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Abstract—This paper deals with efficient computation of 
probability coefficients which offers computational simplicity as 
compared to spectral coefficients. It eliminates the need of inner 
product evaluations in determination of signature of a combinational 
circuit realizing given Boolean function. The method for computation 
of probability coefficients using transform matrix, fast transform 
method and using BDD is given. Theoretical relations for achievable 
computational advantage in terms of required additions in computing 
all 2n probability coefficients of n variable function have been 
developed. It is shown that for n  5, only 50% additions are needed 
to compute all probability coefficients as compared to spectral 
coefficients. The fault detection techniques based on spectral 
signature can be used with probability signature also to offer 
computational advantage. 

Keywords—Binary Decision Diagrams, Spectral Coefficients, 
Fault detection

I. INTRODUCTION

INCE last three decades spectral techniques has been 
widely adopted in field of VLSI CAD, testing, quantum 
computing [2, 6, 9, 13, 14, 16] etc. Due to exponential 

increase in numbers of transistors in a single chip the problem 
of synthesizing and testing are becoming more complex. This 
is necessitating consideration of testing issues right in the 
design phase rather than post design practice [10, 17] leading 
to on-chip incorporation of both test hardware and software 
routines in the design of self-testing, fault tolerant, fail-safe 
and/or self-repairing digital devices and systems [11, 15]. 
Spectral techniques of fault detection provide an attractive 
solution to the problem of testing complex digital circuits by 
offering global information about the target circuit realizing 
the function. One of the major drawback of spectral 
techniques is their computational complexity in calculation of 
spectral coefficients; making them impractical for testing 
complex circuits. The phenomenal increase in operating speed 
of digital devices and systems during 1990s has created 
resurgence of interest for exploring faster testing techniques to 
perform time efficient testing. This is more so because even 

Ashutosh Kumar Singh is with Department of ECEC, School of 
Engineering and Science, Curtin University of Technology, Miri, Sarawak. 
Malaysia (email: ashutosh.s@ curtin.edu.my) 

Anand Mohan is with Department of Electronics Engineering, Institute of 
Science and Technology, Banaras Hindu University, Varanasi, India (e-mail: 
amohan@ bhu.ac.in) 

fastest available spectral methods using fast transform 
techniques don’t perform efficiently due to their inherent 
computational constrains [6, 7]. 

This paper addresses the problem of computational 
complexities and describes the efficient method to generate 
probability coefficient obtained from the output probability [1, 
9] of a Boolean function. We use Rademacher-Walsh (R-W) 
transform for conversion between Boolean to Probability 
domain as shown in Figure 1. 

Fig. 1: Block Diagram for conversation between Boolean to 
probability domain 

We propose three methods to compute these coefficients (1) 
Matrix method (2) FFT method (3) BDD method. The value 
of Probability coefficients varies between (-1) to (+1). 
Mathematical expression for determination of probability 
coefficients of a function is developed and theoretical plot 
illustrating computational advantage offered by probability 
coefficients is achieved. These coefficients are used to obtain 
a probability signature using linearisation technique [14, 19] 
which is then used for fault detection by comparing the 
probability signatures of the fault free and faulty circuits. A 
set of rules [14] for selecting spectral coefficients constituting 
spectral signature have been similarly applied to linearisation 
technique for obtaining probability signature. Test results 
obtained using probability signatures are compared with those 
of spectral signature technique and have been found same; 
validating the use of probability signature for fault detection 
applications.  

