
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:1, 2013

32

 

 

  
Abstract—In the present paper, an improved initial value 

numerical technique is presented to analyze the free vibration of 
symmetrically laminated rectangular plate. A combination of the 
initial value method (IV) and the finite differences (FD) devices is 
utilized to develop the present (IVFD) technique. The achieved 
technique is applied to the equation of motion of vibrating laminated 
rectangular plate under various types of boundary conditions. Three 
common types of laminated symmetrically cross-ply, orthotropic and 
isotropic plates are analyzed here. The convergence and accuracy of 
the presented Initial Value-Finite Differences (IVFD) technique have 
been examined. Also, the merits and validity of improved technique 
are satisfied via comparing the obtained results with those available 
in literature indicating good agreements. 

 
Keywords—Free Vibrations, Initial Value, Finite Differences, 

Laminated plates. 

I. INTRODUCTION 
AMINATED plates are often used in many engineering 
applications such as aerospace, naval and ocean 

structures. The great importance of the plate free vibration is 
due to the necessity of their dynamic characteristics. A proper 
optimization of the geometry of plate cross-section has to be 
carried out in order to achieve the required structural 
performance. For such plates, the governing partial 
differential equations of motion are solved either by numerical 
techniques, or experimentally to find the fundamental 
frequency of vibrations. Nowadays, many researches are 
devoted to the numerical analysis of the free vibration of 
plates. However, many problems remain still unsolved 
exactly. Due to its simplicity, the classical laminated plate 
theory (CLPT) [1] is widely used for the analysis of laminated 
plates which are subjected to dynamic loading. More complex 
plate theories have also been used, such as the first-order 
shear deformation theory (FSDT) and the third-order 
laminated theory[1]-[2]-[3]. It is very difficult to obtain the 
exact solution for the dynamic response of laminated 
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composite plate. Currently, the exact solution can only be 
available for certain plate theories applied to simply support 
rectangular plates [3]. The main problems involving 
rectangular plates is classified into three distinct categories: 
(a) plates with all edges simply supported; (b) plates with a 
pair of opposite edges simply supported; (c) plates which do 
not classified on one of the above categories. The first and 
second categories are amenable to straightforward rigorous 
solutions in terms of the well-known Navier and Levy 
solutions [1]-[4]. These methods can be simply extended to 
orthotropic plates. Problems of the third category are difficult 
to be solved exactly [3]-[5]. Accordingly, rigorous analytical 
solutions, which satisfy the governing partial differential 
equations of motion and the boundary conditions exactly, turn 
out to be rare. Numerical methods have to be used if the 
problem involves complex geometries and complex boundary 
conditions. As a result, approximate numerical methods, [4]-
[5]-[6], have been proposed for dynamic analysis of the 
laminated plates. Rayleigh-Ritz method is used in [7]-[8]-[9] 
to deal with the vibration problem of isotropic and orthotropic 
plates. More over Rayleigh-Ritz method[10]-[11]-[12] is 
employed with the method of superposition of normal modes 
to calculate the dynamic response of laminated plates with 
different boundary conditions. Many numerical methods have 
been proposed for the dynamic response analysis of plates. 
Out of these methods, the Finite Differences method 
(FD),[13]-[14]-[15], has become the universally applicable 
technique for solving boundary and initial value problems. 
Although Finite Element method (FE) [16]-[17], is an 
extremely versatile and powerful technique, it has certain 
disadvantages because large quantities of input data make 
implementation tedious, and one is often compelled to employ 
automatic mesh and load generation schemes. Also, many 
lower order elements will not yield acceptable stress results, 
necessitating the use of stress averaging or interpolation. So a 
computer core requirement can often be extremely large. 
Thus, there have been efforts to formulate alternative 
methods, which lead to the development of the Finite Strip 
method [2], Transition Matrix method [18], Initial Value 
method [19]-[20] and boundary element method [21]-[22]. 

The boundary element method [23]-[24]-[25] has been 
successfully applied for a great variety of problems, though a 
major deficiency. It is difficult to apply this method for 
anisotropic and inhomogeneous solids, as there is no simple 
applicable Green’s function available. 
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The main objective of the present paper is to offer a new 
numerical solution for free vibration analysis of symmetrically 
laminated plates. The capabilities of (IV) and (FD) methods 
are employed to achieve an improved (IVFD) hybrid 
numerical technique with reference to the solution for the title 
problem. Partial differential equation of vibrating plate is 
transformed at any node by the devices of the finite 
differences with respect to the neighboring nods in y-
direction. A selected step by step initial integration method is 
applied in x-direction to solve the transformed differential 
equation. Some derivatives at the next nodal line are 
expressed according to trapezoidal rule. 

