
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2099


Abstract—Although most of the existing skyline queries

algorithms focused basically on querying static points through static
databases; with the expanding number of sensors, wireless
communications and mobile applications, the demand for continuous
skyline queries has increased. Unlike traditional skyline queries
which only consider static attributes, continuous skyline queries
include dynamic attributes, as well as the static ones. However, as
skyline queries computation is based on checking the domination of
skyline points over all dimensions, considering both the static and
dynamic attributes without separation is required. In this paper, we
present an efficient algorithm for computing continuous skyline
queries without discriminating between static and dynamic attributes.
Our algorithm in brief proceeds as follows: First, it excludes the
points which will not be in the initial skyline result; this pruning
phase reduces the required number of comparisons. Second, the
association between the spatial positions of data points is examined;
this phase gives an idea of where changes in the result might occur
and consequently enables us to efficiently update the skyline result
(continuous update) rather than computing the skyline from scratch.
Finally, experimental evaluation is provided which demonstrates the
accuracy, performance and efficiency of our algorithm over other
existing approaches.

Keywords—Continuous query processing, dynamic database,
moving object, skyline queries.

I. INTRODUCTION

ITH the expanding number of sensors, wireless
communications and mobile applications and the fast

developments in technologies for tracking the positions of
moving objects, algorithms for efficiently answering queries
about large numbers of moving objects are progressively
required. This in turn surges the interest for location-based
services (LBS).

In general, a moving object is an object whose location
and/or geometry changes continuously over time [1]. Moving
object databases (MODs) are databases developed to satisfy
the need of new technologies to consider the huge amounts of
continuously acquired location information. Unlike traditional
databases which are most appropriate for static data, MODs
are appropriate for dynamic data [17]. In addition, MODs are
customized for high frequency of updates that is a regular
result of rapidly changing location information [1]. Such
information requires new types of queries which can query
this spatial information, among those queries are: Range

Ibrahim Gomaa and Hoda M. O. Mokhtar are with Faculty of Computers
and Information, Cairo University, Cairo, Egypt (e-mail: i.gomaa@fci-
cu.edu.eg, h.mokhtar@fci-cu.edu.eg).

queries, Nearest Neighbor queries, and Skyline queries.
Skyline queries are an important operator of LBS. Skyline

computation has received considerable attention in the
database community, especially for enabling LBS. A result of
skyline query produced from a given data set is a subset of
interesting points that are not dominated by any other point[2].
For example, mobile users could be interested in restaurants
that are near, reasonable in pricing, and provide good food,
service, and view. Skyline query results are based on the
current location of the user, which changes continuously as the
user moves. Using the common example in the literature
shown in Fig. 1, there is information about hotels; the distance
to the beach and the price for each data point is recorded.
Consider a two dimensional plot of the dataset, where the
distance and price are assigned to the X, Y axis of the plot.
The goal of the skyline query is to find all the hotels not worse
than any other hotel in both distance from the beach and the
price. Hotels a, i, and k are interesting and can be inferred by
the skyline query, for their distances to the beach and prices
are desirable over those of other hotels.

Fig. 1 An example of skyline in static attribute

In the previous example, the data set is static, where both
the query point and the data points are static. What if the query
point is a moving object? In this case, the distance between the
query point and each point will no longer remain unchanged, it
will change continuously. Now, let us change the example to
the scenario of a tourist walking about to choose a hotel for his
stay. For ease of illustration, we again consider just two
factors, namely the distance to the hotel and the price per
night. In this new scenario a new challenge exists, this
challenge occurs from the fact that the distance from the
tourist (i.e. a moving object) and every hotel becomes
dynamic and changes as the tourist moves. Fig. 2 shows the

Ibrahim Gomaa, Hoda M. O. Mokhtar

Computing Continuous Skyline Queries without
Discriminating between Static and Dynamic

Attributes

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2100

movement of the moving object (i.e. the tourist) which causes
the updates on the skyline result. In Fig. 2 (a), X, Y represent
the 2D spatial location of each hotel and t1, t2 represent the
position of the tourist at two different time instances where the
tourist moves from time t1 to t2, whereas Fig. 2 (b) shows
their respective prices.. The skyline, i.e. interesting hotels,
changes with respect to the tourist’s position. Such problem is
common in moving databases [3], [4].

(a) (b)

Fig. 2 An example of skyline in dynamic attribute

In this paper, we address the problem of continuous skyline

query processing, where the skyline query point is a moving
object and the skyline result changes continuously due to the
movement of the query point. To solve this problem, we first
distinguish the data points that will not be in the initial skyline
result using the divide and conquer technique presented in [2].
Next, we investigate the connection between data points’
spatial locations and their dominance relationship, which
provides an indication of where to find changes in skyline
result and update the query result according.

