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Abstract—With 40% of total world energy consumption,
building systems are developing into technically complex large
energy consumers suitable for application of sophisticated power
management approaches to largely increase the energy efficiency
and even make them active energy market participants. Centralized
control system of building heating and cooling managed by
economically-optimal model predictive control shows promising
results with estimated 30% of energy efficiency increase. The research
is focused on implementation of such a method on a case study
performed on two floors of our faculty building with corresponding
sensors wireless data acquisition, remote heating/cooling units and
central climate controller. Building walls are mathematically modeled
with corresponding material types, surface shapes and sizes. Models
are then exploited to predict thermal characteristics and changes in
different building zones. Exterior influences such as environmental
conditions and weather forecast, people behavior and comfort
demands are all taken into account for deriving price-optimal climate
control. Finally, a DC microgrid with photovoltaics, wind turbine,
supercapacitor, batteries and fuel cell stacks is added to make the
building a unit capable of active participation in a price-varying
energy market. Computational burden of applying model predictive
control on such a complex system is relaxed through a hierarchical
decomposition of the microgrid and climate control, where the
former is designed as higher hierarchical level with pre-calculated
price-optimal power flows control, and latter is designed as lower
level control responsible to ensure thermal comfort and exploit
the optimal supply conditions enabled by microgrid energy flows
management. Such an approach is expected to enable the inclusion
of more complex building subsystems into consideration in order to
further increase the energy efficiency.

Keywords—Energy-efficient buildings, Hierarchical model
predictive control, Microgrid power flow optimization, Price-optimal
building climate control.

I. INTRODUCTION

SUSTAINABLE development topics and smart energy

management recognized energy-efficient buildings as a

great money saving opportunity since the sector is one

of the world largest energy consumers with heating and

cooling processes that consume about 40% world total

energy [1]. Large buildings are complex technical systems

suitable for sophisticated energy management applications

with requirements on dynamic functioning that can be

achieved by different system interactions, whereas some of

them are more preferable than the others from the standpoints
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of energy consumption or other criteria like price of operation

or equivalent pollution, which offer optimization possibilities.

Drastic changes in energy grids are obvious to happen in

few years time due to large penetration of dispersed renewable

energy sources and new types of consumers like electric

vehicles chargers [2]. These changes will most of all be visible

in very dynamic shortages and excesses of energy that will

have to be balanced in real time. The lack of mature, efficient

and accessible large-scale energy storage technologies will

require to enforce coordination between dispersed production

and consumption points in the grid. The coordination of such

legally independent systems will have to be performed on

economically sound bases. Buildings are therefore expected

to have microgrids consisted of various energy production

and consumption units with market bidding participation and

dynamic pricing possibility [3].

Especially challenging nowadays becomes to internally

manage large consumers in order to benefit from a triplet

of grid exchange conditions, environmental conditions and

internal states/requirements. The inherent complexity of such

systems prohibits to consider all the interactions in a single

control problem, such that distributed or hierarchical control

approaches stand up-front. Examples of such an integrated

control in energy management are by using multi-agent

systems [4], Petri nets [5], or model predictive control (MPC)

[6]–[16] with the main focus on energy savings in heating and

cooling systems based on available future data.

The level of energy consumption in buildings is responsible

to achieve proper users comfort in an energy-efficient and

cost-optimal way. The level of balancing microgrid power

flows between building production, storage and consumption

points takes into account the current and near-future:

availability of local renewable energy, required consumption,

storages state and grid exchange conditions. Thus the actual

price of energy consumption to achieve proper comfort heavily

depends on the management strategy applied on the power

flows balancing level, while that strategy itself depends on the

presumed consumption profile.

Commercial buildings today have adopted Building

Management System (BMS) as a central and automated

control system responsible for coordinating building

information network such as: climate control with sensors

and heating/cooling units, lighting, fire alarms and other

safety systems. The paper describes further utilization

of ICT possibilities built on conventional BMS aimed at

increasing energy efficiency by means of adapting to external
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factors (time of day, weather and ambient temperature) or

internal ones (occupancy and people behavior or comfort

demands). Possibility of prediction of such phenomena is

exploited to find unique energy optimal solution for BMS

climate control. Additional savings are ensured by barely

noticeable violations of comfort factors in rare high-cost

situations. Different sources specify different opportunities

of energy-efficient increase by applying ICT extensions to

BMS. More conservative ones predict 30% of cost savings

while experimentally validated application reached 17%

[17]. Considerable decision maneuverability and further

contribution is achieved by introduction of microgrid with

renewable energy production units and storages, all of which

finally leads to economically optimal building climate control,

increased efficiency and self sustainability.

Research trends indicate that buildings are expected to

have microgrids consisted of various energy production

and consumption units with market bidding participation

and dynamic pricing possibility [3]. Large possibilities of

managing such complex technical systems lie in the utilization

of decision making agent formed as an optimization problem

divided into several different layers of hierarchy to gain

reduced complexity and subsystem independency, where the

interoperation with smartgrid is the highest hierarchy level.