The frequency parameters for such plates are obtained for 
different laminated composites, fiber orientation angles and 
boundary conditions. The results are compared with those 
available in the literature to examine the accuracy and 
efficiency of the method. 

II.  LAMINATED PLATE THEORY 
Consider the rectangular plate whose dimensions in x  and 

y  directions are a  and b respectively, as shown in Fig. 1.A 
number k  of layers of fiber reinforced laminated composite 
lying in the yx −  plane is applied to consist the overall 
thickness h  of plate. 

 

 
Fig. 1 The coordinate system of the composite laminated plate 

 
The reference plane 0=z  is located at the un-deformed 

mid-plane of the plate [26]-[27]. The z - axis is taken as 
positive upward from the mid-plane. The thk  layer is located 

between the two planes 1−= kzz and kzz = . The material 
principal axes 1 and 2 are oriented at an angle kα  with respect 
to plate axis x , as shown in Fig. 2. The magnitudes u , v and 
w denote the displacements in the coordinate directions x , y  
and z  respectively. The displacements u and v can be 
expressed by w according to Classic Laminated Plate Theory 
CLPT [28]-[29]-[30] as follows: 

 
xwzu ,ˆ−= ,  ywzv ,ˆ−=

                               
(1) 

 
where the suffix x or y refers to the partial derivative of ŵ  
with respect to x or y respectively.  
 

 

Fig. 2 Geometry and coordinate system of the thk  layer of  
a rectangular plate in the yx − plane with fiber orientation kα α୩ 

 
The strain-displacement relations [31]-[32]-[33] for the 

plate can be written in the matrix form such as:  
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where the differential operator L is given by: 
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The symbol T denotes transpose and yx εε , and xyγ are the 

plate strains. 
According to generalized Hooke’s law, the stress-strain 

relation for the thk  layer in the laminate coordinates is given 
by: 
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 or it is simplified to be in form: 
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where: 
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in which kQ  is the matrix of material constants for the thk  
layer in the material principal coordinates, whose elements 
are: 
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where 1E and 2E  are Young‘s moduli in the directions parallel 
and perpendicular to the fibers, respectively; 12G  is the shear 
modulus and  12υ and 21υ  are Poisson’s ratios. 

The case of symmetrically stacked laminates is considered. 
And the bending moment vector is defined as:  
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where, the matrix D  is the coefficient matrix of the bending 
stiffness, which is given as: 
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Such that; 
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and the shear forces are expressed as: 
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III. INITIAL VALUE FINITE DIFFERENCES MATHEMATICAL 
FORMULATION OF LAMINATED PLATE 

The lateral mid-plane deflection of the laminated plate is 
assumed to satisfy the following governing partial differential 
equation of motion for free vibration [1]-[34]-[35] as: 
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where: 
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on which ( )kρ  is the thk  mass per unit volume. 

The magnitudes xxxxw,ˆ  and yyyyw,ˆ  are the fourth-order 

partial derivatives of ŵ with respect to x  and y  respectively. 
By analogy, the other partial derivatives of ŵ  are written 
according to the independent variables. To investigate the 
vibration modes, the displacement is defined as time harmonic 
function in the form: 

 
( ) tieyxwtyxw ω),(ˆ,, =                            (11) 

 
where ω is the circular natural frequency. 

Substitution of (11) into (10) yields:  
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The model of NM × mesh of plate with equal divisions, 

NH /a=  in x -direction and MbG /=  in y -direction, is 
constructed, as shown in Fig. 3. 

 

 
Fig. 3 Plate mesh divisions 

 
In the present paper a step by step integration technique is 

used by Initial Value method in the x -direction. So the partial 
derivatives:

xxyyw,ˆ , 
xxxxw,ˆ  at any point ),( ji , in (10), are 

represented in y -direction by the lower displacement 
derivatives ŵ and

xxw,ˆ  of four neighborhood points [36]-[37]-
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[38], while the derivatives 
n

n

x
w

∂
∂ ˆ  ; 4,3,2,1=n in x -direction are 

remained. Rearranging, the equation of motion (12) at point 
),( ji  one can get: 
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According to the basics of the Finite Differences [39]-[40], 

one can obtain: 
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Substitution from (14) to (17) into (13), the nodal equation 

of motion of laminated plates is reduced to: 
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The selected integration method used for solving the 

reduced differential equation in x -direction is the trapezoidal 
method, where some derivatives applied at a point ),( ji are 
expressed as: 
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where )(
),(ˆ n

jiw  is the n -order derivative of the displacement 

),(ˆ jiw at a point ),( ji with respect to x . 