The rest of this paper is organized as follows. In Section II,
we present a brief review of related work. In Section III, we
propose our solution for continuously maintaining the skyline
query. The experimental results are presented in Section IV.
Finally, Section V concludes and proposes directions for
possible future work.

II. RELATED WORK

In this section, we will briefly explore previous work in
skyline query computation. Three main approaches will be
discussed: (1) Static skyline query computation, (2) Dynamic
skyline query computation, (3) Parallel skyline query
computation. For static skyline query computation approach,
several algorithms have been introduced including: In [2], the
authors proposed two algorithms namely, Block-Nested-Loop
(BNL) and a Divide-and-Conquer (D&C) algorithm. The BNL
algorithm iteratively compares each point in the dataset with
all current skyline points existing in memory and returns the
dominating points which fulfill the criteria of domination over
all dimensions. On the other hand, the D&C algorithm divides
the whole data space into a number of partitions which can fit
in memory. For each partition, it uses the same way of BNL
algorithm to check the domination over all dimensions of the

points in the same partition and returns the skyline result for
each one. Then it computes the final skyline result through
merging the skyline result of each partition and producing the
dominating points. In [5], the authors proposed a new
progressive algorithm named Branch−and−Bound Skyline
(BBS). The proposed approach is based on the use of an R-
tree as an index structure. It takes data from the R-tree into a
heap and sorts them based their distance to the query point. A
new entry on the heap will be discarded if it is dominated by
any skyline point, or inserted into the skyline result if it is not
dominated by another point in the skyline. In [6] the authors
proposed an algorithm namely, Group-based skyline (G-
skyline) algorithm. G-skyline is interesting in analyzing a
group of points rather than individual points. Skyline result
includes the groups that are not dominated by other groups.
The authors partitioned data into multi-layers and represented
data in directional skyline graph including the dominance
relationship between points in all layers to efficiently compute
the group that has the best values along all dimensions. After
that the skyline result will include all points existing in layer-
1. On the other hand, for the dynamic skyline query
computation several approaches have been introduced
including: In [4], the authors proposed an event-driven
approach to maintain the result of k-NN query on moving
objects. It first puts all moving objects into a list, then sorts
them based on their current distance to the query point. Then,
it creates events which determine the points of intersection
(i.e. intersection represents when two adjacent moving objects
will exchange their positions). All created events are pushed
into a queue which sorts them based on the time of firing the
intersection event; the priority will be to the event with earlier
time. In [7], the authors proposed another algorithm for
continuous skyline queries. The proposed algorithm
discriminates between the static dimensions and dynamic
ones; however, it computes the skyline using the static
dimensions only to retrieve the points that will be permanent
skyline points, and uses the result to drive the farthest point,
consequently enables the exclusion of the points which will
not be in the initial skyline result. Then it computes the
dynamic skyline by pre-computing the points of updates, and
finally it merges the result of the static part and dynamic ones
to conduct the final skyline result. In [8], the authors proposed
direction-oriented continuous skyline query algorithm. The
proposed algorithm computes the skyline points according to
two approaches: (1) Any direction around the moving object,
(2) The same direction of the moving object. In the first
approach, the skyline points are the dominant points which
gained the best values over all dimensions and located in any
direction around the moving object. In the second approach,
the skyline points are the dominant points which gained the
best values over all dimensions and located along the moving
object's direction. The authors used the same approach
presented in [9] to retrieve the skyline points. In [9], the
authors used the same technique proposed in [7] but
considered the number of levels (k). The number of levels
represents the number of iterations for which the dynamic part
of the skyline will be computed. In [10], the author proposed a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2101

new schema for continuous skyline query computation over
skewed data. The proposed schema partitions the data into
multi-layer grids. For each grid layer it conducts the skyline
influence region which contains the cells that cannot be
dominated by any other cell in the space. When the number of
data points within one cell grows too large, then a second
layer grid must be created; and its influence region is
computed. The final skyline result will be all points existing in
all influence regions. On the other hand, for the parallel
skyline query computation several approaches have been
introduced including: In [11], the authors proposed two
algorithms for skyline computation using MapReduce
framework namely, MR-BNL, and MR-SFS. The MR-BNL
algorithm used the BNL algorithm presented in [2] to compute
the skyline for all data points in each reduce task after
partitioning data by map task. Finally the final skyline are
computed by merging all the skyline results produced from
each reduce and return the best points from all results. The
MR-SFS apply the same procedure in the MR-BNL, but it
sorts the file of data first to reduce the number of comparisons.
In [12], the authors proposed an algorithm for parallel
processing the skyline using map reduce. The algorithm first
excludes the non skyline points which are dominated by the
other points over all dimensions by using the quad tree. Then
it partitions the remaining points in to a set of partitions based
on the regions conducted from the quad tree and compute the
skyline for each region using map reduce.