Information considered the most suitable for exchanging

between the building-microgrid-smart grid triplet are hourly

energy prices given 24 hours ahead. Utilization of such an

accessible information is twofold:

• possibility of finding the economic optimum for building

and microgrid management and thus shortening the

investment return time and improving the motivation of

end users for encompassing the high involvement of

renewables and ICT in buildings

• reducing the power grid extremes burden, energy deficits

and surpluses, and achieving the match of smart grid

production and consumption, buffered through microgrid

renewable and storage units, all of which finally leads

toward price-controlled hourly consumption profile.

Weather forecast for renewables and heating/cooling

demands, comfort demands and occupancy, together with

energy price prediction allows determination of power

consumption profiles for the next day that acts as a feedback to

smart grid decision making. This interoperation is a gateway

to consideration of more complex building subsystems and for

further increase of energy efficiency.

The paper gives state-of-the-art-overview and comparison

of different sub-topics in the area of building climate and

microgrid optimization including modeling, predictions,

uncertainty handling and controller design. Finally, the

principle of hierarchical decomposition of buildings

production and consumption systems is exploited and

optimal control between the hierarchy levels is applied.

Building heating and microgrid systems are observed from

the point of highest economical benefit of the building

while taking into account internal requirements such as

comfort level or production and storage units capabilities.

The computed energy consumption profile on the lower level

directly maximizes the global economic gain of the system

operation in the presence of system constraints. This enables

the proactive role of this large consumer in energy grids of

the future. Possibilities of such an approach are illustrated on

a case study of two floors of a university building. Observed

case can be easily extended to include complete building

model and more complex subsystems consideration such us

heat pump optimization level or internal microgrid electrical

variables interaction, where advantages of hierarchical

approach are brought to fore.

The paper is organized in seven sections. After the

Introduction, approaches in mathematical modeling of building

thermal dynamics, utilization of weather forecast and historical

building data are presented in Section II. Microgrid with

production and storage units is presented in Section III.

Section IV explains MPC problem formulation based on linear

program separately for building climate control and microgrid

control. Conjoined buildings and microgrid problem and

hierarchical decomposition with interaction between hierarchy

levels is presented in Section V. Section VI provides simulation

results with realistic power flow profiles performed on chosen

case study, together with a discussion of further possibilities.

Conclusions are finally drawn in Section VII.

II. BUILDING MATHEMATICAL MODELING

Describing the heat transfer throughout the building is

largely a concern of mechanical engineering community.

Lots of research was put into finding the most physically

trustworthy model [18] and various commercial tools are

available today for fast extraction of nonlinear mathematical

model. Examples of such are TRNSYS/TRNBuild [19],

OpenStudio [20] or IDA Indoor Climate and Energy [21].

Besides these physical approaches, modeling can also be

performed by using neural networks and historical data

or with function approximation etc. but these methods are

usually not considered in convex optimization because of

high computational requirements and absence of stability

guarantee. Detailed database of commercially available

building simulation tools is accessible from [22]. Generally,

the main prerequisite for such tools is a good knowledge

of used building materials, construction characteristics (walls,

doors and windows layers, material thickness, areas etc.)

and building schematics. However, these parameters are often

unreachable and approximate, and model-based control such

as MPC require high accuracy of the used model. Additionally,

these kind of models are too complex to be used in finding

the solution of an optimization problem with large number of

zones, especially when ambient climate trends and consumers

occupancy is included for reaching the maximum energy

efficiency. Therefore, control theory community has put a lot

of effort into finding the adequate substitute for physically

trustworthy building heat transfer, weather prediction and

people behaviour models, which are a good approximation of

real system but also of low complexity. Example of the most

established approaches are given in the sequel.
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Fig. 1 (a) RC model of an office (b) sketch of window layers and dimensions transferred into a single parameter Rwindow .

A. Zone Modeling

With a goal of model reduction, several rooms were often

grouped into larger entities called zones where similar external

and internal conditions hold [12]. With the development of

embedded computer capabilities and algorithms efficiency, a

zone is reduced to a single room where temperature, ambient

factors and occupancy are observed separately from other

rooms. With different degrees of physicality and complexity,

main approaches in modeling are resistance-capacitance (RC)

model, simple linear models or parameter-adaptive models.

1) RC Model: The most usual approach in thermal

modeling of zones is based on linear RC representation

where each type of building surface (outside wall, window,

inside wall, floor, roof etc.) is represented with one or two

states (depending on the heat transfer coefficient). The RC

model approach is the most physically valid and captures heat

transfer dynamics almost as good as nonlinear, commercial

simulation tools. It also results in great number of states

per zone and many parameters to be identified. The most

significant advantage is that the model is standardized and

easily extracted from various thermal model computer-aided

software. In addition, the RC approach has high degree of

physicality and therefore, if all the heat transfer parameters

are known, it is completely determinable in advance (off-line).

Examples of RC model applications in MPC can be found in

[7], [8], [11]–[13], [23].