The paper is organized as follows: section 2 includes the 
basics definition and mathematical background for Binary 
Decision Diagrams and spectral techniques. Probability 
coefficient and their computation using different methods 
definition is discussed in section 3 with basic definitions and 
theorems. Section 4 describes about the test vector generation 
for fault detection using linearisation techniques. In section 5 
we discuss about the results and their comparison with 
spectral coefficient’s computation. Finally concluding remarks 
and future work is given in section 6. 
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II. PRELIMINARIES

A. Binary Decision Diagram  
Binary Decision Diagrams (BDDs) is based on Shannon 

expansion [8, 12, 20]: 
10'
iiii fxfxf         (1) 

Where f Bn be a Boolean function defined over the 
variable set Xn = {x1, …, xn) for all i = {x1, …, xn).
It represents a Boolean functions as a rooted, directed acyclic 
graph with a vertex set containing two types of vertices, non-
terminal and terminal vertices. A non-terminal vertex v has 
two attributes i.e. (i) an argument index (v)  {x1,….., xn} and 
(ii) two children indicated by dashed and solid lines for low 
(v) and high (v) respectively. A terminal vertex v has an 
attribute value (v)  {0, 1} and has no outgoing edge. 

An un-simplified BDD is basically a Binary Decision tree 
contains 2n-1 non-terminal nodes. The BDD of the example 
function f1 (x0, x1, x2) is shown in Figure 2 (a); which is a 
direct mapping of truth table in tree form. In this tree the value 
of function is determined by tracing a path from the root to a 
terminal vertex. A BDD representation of an n variable 
function will initially have 2n-1 nodes can be further 
simplifying using following two reduction rules [12]. 

Fig. 2: BDD for f1 (x0, x1, x2) = (3, 5, 6, 7) 

(i) Deletion Rule: 
If one or more non-terminal nodes are such that their both 

branches corresponding to 0 and 1 lead to a non-terminal 
successor node or to a terminal node then that non-terminal 
node can be deleted. 
(ii) Merging Rule: 

If two or more terminal (or non-terminal) nodes of the same 
label have the same 0 and 1 successors i.e. their left and right 
sons are equivalent then they can be merged in a single node. 

The simplified BDD of the function f (x0, x1, x2) = (3, 5, 
6, 7) using these two rules is shown in Figure 2 (b). The value 
of Boolean function is determined by tracing a path from the 
root to a terminal vertex, following the branches indicated by 
the values assigned to the variables. Due to the way the 
branches are ordered in this figure, the values are of the 
terminal vertices, read from top to bottom, match those in the 
truth table, read from left to right.

B. Spectral Coefficient
Spectral coefficients of an n variable Boolean function are 

determined by transformation of the function output column 
vector F using an orthogonal transform matrix of size 2n 2n

that is multiplied with F. The complete set of spectral 
coefficients thus obtained is called spectrum of the function 
and it contains global information. The transformations are 
loss less and hence permit computation of their inverse 
transform to revert back into Boolean domain. 

Let f(X) be a Boolean function of n variables, X = {x1, x2,
…, xn}, xi  {0,1} and i = 1, 2, ,…, n. Then all 2n spectral 
coefficients of the function can be obtained using a 2n  2n

Rademacher-Walsh (R-W) transform matrix Tn [16]. 

RFTn             (2) 
Where F is column matrix of dimension (2n  1) 

representing f(X) recoded as f(Y) where f(Y) = 1 2 f(X), f(Y) = 
{+1, -1} such that X = {x1, x2, …, xn}, xi {0, 1} and i = (1, 2, 
…, n) and R is the spectrum that uniquely represents f(X),
which values varies between n2  to n2 . The complete set 
of coefficients is called as spectrum of the function. The 
transformation matrix Tn is defined as: 

11
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and by definition T0 1.
The inverse [18] of (1) is obtained as  

FRTn
1][          (3) 

Example 
Let F (x1, x2, x3) be a Boolean function defined as F (x1, x2,

x3) = [0, 0, 1, 0, 1, 0, 1, 1], its ordered set of spectral 
coefficients R can be evaluated using equation (2) and can be 
written as [r0 = 4, r1 = 2, r2 = -2, r12 = 0, r3 = -2, r13 = 0, r23 = 0 
and r123 = -2]. The order of the coefficients is determined by 
the number of xi variables in the corresponding XOR function 
i.e. for example r123 is third order and r12 is second order and 
containing the information about x1x2x3 and x1x2 respectively. 
Therefore this method requires total 2n  (2n 1)
addition/subtraction to compute all 2n spectral coefficients, 
which becomes infeasible if the function has large number of 
variables.

