
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

794

Abstract—This paper deals with efficient computation of
probability coefficients which offers computational simplicity as
compared to spectral coefficients. It eliminates the need of inner
product evaluations in determination of signature of a combinational
circuit realizing given Boolean function. The method for computation
of probability coefficients using transform matrix, fast transform
method and using BDD is given. Theoretical relations for achievable
computational advantage in terms of required additions in computing
all 2n probability coefficients of n variable function have been
developed. It is shown that for n 5, only 50% additions are needed
to compute all probability coefficients as compared to spectral
coefficients. The fault detection techniques based on spectral
signature can be used with probability signature also to offer
computational advantage.

Keywords—Binary Decision Diagrams, Spectral Coefficients,
Fault detection

I. INTRODUCTION

INCE last three decades spectral techniques has been
widely adopted in field of VLSI CAD, testing, quantum
computing [2, 6, 9, 13, 14, 16] etc. Due to exponential

increase in numbers of transistors in a single chip the problem
of synthesizing and testing are becoming more complex. This
is necessitating consideration of testing issues right in the
design phase rather than post design practice [10, 17] leading
to on-chip incorporation of both test hardware and software
routines in the design of self-testing, fault tolerant, fail-safe
and/or self-repairing digital devices and systems [11, 15].
Spectral techniques of fault detection provide an attractive
solution to the problem of testing complex digital circuits by
offering global information about the target circuit realizing
the function. One of the major drawback of spectral
techniques is their computational complexity in calculation of
spectral coefficients; making them impractical for testing
complex circuits. The phenomenal increase in operating speed
of digital devices and systems during 1990s has created
resurgence of interest for exploring faster testing techniques to
perform time efficient testing. This is more so because even

Ashutosh Kumar Singh is with Department of ECEC, School of
Engineering and Science, Curtin University of Technology, Miri, Sarawak.
Malaysia (email: ashutosh.s@ curtin.edu.my)

Anand Mohan is with Department of Electronics Engineering, Institute of
Science and Technology, Banaras Hindu University, Varanasi, India (e-mail:
amohan@ bhu.ac.in)

fastest available spectral methods using fast transform
techniques don’t perform efficiently due to their inherent
computational constrains [6, 7].

This paper addresses the problem of computational
complexities and describes the efficient method to generate
probability coefficient obtained from the output probability [1,
9] of a Boolean function. We use Rademacher-Walsh (R-W)
transform for conversion between Boolean to Probability
domain as shown in Figure 1.

Fig. 1: Block Diagram for conversation between Boolean to
probability domain

We propose three methods to compute these coefficients (1)
Matrix method (2) FFT method (3) BDD method. The value
of Probability coefficients varies between (-1) to (+1).
Mathematical expression for determination of probability
coefficients of a function is developed and theoretical plot
illustrating computational advantage offered by probability
coefficients is achieved. These coefficients are used to obtain
a probability signature using linearisation technique [14, 19]
which is then used for fault detection by comparing the
probability signatures of the fault free and faulty circuits. A
set of rules [14] for selecting spectral coefficients constituting
spectral signature have been similarly applied to linearisation
technique for obtaining probability signature. Test results
obtained using probability signatures are compared with those
of spectral signature technique and have been found same;
validating the use of probability signature for fault detection
applications.

The paper is organized as follows: section 2 includes the
basics definition and mathematical background for Binary
Decision Diagrams and spectral techniques. Probability
coefficient and their computation using different methods
definition is discussed in section 3 with basic definitions and
theorems. Section 4 describes about the test vector generation
for fault detection using linearisation techniques. In section 5
we discuss about the results and their comparison with
spectral coefficient’s computation. Finally concluding remarks
and future work is given in section 6.

Computation of Probability Coefficients using
Binary Decision Diagram and their Application

in Test Vector Generation
Ashutosh Kumar Singh, Anand Mohan

S

Boolean Domain
(0, 1)

Probability Domain
(-1 to +1)

R-W Matrix
of order of 2n × 2n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

795

II. PRELIMINARIES

A. Binary Decision Diagram
Binary Decision Diagrams (BDDs) is based on Shannon

expansion [8, 12, 20]:
10'
iiii fxfxf (1)

Where f Bn be a Boolean function defined over the
variable set Xn = {x1, …, xn) for all i = {x1, …, xn).
It represents a Boolean functions as a rooted, directed acyclic
graph with a vertex set containing two types of vertices, non-
terminal and terminal vertices. A non-terminal vertex v has
two attributes i.e. (i) an argument index (v) {x1,….., xn} and
(ii) two children indicated by dashed and solid lines for low
(v) and high (v) respectively. A terminal vertex v has an
attribute value (v) {0, 1} and has no outgoing edge.

