a completely different approach 

is being used in the proposed algorithm. The approach is 

based on the natural flow of data into the communication links 

of the data flow graph.  

II. THE DFG MODEL

The DFG is a directed graph G=(V,E), which is uniquely 

represented by its node set V(G) and its edge set E(G). An 

edge ),( TI vve  is said to be incident out of its source 

node Iv    and incident into its target node Tv . The source and 

target nodes of an edge are said to be its end nodes. The set of 

all edges incident into a node are said to be its incoming edge 

set (IE); whereas the set of all edges incident out of a node are 

its outgoing edge set (OE). The number of edges incident into 

a node are referred to as its indegree, and the number of 

outgoing edges is its outdegree [9].  

The DFG considered in this paper is assumed to be a proper 

graph, that is, in the graph there is a path to every node from 

some input node, and a path from every node to some output 

node. A node that does not achieve this criterion is redundant, 

and has no contribution to the input/out behavior of the 

underlying algorithm.   

III. ITERATION BOUND

For a cyclic DFG, the iteration bound  is not only 

constrained by the hardware resources, but also by the 
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topology of the graph. If the hardware resources are unlimited 

(in fact, higher than a certain lower bound), the iteration 

period bound as constrained by the topology of the given 

graph is given by 
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where CD  is the total computational time of all the nodes in 

the circuit C, CN  is the total number of ideal delays in the 

circuit C, and C(G) is the set of all circuits (loops) in G. CD

and CN  are, respectively,  given by 
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IV. THE ALGORITHM

All previous iteration-finding algorithms focused on the 

DFG topology and the characteristics of the graph loops to 

compute the iteration bound. In contrast, the idea of the 

proposed algorithm depends on the natural flow of tokens to 

compute the natural limit imposed by the graph structure on 

the maximum attainable throughput. In other words, we will 

let the graph handle tokens as they become available at the 

input edges of the nodes. Then, based on the average time 

between successive outputs of each node, we will compute the 

value of the iteration bound.  

The algorithm starts by performing a simple topological 

sorting procedure. In this procedure, which is pseudo coded in 

Figure 1, the indices of the nodes of the given graphs are 

sorted such that the index of a source of every edge is less 

than the index of its target. This is impossible to achieve in 

cyclic graphs; but the algorithm will find a reasonable 

topological sorting. 

Topological-Sorting(G) 

For each edge Ge
 If  Source(e).index > target(e).index 

   Swap(source(e).index, target(e).index) 

Figure 1: A simple topological sorting algorithm. 

The second procedure in the algorithm is depicted in Figure 

2. This procedure is responsible for removing, form the graph, 

all nodes that are not part of any loop. As these nodes are 

insignificant in the calculation of the iteration bound, 

removing them form the underlying graph will improve the 

performance of the algorithm in the average case. This 

procedure searches for a node whose indegree is zero. If such 

a node is found, it is removed from the graph by removing all 

edges outgoing of it. The same process is applied to any node 

whose outdegree is zero. In this case, all incoming edges to 

the node are also removed.  

PureCyclic(G) 

1. For each  Gv  set cyclic[v]=true

2. Pick a node v such that cyclic[v]=true. If there 

is no such node STOP. 

3. If indegree(v) 0 go to Step 5.  

4. Remove from G all edges that are outgoing of 

the node v. That is, set E(G)=E(G)-OE(v). Set 

cyclic[v] =false. Go to Step 7.  

5. If outdegree(v) 0 go to Step 2. 

6. Remove from G all edges that are incoming 

into node v. That is, set E(G)=E(G)-IE(v). Set 

cyclic[v] =false.

7. If no node remained with (cyclic[v]=true) 

AND (indegree(v)=0  OR outdegree(v)=0) 

STOP  

8. Go to Step 2. 

Figure 2: The algorithm to reduce the graph to a pure 

cyclic graph.

After refining the graph by applying topological sorting to 

it and removing all nodes which are not part of any loop, the 

main procedure to compute the iteration bound is applied. The 

pseudo code program representing this procedure is given in 

Figure 3, which is further detailed in the following 

paragraphs. However, self explanatory steps are left without 

discussion. 

Step1: Initial tokens which are available at time zero are 

placed on the queues of the edges which have nonzero ideal 

delays. The number of tokens queued on each edge is exactly 

equal to the number of ideal delays of this edge. Destinations 

of edges whose ideal delay are greater than zero are more 

likely to be ready for firing as some of their inputs are already 

available. Thus, they are placed in a special queue called 

LikelyReady.