Fig. 1 (a) shows an exemplary RC model of a commercial

building office with outside glass windows and inner

narrow separating walls. Mathematical model of the room

temperature, which is the central dot of the room in Fig. 1

(a), is in continuous time domain modeled as:

Croom
dTroom

dt
=

2Troom2

Rwall
+

2Troom3

Rwall
+

Troom below

Rfloor

+
Troom above

Rceil
−

(
4

Rwall
+

1

Rfloor
+

1

Rceil

)
Troom

− Troom − Toutside

Ri,window +Rwindow +Ro,window

− Troom − Thall

2Re,door,glass +Rdoor,glass

− Troom − Troom2

2Re,door,wood +Rdoor,wood

− Troom − Troom3

2Re,door,wood +Rdoor,wood

+ Psolar,window + Poccupancy + PHVAC ,

where each capacitor from Fig. 1 (a) is also modeled by

a differential equation, i.e., the final model of one room

contains 7 differential equations or 7 variables in state-space

representation. Fig. 1 (b) presents how the parameter Rwindow

reflects the summary of thermal conductivities of each layer

of material consisting the window. All the other parameters

are also calculated in a similar way [18], [24]. Variable

Psolar,window includes direct and diffuse solar power entered

through windows, given as a function of solar radiation

Qsolar,window and sun position. Consumers behavior is

included via predicted parameter Poccupancy and reflects

the people contribution (e.g. body heat or office computer

usage) to the power flow balance. Power PHVAC is the

heating/cooling power inserted into the room by a climate

actuator, e.g. Heating, Ventilation and Air Conditioning unit

(HVAC), supply air tube or ventiloconvectors. The PHVAC is

also the control variable given from the power optimization

algorithm.
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As stated before, the main disadvantage are tentatively

known parameters in practice and large order of the

model itself when it is augmented for each room of the

building. There is an extensive literature with many different

approaches on how to perform order reduction of linear

time invariant systems. These approaches include singular

value decomposition methods, moment matching methods,

Krylov subspace based techniques, balanced model reduction

approaches, etc. [25]. One of the most common methods for

model reduction is based on Hankel singular values, which

provide a measure of energy for each system state. States

with relatively small Hankel singular values can be safely

discarded [26], [27]. Example of applying the Markov chains

theory for reducing the order of the building model is given

in [23]. Although this method retains the physicality of the

model, it is computationally consuming and the final problem

is non-convex, i.e., the optimality is not guaranteed. The main

disadvantage of most available methods is in the fact that by

reducing the order of the model its physicality is lost.

2) Semi-Physical Models: Although the accuracy of linear

RC model is satisfactory, the underlying detailed modelling

results in high order model. Model predictive control

optimization problem with 24 hours prediction horizon and

high order model can be computationally too intensive and

in a worst case can remain unresolved due to the lack of

memory required to solve it. This problem is especially

evident in advanced MPC approaches such as stochastic

MPC [11], [13]. One solution to obtain model applicable

for MPC is to use the model order reduction methods as

described in the previous section. Another approach is to

use the available historical data for getting an applicable

model for control system design. Unscented Kalman Filter

(UKF) is a well-known estimation technique for nonlinear state

and parameter estimation [28]. The main premise behind the

UKF estimation principle is that it is easier to approximate

a Gaussian distribution than an arbitrary nonlinear function.

Use of UKF for estimation of building parameters was already

reported in [14], [29]. In standard RC approach, building zone

is described using minimum 7 capacities (6 for walls and

one for representation of air inside a zone) which results

with a zone model of a minimum 7th order. By observing

the time constants of building thermodynamic processes it is

evident that the dominant time constants are related to the

air temperature of the zones. Other, noticeably larger time

constants, are related to walls or additional internal masses

(like furnishing) due to their higher thermal capacity. Thus,

the zone thermodynamic is approximated with two thermal

masses: fast dynamic with lower thermal capacity related to

the air temperature inside a zone and slow dynamics with a

higher thermal capacity related to the solid zone parts (walls

and furnishing) [9]. This approach is somewhere in-between

regarding the physicality and complexity when compared to

previous two. Great advantage is that parameter-adaptation is

performed on-line and captures the variable phenomena such

as people behavior or system changes over time.

3) Simple Linear Model: The simplest possible models, and

the farthest ones from the real system physicality are those

grounded on well established control theory basics used in

wide areas of application, from process industry to image

recognition. One of the more elaborate approaches in this area

is usage of autoregressive-moving-average model (ARMAX),

example of which can be found in [6], [9], [10], [30]. General

representation of such model in discrete time domain (for time

instant k) is:

A(q)T k
room = B(q)T k

HV AC +C(q)

⎡
⎣ T k

outside

Iksolar,window

T k
occupancy

⎤
⎦ , (1)

where A(q), B(q) and C(q) are polynomials that determine

the system dynamics, THVAC is the airflow temperature

of climate actuator, Isolar,window is the solar influence on

the room and Toccupancy is the temperature influenced by

consumer behavior.