An un-simplified BDD is basically a Binary Decision tree
contains 2n-1 non-terminal nodes. The BDD of the example
function f1 (x0, x1, x2) is shown in Figure 2 (a); which is a
direct mapping of truth table in tree form. In this tree the value
of function is determined by tracing a path from the root to a
terminal vertex. A BDD representation of an n variable
function will initially have 2n-1 nodes can be further
simplifying using following two reduction rules [12].

Fig. 2: BDD for f1 (x0, x1, x2) = (3, 5, 6, 7)

(i) Deletion Rule:
If one or more non-terminal nodes are such that their both

branches corresponding to 0 and 1 lead to a non-terminal
successor node or to a terminal node then that non-terminal
node can be deleted.
(ii) Merging Rule:

If two or more terminal (or non-terminal) nodes of the same
label have the same 0 and 1 successors i.e. their left and right
sons are equivalent then they can be merged in a single node.

The simplified BDD of the function f (x0, x1, x2) = (3, 5,
6, 7) using these two rules is shown in Figure 2 (b). The value
of Boolean function is determined by tracing a path from the
root to a terminal vertex, following the branches indicated by
the values assigned to the variables. Due to the way the
branches are ordered in this figure, the values are of the
terminal vertices, read from top to bottom, match those in the
truth table, read from left to right.

B. Spectral Coefficient
Spectral coefficients of an n variable Boolean function are

determined by transformation of the function output column
vector F using an orthogonal transform matrix of size 2n 2n

that is multiplied with F. The complete set of spectral
coefficients thus obtained is called spectrum of the function
and it contains global information. The transformations are
loss less and hence permit computation of their inverse
transform to revert back into Boolean domain.

Let f(X) be a Boolean function of n variables, X = {x1, x2,
…, xn}, xi {0,1} and i = 1, 2, ,…, n. Then all 2n spectral
coefficients of the function can be obtained using a 2n 2n

Rademacher-Walsh (R-W) transform matrix Tn [16].

RFTn (2)
Where F is column matrix of dimension (2n 1)

representing f(X) recoded as f(Y) where f(Y) = 1 2 f(X), f(Y) =
{+1, -1} such that X = {x1, x2, …, xn}, xi {0, 1} and i = (1, 2,
…, n) and R is the spectrum that uniquely represents f(X),
which values varies between n2 to n2 . The complete set
of coefficients is called as spectrum of the function. The
transformation matrix Tn is defined as:

11

11

nn

nn
n TT

TT
T

and by definition T0 1.
The inverse [18] of (1) is obtained as

FRTn
1][(3)

Example
Let F (x1, x2, x3) be a Boolean function defined as F (x1, x2,

x3) = [0, 0, 1, 0, 1, 0, 1, 1], its ordered set of spectral
coefficients R can be evaluated using equation (2) and can be
written as [r0 = 4, r1 = 2, r2 = -2, r12 = 0, r3 = -2, r13 = 0, r23 = 0
and r123 = -2]. The order of the coefficients is determined by
the number of xi variables in the corresponding XOR function
i.e. for example r123 is third order and r12 is second order and
containing the information about x1x2x3 and x1x2 respectively.
Therefore this method requires total 2n (2n 1)
addition/subtraction to compute all 2n spectral coefficients,
which becomes infeasible if the function has large number of
variables.

III. PROBABILITY COEFFICIENTS AND THEIR COMPUTATION

Definition: Let f(X) be a Boolean function and if we
consider that each row vector of this transformation matrix is
another function called constituent function fc [9].