The procedure of the step by step integration is explained in 
the following steps: 

Step1:Assuming initial values at starting line 1=i  

Along edge 1=i , two quantities of the deflections and their 
derivatives )(

),1(ˆ n
jw  ; 3,2,1=n , Mj ,....,3,2,1= are known from 

the boundary conditions at this edge where  other values are 
assumed. For example, let the boundaries at all plate edges are 
being simply supported. So at 1=i because the deflection and 
moment at point ),( ji are equal zero, 
then 0ˆ ),1( =jw , ( ) 0ˆ

),1(, =jxxw for all Mj ,....,3,2,1= . At the same 

edge 1=i , the other values ( )
),1(,ˆ

jxw and ( )
),1(,ˆ

jxxxw , for all 

Mj ,....,3,2,1= ,must be assumed in an alternative way as 
shown in table I. Then by applying (18) at line 1=i and  

Mj ,....,3,2,1= the corresponding values of the fourth 
derivative ( )

),1(,ˆ
jxxxxw  are obtained. Hence all values at line 

1=i are known. 
 

TABLE I 
ASSUMED INITIAL VALUES FOR A SIMPLY SUPPORTED EDGE ( 1=i ) 

Solutions 
types 

  
Assumed initial value 
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),1(,ˆ

jxw  ( )
),1(,ˆ

jxxxw

 

H
om
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en

eo
us

 so
lu

tio
ns

 

R1 1 .θ1 0 
R2 2 .θ2 0 
R3 3 .θ3 0 
* * * 0 
* * * 0 
* * * 0 

RM M .θM 0 
RM+1 1 0 .q1 
RM+2 2 0 .q2 

* * 0 * 
* * 0 * 
* * 0 * 

R2M M 0 .qM 
Note: the assumed initial values.q and .θare nonzero values. 

Step2:Estimating derivatives values for the subsequent line 

 Generally, if all values at the line i   are determined, one 
can transmit to line( 1+i ). So, at the line 2=i , the partial 
derivatives ( )

),2(,ˆ
jxxxxw for all j s are assumed to take the same 

values of the previous line 1=i for each corresponding 
point j . Accordingly, deflection ŵ  and the partial derivatives 

)(
),2(ˆ n

jw  ; 3,2,1=n , Mj ,....,3,2,1=  at line 2=i are calculated 

from trapezoidal rule , (19), from the known values of the 
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corresponding values at the previous line 1=i . Consequently, 
by substituting the obtained quantities from trapezoidal rule 
into (18), the values of the fourth derivative ( )

),2(,ˆ
jxxxxw for all 

js can be determined. 

Step3:Calculating the correct values by iteration technique 

If the determined values of the fourth derivative ( )
),(,ˆ

jixxxxw , 

from (18), are not coincide with the assumed ones, then the 
new determined value is taken as the assumed value. So the 
procedure of step 2 has to be repeated for all 
possible Mj ,....,3,2,1= , until the assumed value agrees as 
closely as with the deduced one for all js . 

Step4:Integrating the entire mesh of plate 

Steps 2 and 3 are applied to the next lines ,....,N,,i;i 543= . 
Since the previous steps were applied to line Ni = , Then the 

deflection ŵ and their partial derivatives, 
n

n

x
w

∂
∂ ˆ  ; 4,3,2,1=n , 

were found at the points of the terminal edge. 

Step5:Superposition of homogenous solutions 

Of course, as there are assumed initial values at the 
beginning edge 1=i , so the terminal boundary conditions are 
not satisfied. Hence it is a necessary to apply M2 -
homogeneous solutions, each homogeneous solution is 
corresponding to each assumed initial value at single point 

),1( j .The integration procedure explained previously is 
applied for each solution across the structure until the terminal 
edge Ni =  is reached. So there will be M2 , sets of 
displacement quantities at each point ),( ji of the mesh 
(corresponding to each of the M2 - assumed initial values). 
The superposition method can be used to deal with individual 
solutions.  

