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Abstract—In this paper, the application of the Mode Matching 

(MM) method in the case of photonic crystal waveguide 
discontinuities is presented. The structure under consideration is 
divided into a number of cells, which supports a number of guided 
and evanescent modes. These modes can be calculated numerically 
by an alternative formulation of the plane wave expansion method 
for each frequency. A matrix equation is then formed relating the 
modal amplitudes at the beginning and at the end of the structure. 
The theory is highly efficient and accurate and can be applied to 
study the transmission sensitivity of photonic crystal devices due to 
fabrication tolerances. The accuracy of the MM method is compared 
to the Finite Difference Frequency Domain (FDFD) and the Adjoint 
Variable Method (AVM) and good agreement is observed. 
 

Keywords—Optical Communications, Integrated Optics, 
Photonic Crystals, Optical Waveguide Discontinuities. 

I. INTRODUCTION 
HOTONIC Crystals (PCs) [1],[2] are constantly attracting 
increased attention as a potential solution for the 

realization of ultra-compact integrated optical circuits. The 
strong confinement of light in a PC waveguide (PCW) allows 
the design of sharp waveguide bends in which light can 
change direction 90o without significant power losses [3]. This 
is in contrast to conventional low index-contrast integrated 
optical components in which the bending radii must be kept 
rather large (in order to limit the bending losses). Large 
bending radii may increase the overall size of the integrated 
circuit such as the Arrayed Waveguide Grating [4]. PC-based 
devices can perform much photonic functionality such as light 
generation [5] and processing [6]. Various designs have also 
been demonstrated for optical filtering [7]-[11]. Many of the 
aforementioned designs are based on the introduction of 
discontinuities (defects) inside a PCW. 

Finite Difference Time Domain (FDTD) [12] is an accurate 
method for studying electromagnetic problems including the 
simulation of many PC-based devices. The main drawback of 
this method is that as the device under consideration increases 
in size the method demands increased memory resources and 
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computational time. Especially in the case of PCW, long 
Perfectly Matched Layer (PML) sections must be used in the 
input and output of the device in order to prevent reflections 
[13]. In addition, the size of the grid can pose restriction in 
modelling small dimensional fluctuations due to fabrication 
imperfections. On the other hand the Finite Difference 
Frequency Domain (FDFD) method [14] could be modified in 
order to account for small geometry perturbations [15] but 
requires prohibitively large memory resources in order to 
solve a practical PC based device problem. 

In this paper, we demonstrate the effectiveness of an 
alternative method based on Mode Matching (MM) [16] in the 
analysis of PCW discontinuities, such as the ones encountered 
in PC-based filters. It is shown that the MM method can 
provide accurate results, even for small variations of the 
geometrical parameters, without requiring significant memory 
resources and computational time. In the framework of the 
MM method, whenever a discontinuity is encountered inside a 
waveguide, evanescent modes are excited and we attempt to 
match the guided mode in the PCW with the modal fields in 
the discontinuity cell. This allows the computation of the 
reflection and transmission coefficients of each guided 
waveguide mode. In this way, the MM method provides a 
useful physical insight to the problem. Furthermore since in 
most large device designs, distinct cell types of discontinuities  
are encountered, one needs to calculate the modal fields only 
once for each type of cell. This can significantly speed up the 
computation process. 

In practice PC-based devices exhibit imperfections due to 
fabrication tolerances. It is important to be able to study these 
devices for small variations from the theoretical device 
parameters. Finite Difference methods need huge memory 
resources to take into account such small variations. Adjoint 
Variable Method (AVM) [15] is an accurate method to 
determine the sensitivity of a function, for example the 
reflectivity of a device, with respect to any design parameter. 

 In this paper we show that the MM method is highly 
accurate even for small variations of the discontinuities in a 
PCW and its results are compared to AVM. 

The rest of the paper is organized as follows: in section II 
the modal fields of the PCW and the discontinuity cell are 
computed for both guided and evanescent modes at a given 
frequency ω. In section III, the MM method is presented in the 
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case of PCW discontinuities and in section V, the results of 
the MM method are compared to some example cases with the 
FDFD and AVM. 