According to definition, constituent function can be
considered as a Boolean function whose output vector is
identical to a row vector in the transformation matrix. Thus a
transformation matrix may be viewed as a collection of
constituent functions. We change the Boolean domain (0, 1)
into (1, +1) for shake of simplicity i.e. xi {+1, 1}. For the
function f(X), the probability of matches (pm) / probability of
mismatches (pmm) can be defined as the ratio of number of

0

x0

x1 x1

x2 x2 x2 x2

1

x1

0

x0

x1

x2

1

(a) (b)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

796

matches / mismatches between f(X) and fc to 2n. The number of
matches “pm(i)” corresponding to any probability coefficient Pi
is obtained from bit by bit Ex-NOR between f(X) and the ith

constituent function fc(i) of transformation matrix “T” of order
2n 2n followed by summation.

n
c

im
fandXfbetweenmatchesofNumberTotal

p
2

)(
)((4)

Mathematically this can be expressed as:

)(
2
1

)()(Xffp icnim (5)

Similarly the number of mismatches “pmm(i)” corresponding to
probability coefficient Pi is obtained from bit by bit Ex-OR
between f(X) and fc(i) of transformation matrix “T” followed
by summation as:

n
c

imm
fandXfbetweenmismatchesofNumberTotal

p
2

)(
)((6)

)(
2
1

)(Xff icn
 (7)

Definition: Probability coefficient of f(X) is the difference
between probability of matches and probability of mismatches
i.e. (pmi pmmi).

Theorem: The probability coefficient (Pi) of any Boolean
function corresponding to the ith row vector of transformation
matrix “T” can be given as:

Pi=2pm(i)-1=1-2pmm(i) , where i=1, 2, …, 2n (8)

Proof: Since the ith probability coefficient of any Boolean
function f(X) is defined as the difference between the
probability of matches “pm(i)” and mismatches “pmm(i)”,
therefore

Pi = pm(i) – pmm(i) = pm(i) – (1– pm(i))=2pm(i) – 1 (9)

Similarly substituting the value of pm(i) in terms of pmm(i) we
get

Pi = pm(i) – pmm(i)= (1 – pmm(i)) – pmm(i)= 1 – 2 pmm(i) (10)

From equations (9) & (10) Pi=2pm(i) –1=1 – 2pmm(i) (11)

A. Matrix Method
For an “n” variable Boolean function f(X), all the 2n

probability coefficients can be computed using R-W transform
matrix of order 2n 2n

nT][F =P=(2 pm –1)=1–2 pmm (12)

Where F is vector representing the function, P is the set of
probability coefficients and “ ” denotes either (Ex-NOR) or
(Ex-OR) operators but not both simultaneously.

Therefore all the 2n probability coefficients (P) of a given
Boolean function f(X) can be determined using equations (5)
or (7) and (12). The procedure for finding probability
coefficients of an “n” variable Boolean function with output
vector “F” of order 2n 1 can be stated as:

(i) Initialize C (counter) = 0.

(ii) Select first row of the transformation matrix.
(iii) Compare the corresponding elements of selected row and

output vector
(iv) Increment C by “1” for each match (mismatch) until all in

the row vector have been compared.
(v) Calculate probability of matches (mismatches) using pm

(pmm) = C/2n and determine probability coefficients as
Pi=2pm(i) – 1=1 – 2pm m(i) for i=1, 2, …, 2n

Using R-W transform for the example function F (x1, x2, x3)
and changing Boolean variables “0” and “1” to +1 and –1
respectively, its probability coefficients can be computed.
For the first probability coefficient (p0)

5.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2
1
3mp

Now using equation (12) we get p0=0
Similarly for second probability coefficient (p1)

25.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2
1
3mp

and equation (12) gives p1= 0.5.

Remaining probability coefficients of the function are
determined using their corresponding constituent function
giving all 23 probability coefficients that are given below:

5.0
0.0
0.0
0.0
5.0
5.0
5.0

0.0

1
1
1
1
1
1
1
1

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

The ordering as well as association of xi variables in each
probability coefficient is similar to corresponding spectral
coefficient and hence the complete set of probability
coefficients can be written as p0=0, p1= 0.5, p2=0.5, p12=0.5,
p3=0, p13=0, p23=0 and p123=0.5.

B. Fast Transform Method
Fast transforms [16, 21, 22] provide reduction in

computation by eliminating repeated computation of already
computed terms that are common to other spectral
coefficients. The use of fast transform reduces total number of
multiplications from 2n 2n to n 2n in computation of all 2n

spectral coefficients of a function. A fast Walsh-Fourier
transform procedure suggested by Shanks [22] is briefly
discussed to explain the computation process. The presented
method requires total n 2n multiplication in determination of
spectrum of a function. It is based on generating orthogonal
transform matrix using N distinct Walsh-Paley functions
Pal(J, K).