Step6:Satisfying the boundary condition at the end edge i=N 

Because the individual solutions of the end edge Ni = will 
not be satisfied with boundary condition, it is necessary to 
force the superimposed solutions to coincident with the 
boundary conditions. For example, the deflection and its 
second partial derivative must be zero for simply supported 
edge, and then the following conditions must be applied for 
each j : 
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The true solution of any displacement quantities or one of 

its derivatives is the sum of the M2 -homogeneous solutions: 
 

∑
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n
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n wbw
2
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)()( ˆˆ ; 4,3,2,1,0=n , Ms 2,.....,3,2,1=   (21) 

where: 
)(ˆ nw is the true n -order partial derivative of the 

displacement of the superimposed solutions, for simply 
support terminal edge, 0ˆˆ )0( == ww , 0ˆˆ ,

)2( == xxww . 
)(ˆ n

sw is the n -derivative of the displacement of the 
homogenous solutions. 

The unknown factors Msbs 2,....,3,2,1; = are determined by 
satisfying the boundary conditions of the terminal edge Ni = .  

Equation (21) will be expressed in a matrix form, such as: 
 

[ ][ ] [ ]0. =ℜ ss b    ; Ms 2,.....,3,2,1=                (22) 
 

Where sℜ  is MM 22 × known matrix and sb is M2  
unknown vector. 

 

Step7:Calculating the circular natural frequency of plate 

For a non-trivial solution of (22), the determinate of [ ]sℜ  
must be zero. 

All values that satisfies zero determinate of [ ]sℜ are the 
natural frequencies ω of plate. The corresponding 
displacement of obtained natural frequency is the mode shape 
[41]-[42]-[43]: 
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=
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1
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IV. DIFFERENT TYPES OF BOUNDARY CONDITIONS 
Dealing with the boundary conditions, at edges of the 

rectangular plate, plays an important rule when applying the 
IVFD method. The assumed initial values at the edge 1=i  are 
depending on the boundary conditions along this edge. 

The following table shows the different types of boundary 
conditions and the assigned initial values at first edge for all 
js  for different boundary conditions [19]. 

 
TABLE II 

BOUNDARY CONDITIONS 

Boundary 
 Conditions 

Simple 
support 

Clamped 
support Free 

Condition  
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at i=1 or i=N 

0ˆ ),( =jiw  
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initial  
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The boundary conditions along the two edges 1=j  
and Mj =  are expressed by finite differences basics to 
represent the displacement at the outer virtual points of these 
edges as shown in Table II. 

V.   PARTICULAR TYPES OF PLATES 

A. Orthotropic  Plate 
The one layer orthotropic material is characterized by the 

fact that the mechanical elastic properties have two 
perpendicular planes of symmetry[44]-[45]. Consequently, 
elastic constants are defined as; 
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hE
D , 

12

3
12

66
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  Using the Kirchhoff hypotheses, the governing differential 

equation of motion for free vibration of the orthotropic plate 
can be represented as follows [46]-[47]: 
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where:

11

2
2

D
hωρλ =  is the natural frequency parameter 

B. Isotropic Plate: 
The isotropic plate is expressed from orthotropic plate, 

when DDDDD =+== )2(2 66122211 . So the partial differential 
equation of motion of plate takes the form [48]: 

 
0ˆˆˆ2ˆ 2

,,, =−++ wwww yyyyxxyyxxxx λ                        (26) 
 

where:
D

h 2
2 ωρλ = ,

)1(12 2

3

υ−
=

EhD in which E and υ are the 

modulus of elasticity and Poisson's ratio respectively.
 

VI. NUMERICAL VERIFICATION AND DISCUSSION 

Case 1: Laminated Cross-ply Symmetrical Plate  

In this case, the treated problems are related to a four-ply 
and a three-plycomposite plates with fully simply supported 
edges SSSS. Each layer is of a high-modulus graphite-epoxy 
material. The properties of this material are shown in the 
following table: 

 
TABLE III 

PROPERTIES OF GRAPHITE-EPOXY MATERIAL 

Material 
Specifications 

21 / EE  21G  
21υ  ρ  

t/m 
M1 20 25.0 E  0.25 1.54 

The normalized dimensionless natural frequency 
parameter Ω is defined as follows: 

 

22
2

2

D
ha ρ

π
ω ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Ω

 
 

The results of Ω for the treated problem are compared with 
the exact solution [1] showing a well convergence as shown in 
table IV. This convergence is due to exceeding of mesh nodal 
lines. As seen from results, the error decreases and be stable 
when the number N  of the nodal lines in direction of initial 
value method be greater than the number M of nodal lines in 
the other direction. 
 