Because of the important role of skyline queries in many
applications, such as multi-criteria decision making, data
mining, and user preference queries, in this paper we follow
the approaches presented in [9], [7] and present a new
algorithm that provides better performance and accuracy.

III. CONTINUOUS SKYLINE QUERY

In general, a moving object is an object whose location
and/or geometry changes continuously over time [1], [18]; this
requires continuous evaluation for the query as the query
result varies with the changing in query point location over
time. Continuous skyline query processing has to re-compute
the skyline when the objects move. Notwithstanding this,
updating the skyline of the previous moment is more efficient
than conducting a snapshot query at each moment and
computing the skyline from scratch. For intuitive illustration,
we limit the data and the moving query points to a two-
dimensional (2D) space. In Table I, we summarize the
symbols used in this paper.

TABLE I

 SYMBOLS AND DESCRIPTION

Symbol Description

Dist|ti (pi, q)
Distance between data point (pi) and query point (q) at time

(ti)
SK The skyline result

≺ To denote that a point p1 dominate another point p2

⊀ To denote that a point p1 does not dominate another point p2

Because of dealing with moving query points, we consider

the distance function to be the time parameterized distance

which has been used in literature to help processing queries in
MODs [13]-[15] rather than the traditional Euclidean distance.
For a moving data point pi starting from (ݔ௜,ݕ௜) with velocity
 moving (௤ݕ,௤ݔ) and a query point q starting from ,(௜௬ݒ,௜௫ݒ)
with velocity (ݒ௤௫,ݒ௤௬), the distance between them can be
expressed as following:

Dist|t (pi, q) =√ܽݐଶ ൅ ݐܾ	 ൅ 	ܿ (1)

where a, b, and c are constants determined by their starting
positions and velocities with ݒ௜௫=ݒ௜௬=0 as all data points are
static.

 a= ሺݒ௜௫ െ ௤௫ሻଶݒ ൅	ሺݒ௜௬ െ ௤௬ሻଶ (2)ݒ

 b= 2[(ݔ௜-ݔ௤) (ݒ௜௫-ݒ௤௫) + (ݕ௜-ݕ௤) (ݒ௜௬-ݒ௤௬)] (3)

 c= ሺݔ௜ െ ௤ሻଶݔ ൅	ሺݕ௜ െ ௤ሻଶ (4)ݕ

Let p1, p2 be two data points with k static attributes, where k
≥ 1. Let pi.ka denotes the value of static attribute 'a' of data
point pi ∀ i in the data set.
Definition1. Let p1 and p2 be 2 data points, if Dist|t1 (p1, q) ≤
Dist|t1 (p2, q) and p1.ka ≤ p2.ka, ∀ k, and ∃ k, such that p1.ka <
p2.ka, we say p1 ≺ p2 at time t1 (i.e. p1 dominates p2 at time t1).
Definition2. Let p1 and p2 be 2 data points, if p1.ka = p2.ka, ∀
k, And Dist|t1 (q, p1) < Dist|t1 (q, p2) we say p1 ≺ p2 at time t1.

Definition3. A continuous skyline query CSQ is defined as
CSQ = (pj1, pj2,..., pjn): where (pj1, pj2,..., pjn) are the best points
which are not dominated by any other point in S.

In our solution, we only compute the initial skyline for the
starting position at the start time t0; subsequently, updating the
skyline result instead of computing a new one from scratch
each time.

Proposed Algorithm

Many of the data points may have the same values for all
attributes. If these points have the best value in a specific
dimension; this means that all these points will be in the
skyline result as they gain the best value for a static dimension
as mentioned in [9], [7]. This can cause incorrect results if
using the term of skyline which depends on checking the
domination over all dimensions. As we deal with a moving
query point which continuously updates its location, this
means that at a specific time it will be closer to a point than
the others, however; this point will dominate other points at
this time. Another disadvantage of the approach proposed in
[9], [7] is that it needs to scan the data more than once, first
time for checking domination on static attributes and return
permanent skyline points, and a second time to compare the
distance of the points which have distance less than the
farthest point with each point in the skyline.