The graphical representation of the fast transform for a
three variable function (n = 3) is given in Butterfly diagram

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

797

shown in Figure 3. This is for probability coefficients
computation but still follows the basic concept of butterfly
diagram. The complete set of n 2n operations also forms the
principle of all the hardware circuits for generating Hadamard
and Walsh waveforms and their resulting coefficients.
Although fast transform techniques reduce the number of total
multiplications (additions / subtractions) as compared to
matrix multiplication method but they still use matrix
multiplication. Note that the storage requirements at each step
of the Butterfly diagram progressively increases (from 21 to 2n

for an n-variable function) as we move from input towards the
output node following a straight signal flow line. Therefore
total storage requirement for the output step to store all 2n

coefficients becomes 2n 2n, which makes it unsuitable for
complex functions.

Since the procedure for determination of probability
coefficients involves identification of matches (or
mismatches) in place of multiplication and needs only addition
instead of addition / subtraction, therefore Butterfly diagram
can not be directly applied for their determination. This
necessitates modification of the fast transform algorithm
implementation on Butterfly diagram because of requiring
only two inputs (i.e. total number of matches and mismatches)
at every intermediate step of Butterfly instead of inputs from
all previous steps.

Using the concept of fast transform and its related theory
for Fast Fourier Transform (FFT) [16, 22] the following
algorithm is adopted to find the number of matches /
mismatches for each probability coefficient:

(i) Draw the signal flow graph (Butterfly Diagram) for given
number of function variables.

(ii) Change the elements 0 and 1 of the output vector “F” to
 and respectively and then compare the changed

values of F and first step nodes of the Butterfly diagram
to find the number of matches and mismatches s using
following two rules:

(a) If or of the same row feeds to a node;
record it as match or mismatch respectively.
Similarly the match or mismatch is computed for

.
(b) If or of a different row feeds to a node it is

considered as match or mismatch respectively.
However, if they feed to ; it is considered match
or mismatch respectively.

(iii) For subsequent steps of the butterfly diagram if the input
from the same row feeds to ; it will alter the values of
matche(s) and mismatche(s) obtained in the previous step
of Butterfly which are otherwise unaltered.

(iv) Repeat step (iii) until last step of the Butterfly diagram
and count total number of matches or mismatches that
gives the value of pi.

Once the values of matches or mismatches for a given n-
variable function are found using this modified fast transform
algorithm implementation on Butterfly, equation (12) can be
used to compute all 2n probability coefficients. The
computation of probability coefficients is illustrated below
with the help of an example function.

Example
Consider a function f (x1, x2, x3) = (0, 1, 3, 5, 6) = [1, 1, 0,

1, 0, 1, 1, 0]. The Butterfly diagram for calculating the total
number of matches and mismatches for this function using the
above mentioned algorithm is shown in fig. 3.3 where the
outputs of the final steps are the number of matches and
mismatches. Now all 23 probability coefficients of the function
f (x1, x2, x3) = (0, 1, 3, 5, 6) are computed using equation
(3.24) giving p0 = -0.25; p1 = -0.25, p2 = -0.25, p3 = 0.25; p12 =
-0.25, p13 = 0.25, p23 = 0.25, p123 = -0.75.

Analyzing the storage requirements in using Butterfly for
probability and spectral coefficient computations it is clear
that application of modified fast transform algorithm on
Butterfly to compute probability coefficients reduces storage
because of requiring only two inputs at every intermediate
step of Butterfly instead of inputs from all previous steps. This
is particularly attractive for complex functions that have large
number of steps and inputs at each node of the Butterfly.
Therefore application of fast transform to determine
probability coefficients provides storage economy along with
reduction in computation as compared to spectral coefficients
determination.

Fig. 3: Flow Graph for f (x1, x2, x3) = (0, 1, 3, 5, 6)

C. BDD Method
This section describes a new method to determine number of

matches (or mismatches) for an n variable Boolean function
using OBDD. It is based on generating 2n column vectors
called “composite functions” that are generated considering
matches and mismatches between constituent functions fc(i) of
an R-W transform matrix of order 2n 2n and function vector
F. The reduced OBDDs of the constituent functions are then
generated that is used for computation of each pi by recording