III. PROBABILITY COEFFICIENTS AND THEIR COMPUTATION

Definition: Let f(X) be a Boolean function and if we 
consider that each row vector of this transformation matrix is 
another function called constituent function fc [9]. 

According to definition, constituent function can be 
considered as a Boolean function whose output vector is 
identical to a row vector in the transformation matrix. Thus a 
transformation matrix may be viewed as a collection of 
constituent functions. We change the Boolean domain (0, 1) 
into ( 1, +1) for shake of simplicity i.e. xi  {+1, 1}. For the 
function f(X), the probability of matches (pm) / probability of 
mismatches (pmm) can be defined as the ratio of number of 

0

x0

x1 x1

x2 x2 x2 x2

1

x1

0

x0

x1

x2

1

(a) (b) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

796

matches / mismatches between f(X) and fc to 2n. The number of 
matches “pm(i)” corresponding to any probability coefficient Pi
is obtained from bit by bit Ex-NOR between f(X) and the ith

constituent function fc(i) of transformation matrix “T” of order 
2n  2n followed by summation. 

n
c

im
fandXfbetweenmatchesofNumberTotal

p
2

)(
)(    (4) 

Mathematically this can be expressed as: 

)(
2
1

)()( Xffp icnim           (5) 

Similarly the number of mismatches “pmm(i)” corresponding to 
probability coefficient Pi is obtained from bit by bit Ex-OR 
between f(X) and fc(i) of transformation matrix “T” followed 
by summation as: 

n
c

imm
fandXfbetweenmismatchesofNumberTotal

p
2
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)(   (6) 

)(
2
1

)( Xff icn
            (7) 

Definition: Probability coefficient of f(X) is the difference 
between probability of matches and probability of mismatches 
i.e. (pmi pmmi).

Theorem: The probability coefficient (Pi) of any Boolean 
function corresponding to the ith row vector of transformation 
matrix “T” can be given as: 

Pi=2pm(i)-1=1-2pmm(i) , where i=1, 2, …, 2n   (8) 

Proof: Since the ith probability coefficient of any Boolean 
function f(X) is defined as the difference between the 
probability of matches “pm(i)” and mismatches “pmm(i)”,
therefore

Pi = pm(i) – pmm(i) = pm(i) – (1– pm(i))=2pm(i) – 1  (9) 

Similarly substituting the value of pm(i) in terms of pmm(i) we 
get 

Pi = pm(i) – pmm(i)= (1 – pmm(i)) – pmm(i)= 1 – 2 pmm(i)    (10) 

From equations (9) & (10) Pi=2pm(i) –1=1 – 2pmm(i)   (11) 

A. Matrix Method 
For an “n” variable Boolean function f(X), all the 2n

probability coefficients can be computed using R-W transform 
matrix of order 2n  2n

nT ][  F =P=(2 pm –1)=1–2 pmm (12)

Where F is vector representing the function, P is the set of 
probability coefficients and “ ” denotes either (Ex-NOR) or 
(Ex-OR) operators but not both simultaneously. 

Therefore all the 2n probability coefficients (P) of a given 
Boolean function f(X) can be determined using equations (5) 
or (7) and (12). The procedure for finding probability 
coefficients of an “n” variable Boolean function with output 
vector “F” of order 2n  1 can be stated as: 

(i) Initialize C (counter) = 0. 