The main disadvantage is that the model has to be identified,

i.e., polynomials A(q), B(q) and C(q) are required to be

determined. This can only be performed on historical data

and, for a trustworthy model, one year of hourly data records

for each variable from (1) is a prerequisite. Because of the

model distance from the real system physicality, all of the

uncertainty and unidentified disturbances are then transferred

to the probability problem and stochastic representation, which

will be discussed later.

B. Weather Forecast

Weather forecast plays important role in MPC for buildings.

The weather forecast data comprise from the outside air

temperature and the incoming diffuse and direct solar

radiation. The information about diffuse and direct solar

radiation is very important since they affect external building

areas in different ways. The overall solar radiation gain in

some zone depends on site-specific factors: window glazing

area, window tilt angle, glazing type, geographic location and

orientation of the building, shading factors and Sun inclination

angle. Coefficient for calculation of overall zone solar gain is

calculated from the knowledge of the window property called

Solar Heat Gain Coefficient (SHGC) [24] or simply estimated

within estimation procedure.

C. Comfort Demands and Constraints

Comfort demands are key task to be obeyed and they

determine how much energy is possible to be saved in

given ambient conditions. Small residential buildings have

freedom of setting the temperature level as desired while

large commercial buildings have central unit responsible

for maintaining pre-defined zone temperature, which usually

leads to higher energy efficiency. Temperature comfort to be

respected by the optimization problem is formed as state

constraints for each individual room:

Tmin ≤ Troom ≤ Tmax, (2)

where Tmin and Tmax are the minimum and the maximum

temperatures that bound the comfort span (e.g. from 20◦C

to 24◦C). According to [31], temperature constraints are

acceptable to be violated for a short period of time, which

gives additional space for energy saving in extreme situations.
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Limitation in heating/cooling of a room is set by actuator

restrictions. Power of HVAC or ventiloconvectors is included

in the optimization problem via power constraint:

PHVAC,min ≤ PHVAC ≤ PHVAC,max. (3)

D. People Behavior

Modeling of people behavior is the most challenging

task. However, clear and reliable knowledge of occupancy

information during working hours is available for offices and

commercial buildings. People tend to behave in patterns during

working days and this information is too valuable to be

discarded or treated like an uncertainty. So far, simple presence

detection has been included in optimization problems [8], [15],

[32] for relaxing the comfort constraints. In [9], the ARMAX

model was again applied on collected measurements of people

occupancy influence on temperature trends in university library

and exploited for reaching the maximum efficiency with MPC.

Sudden CO2 changes are also a valuable information to be

used for occupancy detection in offices and smaller zones if

such sensors are available.

E. Uncertainty

1) Gaussian Approximation: The most common approach

in treating the uncertainty is the Gaussian approximation of

unknown influences. With high degree of model physicality,

some unknown parameters are well captured this way.

Gaussian approach has proven very successful in capturing

the uncertainty effects of weather forecast [11] and microgrid

production units [33], but is problematic for occupancy

disturbance [9]. Uncertainty is described with known

probability density function:

fX(μ, σ) =
1

σ
√
2π

e−
(x−μ)2

2σ2 , (4)

and known cumulative density function:

Φ(x) =

∫ x

−∞
fX(t)dt, (5)

and finally included in the optimization problem as chance

constraints:

P(Gx ≤ w) ≥ 1− α, (6)

where user-defined parameter α denotes probability that the

constraint is violated. If (6) is put into equivalent form of:

w −Gx ≥ Φ−1(1− α)||σx||2, (7)

the problem formulation becomes deterministic and more

easily handled in the optimization problem.

2) Scenario-Based Approach: In most occasions

uncertainty that influences the optimization problem falls out

of category of known distributions, which causes deviation

from optimum solution and loss of stability guarantee. This

is especially expressed in low physicality models such as

ARMAX, which deviate more from optimum solution due

to less modeled phenomena. Here, so-called scenario-based

approaches are used to capture the unknown distribution

with examples given in [6], [9], [10], [16]. Instead of

finding distribution function for the observed problem,

large number of identically distributed and independent

disturbance samples, called scenarios, are generated and

observed. Similar approaches are used in weather forecast

state-of-the-art, called ensemble prediction methods [34]. This

way linear programming is maintained but with increased

number of linear constraints, which sufficiently well capture

the disturbance distribution. Instead of large number of linear

constraints, only the worst scenarios can be observed [16],

which simplifies the calculation thoroughly and reduces

the number of constraints to two: min and max. In return,

it also results in conservative control law that reduces the

possible feasible solutions bringing the solution very close

to that of the robust MPC approach. As a trade-off between

computational burden and conservativism, it is possible to

reduce number of samples and constraints while keeping the

control law less conservative in an optimal sample removal

scenario performed at each time instant [9], sometimes

referred to as optimal risk allocation.