-

1

1m, 1mm 2m, 2mm 3m, 5mm

0m, 2mm 1m, 3mm 5m, 3mm
1

1m, 1mm 2m, 2mm 3m, 5mm

0m, 2mm 2m, 2mm 3m, 5mm

0

1
1m, 1mm 1m, 3mm 5m, 3mm

0

1
1m, 1mm 1m, 3mm 5m, 3mm

1
2m, 0mm 0m, 4mm 3m, 3mm

0
0m, 2mm 3m, 1mm 1m, 7mm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

798

the number of one and zero terminating paths for matches and
mismatches respectively. Once the total number of matches
and mismatches are found, equation (12) is used to compute
probability coefficients. However, counting of the total
number of terminating paths on terminal nodes “1” and “0” of
an OBDD can be difficult for complex constituent functions
but this can be simplified using probability assignment
algorithm [9] that is briefly discussed below:

Probability assignment algorithm
(i) Assign probability = 1 for the input node
(ii) If the probability of node j = pj, assign a probability of 1/2

pj to each of the outgoing arcs from j.
(iii) The probability pk, of node k is the sum of the

probabilities of the incoming arcs.

The application of above algorithm for counting 1s and 0s
in graphical representation of a function is demonstrated
below taking an example function.

An important limitation of this method of finding t1 and t0
is that it requires computation of output probability at each
node that becomes tedious for complex BDDs. The unreduced
OBDDs of a function have all paths allowing direct
determination of t1 and t0, however, direct counting can not be
done for reduced OBDDs because some nodes are merged or
deleted. The contribution of deleted and / or merged nodes to
the total number of 1s and 0s is therefore necessary for correct
determination of t1 and t0 in an OBDD.

We propose following new rules for direct calculation of t1
and t0 of reduced OBDDs without calculating output
probability of nodes:
(i) If reduced OBDD of a function has only one node then

the number of 1s / 0s will be 2n/2.
(ii) If “k” variables are missing in a path terminating at node

“1” or “0” then “t1” and “t0” will be 2k, where k=0, 1, 2
…., (n-1).

(iii) If more than one paths are terminating at node “1” or “0”
then “t1” and “t0” will be the sum of number of 1s and 0s
respectively in each path calculated by applying rule (ii).

The step wise algorithm for computing probability
coefficients of a n-variable Boolean function using OBDD can
be stated as below:

(1) Select a constituent function of R-W matrix of order 2n

2n.
(2) Perform bit-by-bit comparison between elements of

selected constituent function and output vector F. Record
1 for match or 0 for mismatch at the corresponding
positions in the composite function.

(3) Repeat steps (1) and (2) until all 2n composite functions
have been generated.

(4) Generate reduced OBDD for each composite function and
calculate t1 and t0 for all 2n OBDDs using rules (i) to (iii)
as mentioned above.

(5) Calculate all the 2n probability coefficients using equation
(12).

If the function having large number of variables (n 5) we
select optimal ordering for generating OBBDs of composite
function which provides significant reduction in computation

as well as storage and time requirement. The computation of
probability coefficients using above procedure is illustrated
below with the help of an example.

IV. SELECTION OF TEST VECTORS FOR FAULT DETECTION

A subset of all 2n probability coefficients which is sufficient
to cover all stuck-at and bridging faults in the circuit is
defined as probability signature. Probability signature of a
circuit realizing given Boolean function can be obtained using
linearisation technique [14, 18]. Their use in detection of
permanent faults allows further simplification of testing by
reducing the number of probability coefficients that are to be
stored and compared with their corresponding values of fault
free and faulty circuits. Realization of Boolean functions
using linearisation technique is based on partitioning of the
function into two sub-functions i.e. linear and a canonic
function. Determination of probability signature using
linearisation technique is achieved through following steps:

(i) Let B be a matrix of n n which is initially empty
(ii) Select probability coefficients excluding p0 as follows:

(a) The largest magnitude coefficient (s)
(b) If more than one coefficient satisfy (a), select the one

(s) with lowest order
(c) If all the coefficients selected in (b) have same order,

select the one with the highest decimal subscript.
(iii) Insert the binary representation of the decimal subscript

of the selected coefficient as a new column of B, with the
bit corresponding to xj as the jth entry. Delete the selected
probability from the list.

(iv) Delete all probability coefficients whose decimal
subscripts have binary representation which are equal to
the bit by bit mod-2 sum of any subsets of existing
columns of B matrix.

(v) Repeat step (ii) through (iv) ignoring coefficients that
have been deleted.