TABLE IV 
CONVERGENT RESULTS DUE TO EXCEEDING OF MESH NODAL LINES 

Plate specifications 

Material: M1 

kα =[0\90\90\0] 

( ) 100a/ =h  

N  M  Ω  N  M  Ω  

12  12 2.596  12 6 2.5860 
16  12 2.575  12 8 2.5847 
20  12 2.575  12 10  2.5885 
24  12 2.558  12 12  2.5961 
28  12 2.558  12 14  2.5885 
32  12 2.558  12 16  2.5885 
36  12 2.558  12 18  ‐‐ 

 
The dimensionless natural frequency parameter Ω deduced 

from the new method is illustrated in table V. The results are 
obtained for 12=N , 42=M  and compared with the exact 
values showing good agreements. Also, the natural frequency 
parameters are obtained for the variation of aspect ratio from 
0.5 to 3.0 as shown in table VI. 

 
TABLE V 

NORMALIZED NATURAL FREQUENCY PARAMETER Ω  
OFSSSS SQUARE PLATE  

Plate specifications 

Material: M1 

kα =[0\90\90\0] 

( ) 100a/ =h  

Modes IVFD Reddy [1] 

1,1 2.56 2.63 
2,1 4.68 4.91 
1,2 9.29 9.35 
2,2 10.28 10.55 
3,2 13.03 13.82 
1,3 20.84 20.75 
2,3 21.4 21.57 
3,3 23.03 23.74 
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TABLE VI 
NORMALIZED NATURAL FREQUENCY PARAMETER Ω  

OFSSSS SQUARE PLATE FOR DIFFERENT ASPECTS RATIOS 

Plate 
specifications 

Material: M1 

kα =[0\90\90\0] 

( ) 100a/ =h  

)1,1(Ω  

a/b IVFD Reddy[1] 

0.5 9.26 9.35 
1.0 2.54 2.63 
1.5 1.49 1.53 
2.0 1.18 1.22 
2.5 1.09 1.11 
3.0 1.04 1.07 

 
Another case for different orthotropicity ratios is studied for 

fully simply supported square plate with material M1. The 
normalized dimensionless natural frequency parameters are 
compared with those obtained by Nallim [50] and Khdier [49] 
as shown in Tables VII and VIII. The results show a good 
agreement for the lower mode of vibration. 

 
TABLE VII 

NORMALIZED NATURAL FREQUENCY PARAMETER Ω , SSSS, SQUARE PLATE 

Plate 
specifications 

Material: M1 
kα =[0\90\0] 
( ) 100a/ =h  

21 / EE  10 20 30 

M
od

es
 

IV
FD

 

N
al

lim
 

[5
0]

 

IV
FD

 

N
al

lim
 

[5
0]

 

IV
FD

 

N
al

lim
 

[5
0]

 

1,1 1.64  1.68  1.38  1.41  1.02  1.08 
2,1 2.38  2.48  2.19  2.21  1.77 1.89
3,1 4.16  4.32  3.75  3.92  3.38  3.47 
1,2 6.30  6.31  5.19  5.19  3.68  3.75 
2,2 6.61  6.74  5.48  5.66  4.28  4.32 

 
TABLE VIII 

NORMALIZED NATURAL FREQUENCY PARAMETER Ω  , SSSSSQUARE PLATE  

2

2a
E

hρω=Ω  Plate  
specification

s 

Material: M1 
kα =[0\90\90\0] 

( ) 5a/ =h  

( )21 / EE  10 20 30 40 
IVFD 10.14 13.47 16.17 18.54 
Khdeir[49] 10.65 13.94 16.60 18.89 

 
The mode shape is drawn for different modes of the studied 

plate of material M1 as shown in graphs from Fig. 4-a to Fig. 
4-h in the appendix. 

Case 2: Orthotropic Plate 
Orthotropic plates with two different types of materials, 

shown in Table IX, are investigated for the cases of fully 
clamped square plate CCCC. Another case of simple-simple-
clamped-clamped SSCC is studied. The results are listed in 
table X for material M2 and in Table XI for material M3. The 
natural frequency parameters λ  are calculated for the first 
three modes of vibration and compared with those obtained 
Exacted and with Finite Element Method (FEM) [41].  