In this paper we present an algorithm for continuous skyline
query processing without discrimination between static and
dynamic attributes which provides better performance and
accuracy. Our algorithm is composed of the following three
phases:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2102

Phase1. Data Preprocessing

After we compute the distance between each data point and
the query point using (1)-(4); in the first step in this phase, we
try to exclude the points which are guaranteed to be out of the
initial skyline query, consequently reducing the number of
comparisons in checking the domination afterwards. The
algorithm distinguishes these points by partitioning the data
into a number of partitions based on the median of each
attribute, then, excluding the extreme points that have values
greater than the value of the median of each attribute. In the
next step we create a view "V" for the data set with the points
excluded according to step 1. The procedure for computing the
initial data points is presented in Fig. 3.

Phase2. Compute Initial Skyline

In this phase, we use the view "V" created in phase 1 to
check the domination over all points in this view and return
the dominant points that have the best values (i.e. the points
where there is no other point in the data set with better value
along all dimensions); these dominant points represent the
skyline result at starting position t0. Fig. 4 shows the algorithm
of domination.

Phase3. Compute Continuous Skyline

In this phase, we try to perform an early catch for the
positions where the skyline result is expected to change
instead of computing the skyline at every time. We use the
time parameterized distance function presented in [13] to build
the equation representing the distance between each data point
and the query point. Then applying the sweep line algorithm
presented in [16] on the resulting equations to compute the
points of intersection which may affect the skyline result. At
each point of intersection we have five cases. Table II shows
the possible cases for the intersection of two points (P1, P2)
and its effect on the skyline result (SK).

Fig. 3 Compute Initial Data Points Algorithm

Fig. 4 Check Domination Algorithm

 Case-1: The two points are not skyline points; in this
case, the skyline result will not change, so we do not have
to check domination between the two points (i.e. we just
ignore this intersection)

 Case-2: The two points are skyline points and have
different values in the static attributes (i.e. no one of them
dominates the other in any static attribute), so checking
domination isn't needed.

 Case-3: The two points are skyline points, but one of
them dominates the other in all static attributes and due to
the position exchange its distance becomes less, then the
second point must be deleted from the skyline result.

TABLE II

THE POSSIBLE CASES FOR THE INTERSECTION OF TWO

Case Conclusion

P1 ∉ SK & P2 ∉ SK SK will not change
p1 ∈ SK & p2 ∈ SK & p1⊀p2, ∀ k &

p2⊀ p1, ∀ k
SK will not change

p1 ∈ SK & p2 ∈ SK & p1≺ P2, ∀ k
& Dist|ti (p1, q) < Dist|ti (p2, q)

SK will change and P2 will leave SK

P1 ∈ SK & P2 ∉ SK & P1.ka =
P2.ka, ∀ k

SK will change and P1 will leave SK
and P2 will enter to SK

P1 ∈ SK & P2 ∉ SK & P1.ka ≠
P2.ka, ∀ k

SK will change and P2 will enter to
SK

 Case-4: One of the two points is a skyline point and the

second point is not, but they have the same values over all
static attributes and non skyline point distance gets less; in
this case the non skyline point becomes a skyline point
and the skyline point becomes a non skyline point.

 Case-5: One of the two points is a skyline point and the
second point is not, but they do not have the same values
over all static attributes and non skyline point distance
gets less; in this case the non skyline point becomes a
skyline point and the skyline point remains in the skyline

IV. EXPERIMENTAL EVALUATIONS

In this section, we present our experiments for evaluating
our proposed (ECSQ) algorithm. We evaluated the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2103

performance of the ECSQ algorithm by comparing it with the
MCSQ algorithm [9] and CSQ presented in [7]. We conducted
our experiments on a laptop running on MS Windows 7
professional. The laptop has a Core(TM) i5 2.53GHz CPU and
4GB memory. All experiments were coded in java. In this set
of experiments, we used synthetic data sets of data points with
2D spatial attributes as well as 2 non-spatial attributes. For
each data set, all data points are distributed randomly within
the spatial space domain of 10,000 x 10,000, and the non-
spatial attributes’ values range from 1 to 100,000. The speed
of each moving query point is also randomly generated and
ranges from 10 to 80 km/hr. In the experiments we compare
our algorithm ECSQ with the MCSQ algorithm presented in
[9] and CSQ presented in [7] and used different data sizes and
different number of static dimensions. In The first experiment
we used two static attributes and we varied the size of the data
set (100, 200, 300, 400, 600, and 800) and observed the query
performance and CPU time. Fig. 5 shows that as cardinality
increases, the CPU time cost of our solution grows steadily, in
a rate much less than that of the two other algorithms. In the
second experiment we fixed the data set size (i.e. 200 objects)
and varied the number of static dimensions (2, 3, 4, and 5) and
observed the query performance and CPU time. Fig. 6 shows
that as number of static dimensions increases, the CPU time
cost of our proposed solution outperforms the cost
encountered by the other algorithms.