The probability coefficients in B matrix constitute the
probability signature of linear sub-function and any ith column
of B matrix defines the EX-OR operation in spectral domain
involving those xj (j=1, 2, …, n) variables for which the jth

entry in the ith column of B matrix is 1. The validity of
probability signature generated using B matrix can be proved
by considering an arbitrary Boolean function and computing
it’s spectral as well as probability signatures. If the two
signatures exhibit similar magnitude profile while also
involving same xi variables for their corresponding
coefficients; it verifies the correctness of the obtained
probability signature and implies that linearisation technique
can be extended for determination of probability signature.
Considering the example function [14] F(x1, x2, x3, x4,) = (2,
3, 4, 7, 8, 11, 13, 14), its coefficients constituting spectral
signature will be:

r4321 = -6, r3 = -2, r43 = 2, r32 = -2

The probability coefficients of the function obtained using
equation (9) are:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

799

p0=0.0, p4=0.0, p3=0.25, p2=0.0, p1=0.0; p43= 0.25, p42=0.0,
p32=0.25, p41=0.0, p31=0.25, p21=0.0; p432= 0.25, p431= 0.25,
p421=0.0, p321=0.25; p4321=0.75.

The above iterative procedure can be used to obtain B matrix
as:

0101
1111
1001
0001

B

This matrix is same as obtained in [14] for deriving the
spectral signature. Therefore the probability signature of the
function can be obtained from above B matrix consisting of
probability coefficients p4321, p3, p43 and p32. Comparing the
corresponding magnitudes and association of variables in
spectral and probability domains, it is evident that the two
signatures are identical and have exactly same order. This
proves that probability signature technique can be used to
eliminate the need of spectral signature determination for fault
detection purposes while also reducing the computational
requirements. Due to space constraints we are omitting the
fault detection subsection.

V. RESULT AND COMPARISON

The determination of probability coefficients involves
finding only total number of matches (or mismatches) and also
that only addition is required instead of multiplication and
addition / subtraction as in spectral coefficient determination
therefore it offers significant reduction in computational
efforts. However, since the number of matches (or
mismatches) depends not only on the transform matrix but
also the output function vector F hence it will not be possible
to find the total number of required additions without knowing
F. However, an upper bound of the total number of required
additions to determine all 2n probability coefficients can be
evaluated.

The upper bound of total number of additions required to
compute complete set of probability coefficients of an n
variable function using R-W transform matrix can be
determined by expressing maximum number of required
additions in terms of n. For any R-W transform matrix of
2n 2n, total number of +1s and –1s shall be 2n–1 (2n+1) and
2n–1 (2n 1) respectively and therefore the number of

maximum additions can be found by comparing +1s in the
matrix with F containing all +1s. Under this situation the
maximum value of matches corresponding to maximum
additions shall be 2n–1 (2n+1) , however, in actual practice
+1 or –1 can be chosen depending upon output function to
further minimize the number of additions. Therefore the ratio
of maximum number of additions in probability coefficient
determination and additions/subtractions in spectral
coefficient computation can be expressed as:

)12(2
)12(

)/(

)(
n

n

sa

a

R
P

 (13)

W Where P(a) and R(a/s) are the number of maximum additions
required for computation of probability coefficients and
number of additions / subtractions needed in determination of
spectral coefficients respectively. Figure 4 indicates a
theoretical plot of equation (13), which clearly shows the
achievements in computational simplicity as compared to
conventional spectral technique. Referring equation (13) it is
clear that probability coefficients are particularly attractive for
complex Boolean functions (n 5) because maximum number
of required additions is only half of the additions/subtractions
necessary while using conventional spectral technique. Figure
5 gives individual plots for P(a) and R(a/s) as a function of n
from which it is clear that significant reduction in computation
is achieved even at lower values of n.

Fig. 4: Ratio between Probability and Spectral Coefficients with
respect to number of variable

Fig. 5: Number of addition / multiplication versus number of variable
(n)

VI. CONCLUDING REMARKS AND FUTURE WORKS

A computationally efficient technique of obtaining spectrum of
Boolean functions called probability coefficients with application of
fault detection is presented. Probability Coefficients are more
attractive as compared to spectral coefficients due to its

4 5 6 7 8
Number of variables (n)

0

1

2

3

4

5

6

7

P(a)

R(a / s)