(ii) Select first row of the transformation matrix. 
(iii) Compare the corresponding elements of selected row and 

output vector 
(iv) Increment C by “1” for each match (mismatch) until all in 

the row vector have been compared. 
(v) Calculate probability of matches (mismatches) using pm

(pmm) = C/2n and determine probability coefficients as 
Pi=2pm(i) – 1=1 – 2pm m(i) for i=1, 2, …, 2n

Using R-W transform for the example function F (x1, x2, x3)
and changing Boolean variables “0” and “1” to +1 and –1 
respectively, its probability coefficients can be computed.  
For the first probability coefficient (p0)

5.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2
1
3mp

Now using equation (12) we get p0=0
Similarly for second probability coefficient (p1)

25.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2
1
3mp

and equation (12) gives p1= 0.5.

Remaining probability coefficients of the function are 
determined using their corresponding constituent function 
giving all 23 probability coefficients that are given below: 
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11111111
11111111
11111111
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The ordering as well as association of xi variables in each 
probability coefficient is similar to corresponding spectral 
coefficient and hence the complete set of probability 
coefficients can be written as p0=0, p1= 0.5, p2=0.5, p12=0.5,
p3=0, p13=0, p23=0 and p123=0.5.

B. Fast Transform Method
Fast transforms [16, 21, 22] provide reduction in 

computation by eliminating repeated computation of already 
computed terms that are common to other spectral 
coefficients. The use of fast transform reduces total number of 
multiplications from 2n 2n to n  2n in computation of all 2n

spectral coefficients of a function. A fast Walsh-Fourier 
transform procedure suggested by Shanks [22] is briefly 
discussed to explain the computation process. The presented 
method requires total n  2n multiplication in determination of 
spectrum of a function. It is based on generating orthogonal 
transform matrix using N distinct Walsh-Paley functions 
Pal(J, K).

The graphical representation of the fast transform for a 
three variable function (n = 3) is given in Butterfly diagram 
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shown in Figure 3. This is for probability coefficients 
computation but still follows the basic concept of butterfly 
diagram. The complete set of n  2n operations also forms the 
principle of all the hardware circuits for generating Hadamard 
and Walsh waveforms and their resulting coefficients. 
Although fast transform techniques reduce the number of total 
multiplications (additions / subtractions) as compared to 
matrix multiplication method but they still use matrix 
multiplication. Note that the storage requirements at each step 
of the Butterfly diagram progressively increases (from 21 to 2n

for an n-variable function) as we move from input towards the 
output node following a straight signal flow line. Therefore 
total storage requirement for the output step to store all 2n

coefficients becomes 2n  2n, which makes it unsuitable for 
complex functions. 

Since the procedure for determination of probability 
coefficients involves identification of matches (or 
mismatches) in place of multiplication and needs only addition 
instead of addition / subtraction, therefore Butterfly diagram 
can not be directly applied for their determination. This 
necessitates modification of the fast transform algorithm 
implementation on Butterfly diagram because of requiring 
only two inputs (i.e. total number of matches and mismatches) 
at every intermediate step of Butterfly instead of inputs from 
all previous steps. 

Using the concept of fast transform and its related theory 
for Fast Fourier Transform (FFT) [16, 22] the following 
algorithm is adopted to find the number of matches / 
mismatches for each probability coefficient: 

(i) Draw the signal flow graph (Butterfly Diagram) for given 
number of function variables. 

(ii) Change the elements 0 and 1 of the output vector “F” to 
 and  respectively and then compare the changed 

values of F and first step nodes of the Butterfly diagram 
to find the number of matches and mismatches s using 
following two rules: 

(a) If  or  of the same row feeds to a  node; 
record it as match or mismatch respectively. 
Similarly the match or mismatch is computed for 

.
(b) If  or  of a different row feeds to a  node it is 

considered as match or mismatch respectively. 
However, if they feed to ; it is considered match 
or mismatch respectively. 

(iii) For subsequent steps of the butterfly diagram if the input 
from the same row feeds to ; it will alter the values of 
matche(s) and mismatche(s) obtained in the previous step 
of Butterfly which are otherwise unaltered. 

(iv) Repeat step (iii) until last step of the Butterfly diagram 
and count total number of matches or mismatches that 
gives the value of pi.