II. CALCULATION OF THE MODES 
In order to implement the MM method, one first needs to 

calculate the guided and evanescent modes supported by each 
cell of the structure and their propagation constants β. In 
general, the evanescent modes of a periodic structure may 
have complex β [1] and hence, their propagation constants 
may lie on the entire complex plane and not just on the real or 
imaginary axis as in constant cross-section waveguides. Hence 
conventional plane wave expansion method, where ω is 
calculated for each propagation constant β is not suitable since 
it is much more preferable to be able to determine the values 
of β=β(ω) corresponding to a given frequency ω. 

In this section, a method for determining the evanescent and 
guided mode properties of a periodic structure at a given ω, is 
outlined based on the formulation of the source-free 
Maxwell’s equations in terms of a generalized Hermitian 
eigenproblem as in Ref. [17],[18]. This method will be used in 
order to calculate the modal fields required in order to 
implement the MM method illustrated in the next section.  

Using Bloch’s theorem, the modes of a periodic dielectric 
structure along the z-direction can be written as in Ref. [2] 

 
( ) ( ) j ze β=E r u r         (1) 

( ) ( ) j ze β=H r v r            (2) 
 
where β is the propagation constant of the mode and u,v are 

periodic functions along the z direction. Defining |β> to be a 
four component vector comprising of the tangential parts ut 
and vt of u and v respectfully, i.e.  

 

( ) ( )| , , , ,
TT

t t x y x yu u v vβ >= =u v         (3) 

 
one can write Maxwell’s equations in the following form 

[19] 
 

ˆ ˆ ˆ| |A j B B
z

β β β∂⎛ ⎞+ >= >⎜ ⎟∂⎝ ⎠
              (4) 

 

where the operators Â  and B̂  are defined by 
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In (5), ε and μ are the dielectric constant and the magnetic 

permeability of the structure. The eigenvalues of the 
eigenproblem (4) can be used to determine the propagation 
constants of both evanescent and guided modes of the 
structures while the eigenvectors determine their modal fields. 
In order to solve (5) one can expand the periodic four 
component vector in terms of plane and standing waves as  

 

0, 0,
| ( ) sin sin

2 2
lzny jG zmx

mnl
m n l

G yG x eβ
> >

⎛ ⎞⎛ ⎞>= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ B G (7) 

 
where B(Gmnl) are the Fourier coefficients of |β> and we 

have assumed that the periodic cell is rectangular and in this 
case Gmnl=[Gmx,Gny,Glz] where Gmx=2πm/b, Gny=2πn/d, 
Glz=2πl/a and b,d,a are the sizes of the cell along the x,y and z 
direction respectively.   

Note that the fields in (7) vanish at the edges of the cell and 
hence the structure can be thought as being enclosed by 
perfectly conducting walls. This situation is reminiscent to the 
arguments used to obtain the radiation mode spectrum of a 
simple slab waveguide [20]. In theory b and d must be taken 
infinite but similarly to the case of the dielectric slab 
waveguide, as the walls move further and further apart from 
the waveguide center, the guided modes of the waveguide 
remain practically the same while more evanescent modes 
tend to appear having their field primarily outside the “core” 
of the PCW. This means that for discontinuities near the core 
these modes will not be significantly excited and hence will 
not affect the transmission and reflection of the guided modes. 
Hence in practice b and d are assumed finite and their value 
must be taken so that the guided modes of the structure decay 
significantly near the perfectly conducting walls of the cell. 

For a 2D PCW where ε does not change with y, the 
eigenproblem is further simplified in the Transverse Magnetic 
(TMy) case, since one needs to consider only one y-directed 
electric and one x-directed magnetic field tangential 
components which we will designate as uy and vx. In this case 
the fields do not depend on y and hence the reciprocal lattice 
vectors Gmnl are such that Gmnl= Gml=[Gmx,0,Glz]. 

Substituting (7) in (4), and after some mathematical 
manipulation the operator eigenproblem is transformed to a 
matrix eigenproblem which is written as 

 
M β=V V          (8) 

 
where the vector  

 

( )1 1,..., , ,..., T
N NV V U U=V       (9) 
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comprises of all the spectral components V1,…,VN and 
U1,…,UN of vx and uy respectfully (note that a finite number N  
of spectral components must be assumed for computational 
purposes). The (2N)×(2N) square matrix M depends on ω and 
contains all information of the dielectric constant expanded in 
Fourier series. 
 