N
um

be
r o

f A
dd

iti
on

 /
Su

bt
ra

ct
io

n
in

Th

ou
sa

nd
s

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

800

computational simplicity. The numerical values of these coefficients
can lie between –1 to +1 and they can be computed without
multiplication that is otherwise needed in spectral coefficient
determination. Mathematical expression for determination of
probability coefficients of a function has been developed and
theoretical plot illustrating computational advantage offered by
probability coefficients as compared to spectral coefficients is given.
Further, each probability coefficient contains global information and
thus ensuring that their values are influenced by the complete
Boolean performance of the circuit or network under consideration.
Finally, computation of probability coefficients using techniques for
spectral coefficient determination i.e. transform matrix, fast
transform method and using OBDDs is given. The test vectors are
derived from the set of probability coefficients of the given function
using R-W transform matrix. The validity of probability signature
has been proved by demonstrating that probability coefficients of any
Boolean function have similar magnitude profile and involve same xi
variable(s) as their corresponding spectral coefficients. Further,
computation of probability coefficients does not need inner product
evaluation and requires only half the number of additions (for n 5)
as compared to spectral technique; it is particularly attractive for
circuits realizing complex Boolean functions. This work can be
extended for practical Benchmark circuits where most of the circuits
contain multiple output function [4] and can play a big role in
quantum computing and reversible logic [3, 5].

ACKNOWLEDGMENT

The work of Ashutosh Kumar Singh was funded by the Curtin
Sarawak Research Fund 2008, Malaysia.

REFERENCES

[1] Ashutosh Kumar Singh and Anand Mohan, “A Theoretical Frame work
for Probability Coefficients: A New Methodology for Fault Detection”,
IEEE Proc. International Conference on Computer and Electrical
Engineering (iccee 2008), Phuket, Thailand, 19-21 December 2008.

[2] Osnat Keren, “Reduction of the Average Path Length in Binary Decision
Diagrams by Spectral Methods,” IEEE Trans. on Comput., vol. 57, no.4,
pp. 520-531, April 2008.

[3] James Donald, Niraj K. Jha, “Reversible Logic Synthesis with Fredkin
and Peres Gates”, ACM Journal on Emerging Technologies in
Computing Systems, vol. 4, pp. 1-19, March 2008.

[4] Abusaleh M. Jabir, Dhiraj K. Pradhan, Ashutosh K. Singh, Rajaprabhu
T. L., “A Technique for Representing Multiple Output Binary Functions
with Applications to Verification and Simulation”, IEEE Trans. on
Comput., vol. 56, No. 8, pp. 1133-1145, August 2007.

[5] D. M. Miller, “Spectral and Two-Place Decomposition Techniques in
Reversible Logic”, Proceeding of the IEEE Midwest Symposium on
Circuits and Systems, vol. 2, pp. 493-496, 2002.

[6] D. M. Miller, R. Drechsler and M. A. Thornton, “Spectral Techniques in
VLSI CAD” Kluwer Academic 2001.

[7] Dragan Jankovic, R. S. Stankovic, Rolf Drechsler Decision Diagram
Method for Calculation of Pruned Walsh Transform”, IEEE Trans. on
Comput., vol. 50, Issue 2, pp. 147-157, Feb. 2001.

[8] R. Drechslor, B. Becker and N. Gockel, “Genetic Algorithm for Variable
Ordering of OBDDs”, IEE Proc. Comput. Digit. Tech., vol. 143, no. 6,
pp. 364-368, 1996.

[9] M. A. Thornton and V. S. S. Nair, “Efficient calculation of spectral
coefficients and their applications”, IEEE Trans. on Comput., vol. 14,
no.11, pp. 1328-1340, Nov. 1995.

[10] V. Chickermane, J. Lee, and J. H. Patel, “Addressing design for
testability at the architectural level,” IEEE Trans. on Comput., vol. 13,
no.-7, pp. 920-934, Jul. 1994.

[11] S. H. Hosseini and N. Jamal, “Efficient distributed algorithms for self
testing of multiple processor systems”, IEEE Trans. on Comput., vol. 41,
no.-11, pp. 1397-1409, Jul. 1992.

[12] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams”, ACM computing surveys vol. 24, no. 3, pp. 293-
318, 1992.

[13] Suman Purwar, “An Efficient Method of Computing Generalized Reed-
Muller Expansions from Binary Decision Diagram”, IEEE Trans. on
Comput., vol. 40, issue 11, pp. 1298-1301, Nov. 1991.

[14] E. Eris and J. C. Muzio, “Spectral testing of circuit realizations based on
linearisations”, IEE Proc. Comput. Dig. Tech., vol. 133E, no.2. pp. 73-
78 March 1986.

[15] D. K. Pradhan, “Fault Tolerant Computing”, Englewood Cliffs, New
Jersey 07632 (U. S. A) 1986.