Once the values of matches or mismatches for a given n-
variable function are found using this modified fast transform 
algorithm implementation on Butterfly, equation (12) can be 
used to compute all 2n probability coefficients. The 
computation of probability coefficients is illustrated below 
with the help of an example function. 

Example 
Consider a function f (x1, x2, x3) =  (0, 1, 3, 5, 6) = [1, 1, 0, 

1, 0, 1, 1, 0]. The Butterfly diagram for calculating the total 
number of matches and mismatches for this function using the 
above mentioned algorithm is shown in fig. 3.3 where the 
outputs of the final steps are the number of matches and 
mismatches. Now all 23 probability coefficients of the function 
f (x1, x2, x3) =  (0, 1, 3, 5, 6) are computed using equation 
(3.24) giving p0 = -0.25; p1 = -0.25, p2 = -0.25, p3 = 0.25; p12 = 
-0.25, p13 = 0.25, p23 = 0.25, p123 = -0.75. 

Analyzing the storage requirements in using Butterfly for 
probability and spectral coefficient computations it is clear 
that application of modified fast transform algorithm on 
Butterfly to compute probability coefficients reduces storage 
because of requiring only two inputs at every intermediate 
step of Butterfly instead of inputs from all previous steps. This 
is particularly attractive for complex functions that have large 
number of steps and inputs at each node of the Butterfly. 
Therefore application of fast transform to determine 
probability coefficients provides storage economy along with 
reduction in computation as compared to spectral coefficients 
determination. 

Fig. 3: Flow Graph for f (x1, x2, x3) =  (0, 1, 3, 5, 6) 

C. BDD Method 
This section describes a new method to determine number of 

matches (or mismatches) for an n variable Boolean function 
using OBDD. It is based on generating 2n column vectors 
called “composite functions” that are generated considering 
matches and mismatches between constituent functions fc(i) of 
an R-W transform matrix of order 2n 2n and function vector 
F. The reduced OBDDs of the constituent functions are then 
generated that is used for computation of each pi by recording 

-
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the number of one and zero terminating paths for matches and 
mismatches respectively. Once the total number of matches 
and mismatches are found, equation (12) is used to compute 
probability coefficients. However, counting of the total 
number of terminating paths on terminal nodes “1” and “0” of 
an OBDD can be difficult for complex constituent functions 
but this can be simplified using probability assignment 
algorithm [9] that is briefly discussed below: 

Probability assignment algorithm
(i) Assign probability = 1 for the input node 
(ii) If the probability of node j = pj, assign a probability of 1/2 

pj to each of the outgoing arcs from j.
(iii) The probability pk, of node k is the sum of the 

probabilities of the incoming arcs. 

The application of above algorithm for counting 1s and 0s 
in graphical representation of a function is demonstrated 
below taking an example function. 

An important limitation of this method of finding t1 and t0
is that it requires computation of output probability at each 
node that becomes tedious for complex BDDs. The unreduced 
OBDDs of a function have all paths allowing direct 
determination of t1 and t0, however, direct counting can not be 
done for reduced OBDDs because some nodes are merged or 
deleted. The contribution of deleted and / or merged nodes to 
the total number of 1s and 0s is therefore necessary for correct 
determination of t1 and t0 in an OBDD. 

We propose following new rules for direct calculation of t1
and t0 of reduced OBDDs without calculating output 
probability of nodes: 
(i) If reduced OBDD of a function has only one node then 

the number of 1s / 0s will be 2n/2. 
(ii) If “k” variables are missing in a path terminating at node 

“1” or “0” then “t1” and “t0” will be 2k, where k=0, 1, 2 
…., (n-1).

(iii) If more than one paths are terminating at node “1” or “0” 
then “t1” and “t0” will be the sum of number of 1s and 0s 
respectively in each path calculated by applying rule (ii).

The step wise algorithm for computing probability 
coefficients of a n-variable Boolean function using OBDD can 
be stated as below: 

(1) Select a constituent function of R-W matrix of order 2n

2n.
(2) Perform bit-by-bit comparison between elements of 

selected constituent function and output vector F. Record 
1 for match or 0 for mismatch at the corresponding 
positions in the composite function. 