 
Fig. 1 A structure comprising of discontinuities with arbitrarily 

positioned dielectric rods between two PCW cells 

III. MODE  MATCHING METHOD 
In this section the equations related to the MM method are 

derived. Fig. 1 depicts the general situation where a sequence 
of N cells containing dielectric rods is considered. The field 
must satisfy the continuity equations, i.e. the tangential fields 
at the left of a boundary must equal the tangential fields at the 
right of the boundary. At the ith cell the tangential electric and 
magnetic fields are written as: 

 
( ) ( )( ) ( )

1( ) ( ) ( ) ( )i i
m i m ij z z j z zi i i i i

t m tm m tm
m m

a e b eβ β−− − −′= +∑ ∑E e e   (10) 

where ( )i
tme , ( )i

ma  and ( )i
mβ  are the tangential electric Bloch 

functions, the coefficients and the propagation constants of the 
mth forward mode of the ith cell respectively , while ( )i

tm′e  and 
( )i
mb  are the tangential electric Bloch functions propagation 

constants of the mth backward mode of the ith cell respectively 
and 

 
( ) ( )( ) ( )

1( ) ( ) ( ) ( )i i
m i m ij z z j z zi i i i i

t m tm m tm
m m

a e b eβ β−− − −′= +∑ ∑H h h  (11) 

where ( )i
tmh , and ( )i

tm′h  are the tangential magnetic Bloch 
functions propagation constants of the mth forward mode and  
the mth backward mode the ith cell respectively. 

At each interface between two cells, the tangential fields 
must be continuous and at the boundary z=zi  [21], this 
implies: 

1( ) ( )i i
t i t iz z+=E E         (12) 

 1( ) ( )i i
t i t iz z+=H H        (13) 

 
Taking the integral of the electric field in (12) multiplied by 

the magnetic Bloch function of the (i+1)th cell, ( 1)i
tn

+h , and the 
integral of the magnetic field in (13) multiplied by the electric 
Bloch function of the ith cell, ( )i

tne  respectively for 1≤n≤M 
yields a matrix equation relating the mode coefficients in cells 
i and i+1: 

 
1

1

i i

ii i

+

+
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where vectors Ai=[a1

i,…,aM
i]T, Bi=[b1

i…,bM
i]T contain the 

coefficients of the M forward and M backward modes for ith 
cell. The matrix Zi is given by 

 
1

i i iZ Y X−=         (15) 
 
where the element of the matrices Yi and Xi are given by 
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If the structure consists of many cells, the one can relate the 
modal amplitudes at the input to the modal amplitudes of the 
output using the following equation: 

 

 
⎛ ⎞ ⎛ ⎞

⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

N 1

N 1

A A
= Z

B B
             (18) 

 
and the matrix Z is given by 
 

1 1...NZ Z Z−= ⋅ ⋅              (19) 
 
To examine the transmission and reflection properties of the 
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structure one can set all the output backward modes equal to 
zero and assume that only the guided modes are excited at the 
input. In this case one obtains 

 
1 1 1

22 21Z Z−= −B A         (20) 
1 1

11 12
N Z Z= +A A B           (21) 

 
where the matrices M×M submatrices of Z are determined 

by 
 

11 12

21 22

Z Z
Z

Z Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (22) 

 
To summarize, in order to calculate the transmission and 

reflection properties of a structure one can divide it into N 
sections and calculate the matrices Zi at each boundary. One 
can then obtain the Z matrix using (19) and calculate the 
amplitudes of the coefficients of the backward modes at the 
input using (20). The modal amplitudes of the forward modes 
at the device output are given by (21). One can therefore 
estimate the transmission and reflection coefficients of the 
guided modes through the structure. 

 Referring to figure 1, note that at the beginning of the 
device at z=z0, one can assume that the PCW cells extend 
infinitely from z=z0 to z=-∞, and hence no mode conversion 
takes place before the first cell (i=1). Similarly and since the 
backward PCW modes at the last cell (i=N) equal to zero, no 
reflection will occur at the end of the structure. Hence no 
absorber cells are required at the end of the structure unlike 
the FDFD method. 