III. MICROGRID MATHEMATICAL MODELING

Microgrids or building-size smart grids are expected to

become an active part of the power system that enables

decentralization of power system, thus increasing its reliability

and stability [35]. Because of the economic and environmental

benefits that stem from the optimal microgrid power flow,

considerable attention is directed to development of better

optimization algorithms and suitable modelling frameworks

[36]. Examples of MPC used in experimentally validated

environment on residential microgrid are [37] and [38].

Challenges and future trends for renewable energy production

and storage units used in microgrids and smartgrids are

elaborated in [39]. In the sequel, the most common

components, technical limitations and power flows are

explained on the example of a 48 V DC microgrid.

A. Microgrid Components

Exemplary DC microgrid from Fig. 2 operates at 48 V

[40]. It consists of the following systems for generation or

storage of electrical energy: (i) a photovoltaic array, (ii) a

small-scale wind turbine emulator, (iii) a supercapacitor, (iv)
a valve-regulated lead-acid (VRLA) batteries stack, and of (v)
an electrolyzer with fuel cells stack.

1) Production Units: Photovoltaic (PV) array includes

eight poly-Si PV panels that are arranged in two equal parallel

branches, and are mounted on a dual-axes positioning system

for power production maximization [41]. Performance of the

PV array under standard test conditions1 (STC) is as:

PMPP = 1520 Wp, VOC = 119.2 V, ISHC = 16.7 A, (8)

where PMPP is PV array power at maximum power point

(MPP), while VOC and ISHC are PV array open-circuit (OC)

voltage and short-circuit (SHC) current at STC.

1Standard test conditions (STC) usually assume 1000 W/m2 incident solar
irradiance, 25 ◦C PV panel temperature, and 1.5 air mass index.
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H2 H2

Fig. 2 Schematic diagram of an exemplary 48 VDC microgrid

Photovoltaic array power production is calculated in

discrete time step k based on measured solar irradiance and

temperature data via simple power production model [42]:

P k
PV = θ1Q

k
PV + θ2T

k
PV + θ3G

k
PVT

k
PV, (9)

where Qk
PV and T k

PV are incident solar irradiance and

temperature, and θ1, θ2 and θ3 are the PV array model

parameters.

Small-scale wind turbine (WT) with horizontal axis has

two operating regions: below rated wind speed region where

all the available wind power is captured and transferred to

electricity, and above rated wind speed region in which the

power production is saturated at the rated power with passive

mechanisms for reduction of blades aerodynamical properties

(flaps, breaks etc.). Usually the wind is stronger during the

night, which complements the photovoltaic power production.

The wind is also highly dynamical stochastic renewable that

makes it hard to predict the WT power output. Wind turbine

power production model is given with [45]:

P k
WT =

1

2
ρairR

2πCP (λ, β)(V
k)3, (10)

where ρair is the air density, R is the radius of blade disc,

CP is the power coefficient that reflects the aerodynamical

property, dependent of so-called tip-speed-ratio λ and blade

aerodynamical property β. Power production is determined

from the meteorological data and wind speed V predictions.

2) Energy Storage: Supercapacitor (SC) or ultracapacitor

is a high-capacity electrochemical capacitor with typical

storage of 10 to 100 times more energy per unit volume or

mass than electrolytic capacitors, and can accept and deliver

charge much faster than batteries. Observed supercapacitor has

93.7 F capacitance and 86.4 V open circuit voltage when it

is fully charged. Due to the power converter limitation on

input voltage range, the supercapacitor lower voltage is set

to 35 V, which gives approximately 81.2 Wh usable energy,

i.e., supercapacitor can be fully charged or discharged at full

power converter rate (3.5 kW) within 83 s. Supercapacitor is

modeled as a discrete-time first-order difference equation with

a sampling time Ts:

xk+1
SC = xk

SC − ηSCTsP
k
SC , (11)

where xSC is the supercapacitor state-of-charge, ηSC is the

efficiency of charging power PSC .

VRLA batteries stack includes four VRLA gel batteries

connected in series with following performance characteristics:

VOC,n = 48 V, C10 = 200 Ah, (12)

where VOC,n is nominal open-circuit voltage, and C10 is the

capacity when the batteries stack is discharged in 10 hours.

Batteries are also modeled as a discrete-time first-order

difference equation:

xk+1
BAT = xk

BAT − ηBATTsP
k
BAT, (13)

where state xBAT is the battery state-of-charge (SoC), and ηBAT

is the battery charging or discharging efficiency that depends

on the sign of power PBAT [33], [43].

Fuel cells (FCs) stack includes 32 proton exchange

membrane (PEM) fuel cells connected in series, with

electrolyzer (rated power 1200 W) for on-site hydrogen

production and with two metal hydride tanks (overall storage

capacity 1800 L) for hydrogen storage. Performance of FCs

stack is as:

PFC = 500 W, VFC = 30 V, IFC = 30 A, (14)
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where PFC, VFC and IFC are FCs stack maximum power,

voltage and current, respectively.