(3) Repeat steps (1) and (2) until all 2n composite functions 
have been generated. 

(4) Generate reduced OBDD for each composite function and 
calculate t1 and t0 for all 2n OBDDs using rules (i) to (iii)
as mentioned above. 

(5) Calculate all the 2n probability coefficients using equation 
(12).

If the function having large number of variables (n 5) we 
select optimal ordering for generating OBBDs of composite 
function which provides significant reduction in computation 

as well as storage and time requirement. The computation of 
probability coefficients using above procedure is illustrated 
below with the help of an example. 

IV. SELECTION OF TEST VECTORS FOR FAULT DETECTION

A subset of all 2n probability coefficients which is sufficient 
to cover all stuck-at and bridging faults in the circuit is 
defined as probability signature. Probability signature of a 
circuit realizing given Boolean function can be obtained using 
linearisation technique [14, 18]. Their use in detection of 
permanent faults allows further simplification of testing by 
reducing the number of probability coefficients that are to be 
stored and compared with their corresponding values of fault 
free and faulty circuits. Realization of Boolean functions 
using linearisation technique is based on partitioning of the 
function into two sub-functions i.e. linear and a canonic 
function. Determination of probability signature using 
linearisation technique is achieved through following steps: 

(i) Let B be a matrix of n n which is initially empty 
(ii) Select probability coefficients excluding p0 as follows: 

(a) The largest magnitude coefficient (s) 
(b) If more than one coefficient satisfy (a), select the one 

(s) with lowest order 
(c) If all the coefficients selected in (b) have same order, 

select the one with the highest decimal subscript. 
(iii) Insert the binary representation of the decimal subscript 

of the selected coefficient as a new column of B, with the 
bit corresponding to xj as the jth entry. Delete the selected 
probability from the list. 

(iv) Delete all probability coefficients whose decimal 
subscripts have binary representation which are equal to 
the bit by bit mod-2 sum of any subsets of existing 
columns of B matrix. 

(v) Repeat step (ii) through (iv) ignoring coefficients that 
have been deleted. 

The probability coefficients in B matrix constitute the 
probability signature of linear sub-function and any ith column 
of B matrix defines the EX-OR operation in spectral domain 
involving those xj (j=1, 2, …, n) variables for which the jth

entry in the ith column of B matrix is 1. The validity of 
probability signature generated using B matrix can be proved 
by considering an arbitrary Boolean function and computing 
it’s spectral as well as probability signatures. If the two 
signatures exhibit similar magnitude profile while also 
involving same xi variables for their corresponding 
coefficients; it verifies the correctness of the obtained 
probability signature and implies that linearisation technique 
can be extended for determination of probability signature. 
Considering the example function [14] F(x1, x2, x3, x4,) = (2,
3, 4, 7, 8, 11, 13, 14), its coefficients constituting spectral 
signature will be: 

r4321 = -6, r3 = -2, r43 = 2, r32 = -2 

The probability coefficients of the function obtained using 
equation (9) are: 
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p0=0.0, p4=0.0, p3=0.25, p2=0.0, p1=0.0; p43= 0.25, p42=0.0,
p32=0.25, p41=0.0, p31=0.25, p21=0.0; p432= 0.25, p431= 0.25,
p421=0.0, p321=0.25; p4321=0.75.

The above iterative procedure can be used to obtain B matrix 
as:

0101
1111
1001
0001

B

This matrix is same as obtained in [14] for deriving the 
spectral signature. Therefore the probability signature of the 
function can be obtained from above B matrix consisting of 
probability coefficients p4321, p3, p43 and p32. Comparing the 
corresponding magnitudes and association of variables in 
spectral and probability domains, it is evident that the two 
signatures are identical and have exactly same order. This 
proves that probability signature technique can be used to 
eliminate the need of spectral signature determination for fault 
detection purposes while also reducing the computational 
requirements. Due to space constraints we are omitting the 
fault detection subsection. 