V. CONCLUSIONS & FUTURE WORK

In this paper, we presented ECSQ algorithm for efficiently
computing continuous skyline queries. The presented
algorithm updates Skyline query results rather than re-
computing the skyline every time the dynamic attributes are
changed. Experimental studies show that the proposed method
is robust and efficient. For future work we aim to try to
compute the continuous skyline query using large volume of
data in a distributed framework.

Fig. 5 CPU Time for Different Cardinalities

Fig. 6 CPU Time for Different Static Dimensions

REFERENCES
[1] O. Wolfson, B. Xd, S. Chamberlai, and L. Jiang, "Moving Objects

Databases: Issues and Solutions," Proceedings of the 10th International
Conference on Scientific and Statistical Database Management, pp.111-
122, 1998.

[2] S. Borzonyi, D. Kossmann, and K. Stocker, “The Skyline Operator,”
Proc. Int’l Conf. Data Eng., pp. 421-430, 2001.

[3] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis, “Nearest Neighbor
and Reverse Nearest Neighbor Queries for Moving Objects,” Proc. Int’l
Symp. Database Eng. & Applications, pp. 44-53, 2002.

[4] H. Mokhtar, J. Su, and O. Ibarra, “On Moving Object Queries,” Proc. 21st
ACM PODS Symp. Principles of Database Systems, pp. 188- 198, 2002.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal and Progressive
Algorithm for Skyline Queries,” Proc. 2003 ACM SIGMOD Int’l Conf.
Management of Data, pp. 467-478, 2003.

[6] Liu, Jinfei, et al. "Finding pareto optimal groups: group-based skyline."
Proceedings of the VLDB Endowment 8.13 (2015): 2086-2097.

[7] H. Zhiyong, L. Hua, O. Beng Chin, and K. H. T. Anthony, "Continuous
Skyline Queries for Moving Objects." vol. 18: IEEE Educational
Activities Department, pp. 1645-1658, 2006.

[8] E. El-Dawy, Eman, Hoda MO Mokhtar, and Ali El-Bastawissy.
"Directional skyline queries." Data and Knowledge Engineering.
Springer Berlin Heidelberg, 2012. 15-28.

[9] El-Dawy, Eman, Hoda M.O. Mokhtar, and Ali El-Bastawissy. "Multi-
level continuous skyline queries (MCSQ)." Data and Knowledge
Engineering (ICDKE), 2011 International Conference on. IEEE, 2011.

[10] Li, He, and Jaesoo Yoo. "An efficient scheme for continuous skyline
query processing over dynamic data set." Big Data and Smart Computing
(BIGCOMP), 2014 International Conference on. IEEE, 2014.

[11] Zhang, Boliang, Shuigeng Zhou, and Jihong Guan. "Adapting Skyline
Computation to the MapReduce Framework: Algorithms and
Experiments." DASFAA Workshops. 2011.

[12] Park, Yoonjae, Jun-Ki Min, and Kyuseok Shim. "Parallel computation of
skyline and reverse skyline queries using mapreduce." Proceedings of
the VLDB Endowment 6.14 (2013): 2002-2013.

[13] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos, “Fast Nearest-
Neighbor Query Processing in Moving-Object Databases,”
GeoInformatica, vol. 7, no. 2, pp. 113-137, 2003.

[14] Iwerks, Glenn S., Hanan Samet, and Ken Smith. "Continuous k-nearest
neighbor queries for continuously moving points with updates."
Proceedings of the 29th international conference on Very large data
bases-Volume 29. VLDB Endowment, 2003.

[15] Tao, Yufei, and Dimitris Papadias. "Time-parameterized queries in
spatio-temporal databases." Proceedings of the 2002 ACM SIGMOD
international conference on Management of data. ACM, 2002.

[16] T. T. El-midany, A. Elkeran, and H. Tawfik, “A Sweep-Line Algorithm
and Its Application to Spiral Pocketing,” vol. 2, no. 1, 2002.

[17] Hoda M. O. Mokhtar and J. Su.” A Query Language for Moving Object
Trajectories”, Proceedings of the International Scientific and Statistical

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:12, 2016

2104

Database Management Conference (SSDBM), University of California,
Santa Barbara, June 27-29, 2005.

[18] Hoda M. O. Mokhtar and J. Su. “Universal Trajectory Queries for
Moving Object Databases”, Proceedings of IEEE International
Conference on Mobile Data Management, Berkeley, CA, January 19-22,
2004.