Note that FCs stack with electrolyzer can be considered

as an energy storage system, since electrolyzer produces

hydrogen when there is excess power, while FCs use this

stored hydrogen when there is power shortage. This system

is also modeled by using first order difference equation:

xk+1
FC = xk

FC − ηFCTsP
k
FC. (15)

3) Power Converters: Power converters are critical

components of microgrids. They are used for balancing

different levels of voltage or AC and DC conversion. Since

the DC bus is maintained at 48 V, all the production units,

storages and loads have to be converted to this level. Power

converters represent control points that, by proper operation,

assure overall system stability and quality of power supply.

There are three main kinds of DC/DC converters: buck

converter denotes that output voltage is lower than input, boost

converter is for the case when output voltage is higher than

input and buck-boost converter denotes that output voltage can

both be higher or lower than the input voltage.

Considered DC microgrid includes the following power

converters:

DC/DC–PV. DC/DC (buck) converter for PV array

connection. Converter operates in voltage mode control and

has a built-in control loop for input current. Input current

reference is issued to the converter via analog signal 0–20 mA.

DC/DC–BAT. DC/DC bidirectional (buck-boost) converter

for VRLA batteries stack connection. Converter operates in

voltage mode control, and has a built-in control loop for input

current (batteries stack side current). Input current reference

is issued to the converter via analog signal 0–20 mA.

DC/DC–FC. DC/DC (boost) converter for FCs stack

connection. Converter operates in current mode control, i.e.

converter control variable is peak inductor current, and has a

built-in control loop for input current. Input current reference

is issued to the converter via analog signal 0–20 mA.

DC/AC–EL. DC/AC (single-phase) converter for

electrolyzer connection. Converter operates completely

autonomously without possibility for external control inputs.

DC/AC–EG. DC/AC bidirectional (three-phase) converter

for electrical grid connection. Converter has a built-in control

loop for input current (DC side current). Input current

reference is issued to the converter via serial RS-485

communication using MODBUS protocol.

B. Constraints

To prevent permanent damage of microgrid components,

they must be kept within the usual operating values.

Supercapacitor constraints are described with:

0 ≤ xk
SC ≤ CSC , (16a)

−Pmax
SC ≤ P k

SC ≤ Pmax
SC , (16b)

where CSC is the capacity, and Pmax
SC is the supercapacitor

power converter limitation.

Battery SoC xBAT and power PBAT always must be inside

their limits to avoid irreversible capacity loss:

0.2CBAT ≤ xk
BAT ≤ CBAT, (17a)

−Pmax
BAT ≤ P k

BAT ≤ Pmax
BAT , (17b)

where CBAT is the battery capacity, and Pmax
BAT is the battery

power converter limitation.

Fuel cells technical limitations are defined with:

0 ≤ xk
FC ≤ CFC, (18a)

Pmin
FC ≤ P k

FC ≤ Pmax
FC , (18b)

where Pmin
FC is the FC power converter limitation, and Pmax

FC is

the electrolyzer power limitation.

Grid power converter technical limitations are defined with:

−Pmax
EG ≤ P k

EG ≤ Pmax
EG . (19)

C. Power Profile Prediction

When operating in grid-connected mode, the microgrid

can import/export energy from/to the utility grid through

the grid-tied bidirectional power converter. A decision when

to buy and sell energy to the utility grid and in which

amount, i.e., when to charge and discharge storages, is a

complex function of the predicted microgrid load PL [44],

power production (renewables), and of the current storages

state-of-charge (SoC). This function is also subject to various

constraints like energy storages capacity, power converters

power ratings, and even to utility grid possibly reduced

availability [33], [43].

Photovoltaic power profile is forecasted from available

solar inclination predictions (9) and wind turbine power is

forecasted from future wind predictions (10). Both sources

are subject to weather forecast uncertainty and are treated the

same way as in buildings case – Gaussian distribution for solar

inclination and wind predictions.

IV. ENERGY-OPTIMAL CONTROL

A. Building Climate Optimal Control

Total summary of considered elements to be included in

optimization problem is illustrated in Fig. 3. Naturally, not all

of them are imperative and larger energy efficiency is obtained

with higher degree of considered details. Mathematically, this

is expressed in the form of constrained linear program as:

J∗(u) = min
u

N∑
k=0

f�u, (20a)

subject to :

xk+1 = Ax+Buu+Bdd, (20b)

Gxx ≤ wx, (20c)

Guu ≤ wu, (20d)

where x is the state vector (capacitances of RC model for each

zone), u is the control variable vector (vector of PHVAC for

each zone), d is disturbance vector (solar radiation, ambient
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temperatures and occupancy), A, Bu and Bd are matrices

derived for the building model (??) discretized with sample

time Ts. Equation (20c) is for comfort constraints from (2)

and can optionally be put in the probabilistic form from (6).

Equation (20d) covers actuator constraints from (3).

Problem solving is performed with convex optimization

linear program solvers and yields the optimum U∗ consisted of

control vectors for each zone and each time step, from current

one to the end of horizon N . Finally, control variable passed

to the building climate actuators is the current step one, U∗
k=0,

and the procedure is again performed when the following time

instant occurs.