V. RESULT AND COMPARISON

The determination of probability coefficients involves 
finding only total number of matches (or mismatches) and also 
that only addition is required instead of multiplication and 
addition / subtraction as in spectral coefficient determination 
therefore it offers significant reduction in computational 
efforts. However, since the number of matches (or 
mismatches) depends not only on the transform matrix but 
also the output function vector F hence it will not be possible 
to find the total number of required additions without knowing 
F. However, an upper bound of the total number of required 
additions to determine all 2n probability coefficients can be 
evaluated.

The upper bound of total number of additions required to 
compute complete set of probability coefficients of an n
variable function using R-W transform matrix can be 
determined by expressing maximum number of required 
additions in terms of n. For any R-W transform matrix of 
2n 2n, total number of +1s and –1s shall be 2n–1 (2n+1)  and 
2n–1 (2n 1)  respectively and therefore the number of 

maximum additions can be found by comparing +1s in the 
matrix with F containing all +1s. Under this situation the 
maximum value of matches corresponding to maximum 
additions shall be 2n–1 (2n+1) , however, in actual practice 
+1 or –1 can be chosen depending upon output function to 
further minimize the number of additions. Therefore the ratio 
of maximum number of additions in probability coefficient 
determination and additions/subtractions in spectral 
coefficient computation can be expressed as: 

)12(2
)12(

)/(

)(
n

n

sa

a

R
P

         (13) 

W  Where P(a) and R(a/s) are the number of maximum additions 
required for computation of probability coefficients and 
number of additions / subtractions needed in determination of 
spectral coefficients respectively. Figure 4 indicates a 
theoretical plot of equation (13), which clearly shows the 
achievements in computational simplicity as compared to 
conventional spectral technique. Referring equation (13) it is 
clear that probability coefficients are particularly attractive for 
complex Boolean functions (n  5) because maximum number 
of required additions is only half of the additions/subtractions 
necessary while using conventional spectral technique. Figure 
5 gives individual plots for P(a) and R(a/s) as a function of n 
from which it is clear that significant reduction in computation 
is achieved even at lower values of n.

Fig. 4: Ratio between Probability and Spectral Coefficients with 
respect to number of variable

Fig. 5: Number of addition / multiplication versus number of variable 
(n)

VI. CONCLUDING REMARKS AND FUTURE WORKS

A computationally efficient technique of obtaining spectrum of 
Boolean functions called probability coefficients with application of 
fault detection is presented. Probability Coefficients are more 
attractive as compared to spectral coefficients due to its 
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computational simplicity. The numerical values of these coefficients 
can lie between –1 to +1 and they can be computed without 
multiplication that is otherwise needed in spectral coefficient 
determination. Mathematical expression for determination of 
probability coefficients of a function has been developed and 
theoretical plot illustrating computational advantage offered by 
probability coefficients as compared to spectral coefficients is given. 
Further, each probability coefficient contains global information and 
thus ensuring that their values are influenced by the complete 
Boolean performance of the circuit or network under consideration. 
Finally, computation of probability coefficients using techniques for 
spectral coefficient determination i.e. transform matrix, fast 
transform method and using OBDDs is given. The test vectors are 
derived from the set of probability coefficients of the given function 
using R-W transform matrix. The validity of probability signature 
has been proved by demonstrating that probability coefficients of any 
Boolean function have similar magnitude profile and involve same xi
variable(s) as their corresponding spectral coefficients. Further, 
computation of probability coefficients does not need inner product 
evaluation and requires only half the number of additions (for n 5)
as compared to spectral technique; it is particularly attractive for 
circuits realizing complex Boolean functions. This work can be 
extended for practical Benchmark circuits where most of the circuits 
contain multiple output function [4] and can play a big role in 
quantum computing and reversible logic [3, 5]. 
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