TABLE IX 
PROPERTIES OF ORTHOTROPIC PLATE MATERIALS 

Material 

Specifications 

1E  
(Gpa) 

2E  
(Gpa) 

21G  
(Gpa) 21υ  ρ  

t/m 

M2 185 10.5 7.3 0.28 1.6 
M3 76 5.6 2.3 0.34 1.46 

 
TABLE X 

DIMENSIONLESS NATURAL FREQUENCY PARAMETER λ  

11

2a
D

hρωλ =  
Material: M2 orthotropic 

Plate dimensions b×a =1.0m × 1.2m 
( ) 100a/ =h  

Boundary 
conditions  IVFD Exact 

[41] 
FEM 
[41] 

CCCC 

1,1 22.84 23.04 23.13 
1,2 62.44 62.25 62.41 

2,1 25.18 25.80 26.01 

SSCC 
1,1 15.91 16.16 16.16 
1,2 50.54 50.69 50.69 
2,2 51.00 51.40 51.40 

 
TABLE XI 

DIMENSIONLESS NATURAL FREQUENCY PARAMETER λ  

11

2a
D

hρωλ =  
Material: M3 orthotropic 

CCCC square plate 
( ) 100a/ =h  

M
od

es
 

a/b  IVFD Exact 
[41] 

FEM 
[41] 

1.0 

1,1 23.50 23.52 23.71 

1,2 62.73 62.72 62.72 

2,1 28.74 29.26 29.59 

0.5 
1,1 22.56 22.56 22.562 

1,2 62.13 61.93 62.09 
2,1 23.13 23.23 23.23 

Case 3: Isotropic Plate 
A square Isotropicplate is considered with E =2.0*10-7 t/m2 

and 3.0=υ .The natural frequency dimensionless parameter 

D
hρωλ 2a=

 is determined for different cases of boundary 

conditions in the following tables: 
 

TABLE XII 
DIMENSIONLESS NATURAL FREQUENCY PARAMETER λ  

M
od

es
 

Isotropic SSSS square plate 
( ) 100a/ =h  

 IVFD Farag 
[18] 

Civalek  
[33] 

1,1 19.6922 19.7392 19.7586 

2,1 49.4636 49.3480 49.7900 

1,2 49.4397 49.3480 49.7900 

2,2 78.2108 78.9568 79.2613 

3,1 94.2291 -- -- 

3,2 123.9794 -- -- 
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TABLE XIII 
DIMENSIONLESS NATURAL FREQUENCY PARAMETER λ  

 
B

ou
nd

ar
y 

co
nd

iti
on

M
od

es
 

Isotropic square plate 

( ) 100a/ =h  

IVFD Farag 
[18] 

Xing 
& Liu 

[41] 

Sakata & 
Takahshi 

[41] 

C
C

C
C

 1,1 35.445 36.052 35.112 35.999 

1,2 73.408 73.698 72.899 73.405 

3,1 132.300 -- 131.629 131.902 

C
SC

S 

1,1 28.284 28.950 -- -- 

1,2 69.500 69.320 -- -- 

2,1 54.204 54.743 -- -- 

The results are calculated for different modes of vibrations 
yielding a good accuracy in comparison with those of other 
literature. 

VII. CONCLUSION 
The developed Initial Value-Finite Differences method 

IVFD is successfully applied for free vibration analysis of 
symmetrically laminated plates with different combinations of 
boundary conditions. Results show that the natural frequencies 
calculated using the IVFD method agreed closely with the 
results in the published literature. The solutions converge 
rapidly for small number of nodal lines of finite differences 
direction when the number of nodal lines of initial value 
direction increases. However, it is noticed that the number of 
the nodal lines in the direction of the initial value method have 
to be greater than the number of the nodal lines chosen for the 
other direction of finite difference method. This difference is 
due to the iteration involved in the initial value technique. In 
addition, the method has been easily used in the analysis of 
different materials types of such plates as laminated, 
orthotropic and isotropic. The method can be extended to in 
the future work to investigate the dynamic problems of 
different shapes of such plates as, circular plate or stepped 
plate or plates with hollow. 

APPENDIX 
Different Modes of vibration for laminated cross-ply plate 

cited in Table III. 
 

 
Fig. 4-a Laminated SSSS plate, 558.22 =λ  

 

 

Fig. 4-b Laminated SSSS plate, 2901.92 =λ  
 

 

Fig. 4-c Laminated SSSS plate, 8454.202 =λ  
 

 

Fig. 4-d Laminated SSSS plate, 6832.42 =λ . 
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Fig. 4-e Laminated SSSS plate, 2827.102 =λ  
 

 
Fig. 4-f Laminated SSSS plate, 4054.212 =λ  

 

 

Fig. 4-g Laminated SSSS plate, 0343.232 =λ  
 

 
Fig. 4-h Laminated SSSS plate, 0316.132 =λ  
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