B. Microgrid Optimal Control

Total summary of microgrid considered elements to be

included in power flow optimization problem is illustrated in

Fig. 4. Again, larger microgrid energy efficiency is obtained

with higher degree of considered details. Mathematically this

is also represented with (20), where now x is the state vector

of storage states, u is the control variable vector consisted

of storage units charge/discharge powers (PSC , PBAT and PFC)

and utility grid power PEG calculated as a power flow balance:

P k
EG = P k

L − P k
WT − P k

PV − P k
SC − P k

BAT − P k
FC. (21)

Disturbance vector d consists of photovoltaics and wind

turbine power production profiles. Matrices A, Bu and Bd are

derived from the microgrid model (11), (13) and (15). Equation

(20c) is set to keep the storage units within designated

capacity, (16a), (17a) and (18a). Equation (20d) covers power

converter constraints from (16b), (17b), (18b) and (19).

Solution of the solved problem here yields the optimum

U∗ consisted of control vectors for each power converter

for storages over the horizon of N . Again, only the current

step one, U∗
k=0, is applied as the reference passed to power

converters and the problem is solved again for the next time

step.

Fig. 3 Summary of components taken into account for building climate
model predictive controller synthesis

Fig. 4 Summary of components taken into account for microgrid power flow
model predictive controller synthesis

V. PRICE-OPTIMAL CONTROL

A. Real-Time Pricing

Real-time pricing (RTP) is becoming an emerging research

and implementation topic in energy market [46], [47]. It refers

to usage of smart meters and hourly based prices on consumer

levels. While RTP is very common in industry, USA and

some European countries already provide such a possibility for

commercial or residential buildings and it is expected to widely

spread among the consumers. In practice, this opportunity is

not exploited due to lack of proper decision making algorithm

for power shifting and cost savings. Presented climate and

microgrid power flow optimization based on MPC inherently

covers such a scenario, which provides larger opportunities

for cost savings. This opportunity shifts the building and

microgrid management from energy-optimal to price-optimal

control, which are not necessarily coincided due to variations

in market prices. Additionally, smart and energy efficient

building with included such a control is suitable to directly

participate in market bidding.

B. Microgrid and Buildings Unified Problem Formulation

Overall goal and optimization criterion is the maximum

economical gain of the smart building as a closed system, i.e.,

the minimum cost of energy exchanged with the grid, whereas

the negative sign of PEG denotes the energy sold at price c.
Two approaches are considered in the sequel. First approach

is by using linear program formulation with combined whole

smart building model that optimizes both building heating

process and microgrid power exchange, and thus results in one

large problem formulation. Second approach is by separating

the individual thermal and microgrid optimization problems.

The heating process is therefore observed as a separate and

lower-hierarchical, consumption level problem.

For the unified problem of building and microgrid

optimization, two systems are connected through building

climate actuator powers, which are at the same time dynamic

loads from the microgrid perspective, i.e., PL = PHVAC

(the sum for all rooms). Considered economic criterion of the

microgrid operation with building zones actuator power over
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the horizon of N is given by:

J∗(u) = min
PSC ,PBAT,PFC,PL

N∑
k=0

ckTsP
k
EG, (22)

where the model matrices, state and input constraints are

all joined in the same formulation. Economic criterion is

included in the utility electricity price ck in AC/kWh for

time period of one hour between k and k + 1 discrete time

steps. Note that the criterion value J∗ is expressed in AC
units and reflects the smart building contribution to energy

saving and possibility of participation in electricity market

bidding strategy. The negative sign of J∗ means that power

production exceeds power consumption. Complete power flow

optimization problem is illustrated in Fig. 5.

C. Hierarchical Decomposition

With all of the listed elements in the optimization problem,

the amount of time required for optimal solution outcome in

each step grows drastically and possibly exceeds the sample

time. One solution is to transfer all the required data via

network, perform remote calculations on computer cluster

acting as a cloud computing, and then transfer back control

variables to the smart building. Another option is to work on

the algorithm efficiency and reduction of time required for

solving the problem. To this aim, we split one large problem

of unified building and microgrid models and constraints into

two separate, smaller problems. This separation is performed

in the manners of hierarchical decomposition [48] where

microgrid acts as a higher hierarchy level. Correlation between

two hierarchy levels is drawn via dynamic load powers,

i.e., climate actuator powers. This hierarchically decomposed

power flow optimization problem is illustrated in Fig. 6, and

mathematically formulated as:

J∗
μ(u, x0, PL) = min

PSC ,PBAT,PFC

N∑
k=0

ckTsP
k
EG, (23a)

subject to :

⎧⎨
⎩

(11), (13), (15)

(16a), (17a), (18a)

(16b), (17b), (18b), (19)

2H2O
O

O
H

HH H

PEL PFC PBAT

PPV

PWT

PEGc Psolar,window

Toutside

PL

microgrid

PSC

min J
U

Power flow
optimization

Fig. 5 Price-optimal power flow optimization for the case of unified building
and microgrid control

J∗
L = min

ε,Pk
L

ε (23b)

subject to :