IV. RESULTS AND DISCUSSION 

A. Comparison with FDFD 
To compare the results of the MM method with the FDFD 

method, one defect rod with radius rd is placed inside a PC 
waveguide. Fig. 2 depicts the power reflection calculated with 
the FDFD (dots) and the MM method (solid lines). The radius 
of the rods of the PCW was taken ra=0.12μm, while the lattice 
constant was a=0.6μm. The wavelength in free space was 
taken λ=1.55μm. The dielectric constant of the rods was 
assumed εa=9ε0 and that of the surrounding medium was εb=ε0. 
The radius of the defect rd varied from 0.1ra to 2.0ra. For the 
calculation of the modes the number of plane waves used was 
15 for the propagation direction (z-direction) while 19 
standing waves were used for the transverse direction (x-
direction). The grid of the FDFD was taken Δ=ra/8 in order to 
account for the small variations in the size of the defect rods 
and 10 PML rods were used along the z-direction in both 
sides, necessary in order to minimize reflections from the edge 
of the computational window [13]. Note that the FDFD 
required more than 1GB of RAM in order to solve its system 
of equations. On the other hand no serious memory 

requirements were imposed by the MM method. Both methods 
required roughly the same amount of time to produce their 
results with the MM method being slightly faster. As observed 
by the figure, there is a very good agreement between the two 
methods and this verifies the accuracy of the MM method. A 
similar agreement is obtained when the position of the defect 
rods is changed. Table I, shows the values for the power 
reflection calculated with both methods assuming a single 
defect rod (as in Fig. 2) with rd=ra whose position changes ±ra 
in either the x or the z direction. Note that the MM method 
computes practically the same values for R when the rods are 
displaced ±ra along the x-direction and this is not surprising 
since the structure is symmetric along this direction. The same 
is true for the z-direction as well.  

 
TABLE I 

COMPARISON BETWEEN THE FDFD AND MM METHOD FOR VARIOUS DEFECT 
ROD POSITIONS 

Power Reflection R Position 
MM method FDFD method 

+ra (x-direction) 0,7781 0,7685 
-ra (x-direction) 0,7727 0,7977 
+ra (z-direction) 0,8286 0,8426 
-ra (z-direction) 0,8286 0,8638 
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Fig. 2 Comparison of the MM and the FDFD methods for single 

defect rod inside a PC-waveguide 
 

B. Comparison with AVM 
To verify the accuracy of MM method for small 

geometrical perturbations of a discontinuity in a PCW, we 
introduce one defect rod with radius rd=1.2ra inside the PC 
waveguide and calculate the power reflectivity of the device 
by changing the defect radius by ±1% (figure 3). The rest of 
the PC parameters (lattice constant a, rod radius ra, etc) are the 
same as in section IV A. The results are compared with the 
AVM in figure 4. AVM is used to calculate the sensitivity of 
the power reflectivity of the PCW with one defect rod, with 
respect to the defect rod radius. To implement this method the 
Maxwell equations were solved in the frequency domain using 
the FDFD and the sensitivity is calculated by considering the 
adjoint problem as outlined in [15]. The grid of the FDFD was 
taken Δ=ra/6. As seen in the figure, an excellent agreement is 
observed in terms of the slope of the variation of the 
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reflectivity in terms of the defect rod radius. This confirms the 
applicability of the MM method for the study of small 
structural deviations in PC-based devices. 

 
Fig. 3 A PCW with one defect rod introduced in the waveguide. The 

structure is divided in two different types of cells 
 

 
Fig. 4 Power reflectivity of a PCW with one defect rod introduced in 

the waveguide. The defect rod radius is altered by 1% and the 
sensitive of the power reflectivity with respect to the defect radius is 

calculated with MM and AVM 

V. CONCLUSION 
The mode matching method has been applied in the study 

of PC-based waveguide discontinuities. The method is based 
in the expansion of the field in terms of the eigenmodes of the 
cells of the structure and their matching at the boundary 
interfaces. The method was verified by comparing it to FDFD 
simulations. The method has proven to be accurate even for 
small geometrical variations of the PC parameters. MM 
method can provide useful physical insight and can be useful 
in the designs of PC optical filters based on waveguide 
discontinuities. 
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