Step 3:  Since iterations may overlap, we define an iteration 

index for each node separately.  

Step 5: Get one of the likely to be ready nodes from the 

LikelyReady queue and remove it from the queue. 

Step 8: Search for every node whose all incoming edges 

are loaded with tokens. Such a node is ready for firing.  The 

earliest firing time of the ready node will be the latest of all 

token times located at the top of the queues of all incoming 

edges. 
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IterationBound(G) 

1.  For each edge Ge  where G is the cyclic 

version of the original:  

a. Define Queue Tokens(e)=Empty 

b. Tokens(e).append(0) as many times as 

jen

c. If 0
jen

LikelyReady.append(target(e)) 

2. Set  iteration_no =1 

3.  For each  Gv  set iteration[v]=0

4.  If iteration_no > MAXITERATIONS  go to 

Step 11. 

5.  Set v = LikelyReadyQueue.Retrieve; 

6.  Set Ready=true 

7.  Set Latest= MINNUM 

8.  While (Ready=true and there is an unexamined 

edge  )(vINCOMINGe )

    If Tokens(e) is not empty, update  

Latest=Max(Latest, 

Tokens(e).earliest_time)    

              Else set Ready=false 

9.  If (Ready=true) 

a. dequeue one token from each edge 

)(vINCOMINGe

b. set new_token_time= Latest + weight(v)

c. For each )(vOUTGOINGe

Tokens(e).append  (new_token_time)

      LikelyReadyQueue.append(target(e))

d. Set iteration[v]=iteration[v]+1; 

e. Set iteration_no=iteration[v]; 

f. If (iteration[v]=skips) 

  skiptime[v]=new_token_time 

g. Current_time(v)=new_token_time 

10. Go to Step 4 

11. For each cyclic node v set 

skipsviteration

vtimeSkipvTimeCurrent
vT

][

)(_)(_
)(

skips being the number of skipped iterations 

12. Set T= average of all T(v) computed in Step 

11. 

Figure 3: The Main Algorithm to compute the iteration 

bound. 

Step 9: Dequeue one token from each incoming edge and 

queue one token on each outgoing edge of a ready node found 

in the previous step. The token queued at the outgoing edges 

of a node has a time stamp that is equal to the sum of the 

earliest firing time of the node and its computational delay. 

Advance the iteration index of this node by unity, and adjust 

the iteration index accordingly. 

Step 11: To minimize the transient behavior of the DFG, a 

pre-specified number of iterations are ignored upon 

computing the average iteration period. Thus, we compute the 

iteration period using the formula given in this step of the 

algorithm. 

Step 12: Compute the iteration bound (T) as the average of 

iteration periods with respect to all participating nodes (nodes 

existing in loops and contributing to the input/output 

relationship). 

V. EXAMPLE

Consider the second order IIR filter shown in Figure 4. The 

* symbol denotes a multiplication operation and the + symbol 

represents an addition. The ideal delay of and edge is denoted 

by 1D. It is assumed that the multiplication operation requires 

2 cycles and the addition 1 cycle. The IIR filter is redrawn in a 

data flow graph format as depicted in Figure 5. Applying the 

PurCyclic procedure to the DFG will result in the graph 

shown in Figure 6. To make the tracing of the algorithm 

simpler, the delay of a node is marked as a label. The 

diamonds on the edges of the DFG represent the data tokens. 

Each token is labeled with the cycle index at which the token 

has become available. The number of ideal delays associated 

with an edge reflects the number of tokens available at cycle 

0, before the consumption of any input has taken place. The 

numbers in squares represent the number of outputs produced 

by the designated nodes. By iteratively applying the main 

procedure of the algorithm to the graph in Figure 6, the  

results of this application are depicted  in Figure 8 to Figure 

14. Table 1 shows the number of outputs produced by each 

node versus the cycle index. It is clear that after cycle 7, the 

transient behavior of the DFG has disappeared and one output 

is produced for each node exactly every 3 cycles. Thus, the 

algorithm will exactly compute the iteration bound if enough 

cycles are skipped. To give more insight about the operation 

of the algorithm, let us consider the transition, for example, 

from the DFG in Figure 7 to that in Figure 8. Node 1 can fire 

twice at the end of cycle 2 resulting in 2 tokens at its output at 

the end of cycle 3, as the node computational delay is 1 cycle. 