{
ε ≥ J∗

μ(PL)
(??), (2), (3)

Microgrid hierarchy level problem solution from (23a) aims

at minimizing the power exchanged with the grid PEG and

reaching the minimum negative value. This is tried to be

achieved while satisfying the constraints of storage units,

power converters and requirements for dynamical load, and

by taking into account power production units predictions and

forecasted energy price. In other words, this means that the

most favorable scenario is selling all the available power to

the grid at the moment of maximum price along the prediction

horizon. Lower, building hierarchy level solution from (23b)

results in optimum heating/cooling power required to satisfy

comfort demands while considering the forecasted ambient

factors. The optimum solution from lower hierarchy level is

aimed to be as close as possible to the optimum solution of

the higher hierarchy level and if the two coincide, the smart

building is operating in the most efficient way.

VI. RESULTS

A. Case Study

Simulation results are obtained for the case study of

microgrid situated in the Laboratory for Renewable Energy

Systems (LARES) at University of Zagreb Faculty of

Electrical Engineering and Computing, Croatia, and for

fully centralized and automated climate control for two

floors of faculty building consisted of 38 offices. Microgrid

components and corresponding constraints are given in Fig. 2.

Smart building thermal model is chosen as RC model with

comfort temperature held between 20◦C and 24◦C, and with

4.5 kW ventiloconvector in each room. Power production,

consumption, prices and weather conditions are based on

the realistic profiles. Renewables and storages from Fig. 8

are based on real components of LARES [42] and prices

c are taken from European power exchange site [49] that

accounts for more than a third of the total European power

consumption. Weather forecast data is obtained from Croatian

Meteorological and Hydrological Service (DHMZ). One day

prediction horizon Ts = 24 h is used in simulations and two

sequential autumn days of weather forecast are chosen.

2H2O
O

O
H

HH H

PEL PFC PBAT

PPV

PWT

PL
PEGc Psolar,window

Toutside

J (PL )*

PL

microgrid

min J(x0,PL )
x,U

Power flow
optimization

PL

Consupmtion
level

min J (PL )*

PSC

Fig. 6 Price-optimal power flow optimization for the case of hierarchically
decomposed control.
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Fig. 8 Renewables power production and grid price

B. Simulation Results

Cost function minimization for both unified and hierarchical

approaches is performed by using the Multi-parametric

toolbox [50].

Fig. 7 shows power flow optimization results for the case of

unified problem formulation. Fuel cells are left almost intact

due to their low efficiency and batteries are much more used

for storing power to be sold later. The figure shows that

power PEG is always sold at the highest prices. Performance of

price-oriented optimization problem with chosen economical

criterion may be observed in load power PL and temperature

profile of ith room, Troom,i=1 in Fig. 7. Although the

temperature at time instants of 1–7 h is above the constraint,

Optimum PEG / kW 

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0
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0
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1
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PFC, PBAT / kW * *

PBAT
*

PFC 
*

Optimum xBAT and xFC

xFC 

xBAT

Fig. 9 Optimum power flows for hierarchically decomposed case

additional power is put into the building during the low price

period such that the temperature is kept within constraints

during the high energy price period and expensive power

consumption is avoided.

For the case of hierarchical decomposition and described

problem, responses are given in Fig. 9. Both unified

and hierarchical approaches give matching results. Detailed

analysis of the algorithm efficiency and speed increase is a

matter of further research.
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C. Further Possibilities

Lots of research so far was put into considering the problem

of building climate optimal control and microgrid power flow

balance as separate problems. Reason for this is, above all,

large problem complexity followed by computational burden

and very wide areas of expertise included into joining the

two problems: civil, mechanical and electrical engineering,

accompanied by weather forecasting and people behavior.

However, from the perspective of high level of abstraction

with power flow balances, large opportunities in energy

efficiency and energy market strategies arise. Research trends

are therefore expected to conjoin the problems and hierarchical

approach is one of the contributions to the area.

Further opportunities arise in more time-efficient calculation

of control law based on exploiting the problem unique

formulation, starting position from previous time step problem

solution and pinpointing critical regions where the positioning

of solution within constraints can be performed very fast. In

residential building area, zones are possible to be observed

independently with distributed control approaches where

comfort demands are more flexible and computations are

additionally split with the aim of eligibility for cheap

embedded controllers.

Once the algorithm efficiency is established, further

extension of problem formulation onto lower levels of control

such as heating pump efficiency or microgrid voltage control,

all leading to larger contribution to energy efficiency.

VII. CONCLUSION

Model predictive control application proved to be valuable

tool in high level power flow optimization application as

sound energy costs saving approach. The paper presented

an overview of methods and approaches used in buildings

climate management and microgrid power distribution with

MPC. All of the considered phenomena included in the

optimization problem, together with short guidelines for the

procedure is described and modeled. Both unified problem

observation and hierarchy decomposition of the problem

provide coinciding results for illustrative example of smart

building with integrated microgrid and give opportunity for

observing more complex problems independently.
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