No other nodes can fire as their inputs are not all loaded with 

tokens.  

VI. TIME COMPLEXITY

Let in the given DFG, N be the number of nodes and M the 

number of edges. The topological sorting procedure visits 

each edge once and thus has a linear time complexity in terms 

of the number of edges. That is TC(Topological-Sorting) = 

O(M).

The PureCyclic has the following complexities. The first 

step requires N operations while the second and the third steps 

require constant time. The fourth step is repeated iteratively 

but no edge will be removed more than once. Hence, the time 

complexity of this step in all iteration will not exceed O(M). 

Step 5 requires constant time. Step 6 is similar to step 4 and 

thus requires O(M) operations. Steps 7 and 8 require constant 

Time. Thus the overall time complexity of the PureCyclic 
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procedure is O(M).

The time complexity of IterationBound main algorithm is 

summarized in Table 2. The time complexity of the steps 4 to 

10 combined for one iteration is given by 
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Hence TC4-10   = O(M) + O(N). In a cyclic proper graph the 

number of edges is greater than or equal to the number of 

nodes. Hence, the time complexity of one iteration of the 

algorithm is O(M). Since, the algorithm iterates for a pre-

specified number of iterations, the overall time complexity of 

the algorithm is O(NI×M), where NI is the number of 

iterations. 

Simulation Results showed that the algorithm is extremely 

fast and requires only a small number of iterations to converge 

to the exact value of the iteration bound. Table 1 shows the 

computed iteration period versus the total number of iterations 

(NI) and number of skipped iterations (Skips) for each of the 

three indicated benchmark problems. 

The benchmarks are the second order IIR filter with 8 

nodes, the fifth order elliptic filter with 34 nodes, and the 

fourth order all-pole lattice filter with 15 nodes.  Note that the 

exact values of the iteration bound for each or the three 

benchmarks are 3, 16, and 14, respectively. 

Further, simulation results have shown that only a small 

number of iterations are required to converge to the exact 

value of the iteration bound. 

VII. CONCLUSION

In this paper, a new approach for the formulation of the 

problem of finding the iteration bound has been presented. It 

has been shown that using the natural flow of tokens into the 

data flow graph (representing a recursive DSP algorithm), the 

iteration bound can be efficiently computed. The given DFG 

is initially subjected to topological sorting, followed by 

conversion to a pure cyclic graph. The individual iteration 

period for every node is computed, and the average over all 

cyclic nodes is obtained. It has been shown that each iteration 

of the algorithm application requires an order of O(M) 

operations. Simulation results has shown that only a few 

number of iterations are required to converge to the exact 

value of the iteration bound. With the very small number of 

iterations required, the time complexity of the proposed 

algorithm is superior to all previously developed algorithms. 

Figure 4: Second Order IIR Filter 

Figure 6: The cyclic version of the IIR filter 
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Figure 7: The filter after the end of cycle 2. 

Figure 8: The filter after the end of cycle 3 

Figure 9: The filter after the end of cycle 4 

Figure 10: The filter after the end of cycle 6. 

Figure 11: The filter after the end of cycle 7. 

Figure 12: The filter after the end of cycle 9. 

Figure 13: The filter after the end of cycle 10. 

Figure 14: The filter at the end of cycle 12. 
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Table 1: The number of outputs produced by each cyclic 

node. 

Cycle Node1 Node 2 Node3 Node4 

0 0 0 0 0 

2   2 1 

3 2    

4  1   

6   3 2 

7 3 2   

9   4 3 

10 4 3   

12   5 4 

Table 2: The time complexity for each step in the 

IterationBound Algorithm. 

Step Time 

Complexity 

Comments 

1 O(M)  

2 Constant  

3 O(N)  

4 Constant  

5 Constant  

6 Constant  

7 Constant  

8 ID(vi) In-Degree of the node vi 

9 OD(vi) Out-Degree of the node vi 

10 Constant  

11 O(N)  

12 O(N)  

Table 3: The computed iteraton bound for different 

benchmarks versus the number of algoirthm iterations. 

2nd order 

IIR Filter 

5th order 

elliptic 

filter

4th order all-

pole lattice 

filter 

NI=5  

Skips=2 

3.2 16 14 

NI=10 

Skips =2 

3.06 16 14 

NI=100 

Skips =2 

3.005 16 14 

NI=1000 

Skips =2 

3.0005 16 14 

NI=10 

Skips=5 

3 16 14 
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