[16] S. L. Hurst, D. M. Miller and J. C. Mujio, “Spectral Techniques in
Digital Logic”, Academic Press (London) 1985.

[17] T. W. Williams and K. N. Parker, “Design for testability-A survey,”
IEEE Trans. on Comput., vol. C-31, no. 1, pp. 1-15, Jan. 1982.

[18] S. L Hurst, D. M. Miller and J. C. Muzio, “A spectral method of Boolean
function complexity”, Electron. Lett., 18, pp. 572-574, 1982.

[19] S. L. Hurst, “The logical processing of digital signals”, Crane Russak,
New York, 1978.

[20] S. B. Akers, “Binary Decision Diagrams”, IEEE Trans. on Comput., vol.
C-27, no. 6, pp. 509-516, 1978.

[21] B. J. Fino, and V. R. Algazi, “Unified matrix treatment of the fast
Walsh-Hadamard transform”, IEEE Trans. on Comput., vol. C-25, pp.
1142-1145, 1976.

[22] J. Shanks, “Computation of the fast Walsh-Fourier transform”, IEEE
Trans. on Comput., vol. EC-18, pp. 457-459, 1969.

Ashutosh Kumar Singh received the PhD
degree in electronics engineering from Banars
Hindu University, India, in 2000. He is a
faculty member in the Department of ECEC,
School of Engineering and Science, Curtin
University of Technology, Miri, Malaysia. He
worked as a senior lecturer and deputy dean on
the Faculty of Information Technology at
University Tun Abdul Razak, Kuala Lumpur,
Malaysia. Prior to this, he was a postdoctoral

research assistant in the Department of Computer Science at the University of
Bristol, United Kingdom. He also worked in the Faculty of Information
Science and Technology, Multimedia University, Malaysia, for two years and
as a senior lecturer in the Department of Electronics and Communication at
the National Institute of Science and Technology (INDIA), India. He was a
member of the editorial board of the United Nations Institute for Training and
Research (UNITAR) e-journal and has also been involved in the reviewing
process of different journals and conferences, such as the IEEE Transactions
on Computers, IEEE International Test Conference (ITC), International
Conference on Advanced Computing and Communication (ADCOM), and so
forth. His research interests include verification, synthesis, design, and testing
of digital circuits. He has published approximately 50 research papers to date
in different conferences and journals in these areas. He is a coauthor of two
books, Digital Systems Fundamentals and Computer System Organization and
Architecture (Prentice Hall). He is the recipient of the Merit Award from the
Institute of Engineers in 2003, the Best Poster Presenter Award from the 86th
Indian Science Congress in 1999, and the Best Paper Presenter from the 23rd
National Systems Conference (NSC ’99) in India.

Anand Mohan obtained B. Sc. (Engg.) with
Honours, M. Tech. and Ph. D. degrees in
Electronics Engineering from Banaras Hindu
University, Varanasi (India) in 1973, 1977 and 1994
respectively. During December ’75 to March ’79 he
worked as R & D Engineer at Murphy India Ltd.,
Thane, Maharastra and subsequently joined as
faculty member in Electronics Engineering, Institute
of Technology, Banaras Hindu University in April
’79 where he is currently working as Professor of

Electronics Engineering. His areas of current research interest are fault
tolerant digital systems, programmable logic devices, and information
security. Prof. Mohan has chaired technical sessions at international and
national conferences / seminars and organized as well as participated in
international and national conferences / seminars / symposia held in the
country and abroad. Prof. Mohan has authored 81 research papers published in
reputed international / national journals and conference proceedings,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

801

supervised 47 M. Tech. dissertations and good number of Ph. D. theses. He
has been reviewer of research papers for publication in IEEE Transactions on
Computer (USA), Journal of Computer and Information Science (Canada),
and Institution of Engineers, (India) and has also reviewed book on
Microcontrollers for Tata-MacGraw Hill and learning material for ISTE, New
Delhi. His coauthored papers have received awards of International Union of
Radio Science (URSI), Belgium, Institution of Engineers, (India) and Indian
Science Congress. Prof. Mohan is Fellow of Institution of Electronics and
Telecommunication Engineers, (India) and Institution of Engineers (India) and
Life Member of Indian Society for Technical Education (ISTE), New Delhi.
Anand Mohan is Chairman of research panel on Armament Sensors &
Electronics, DRDO, Ministry of Defence, Govt. of India, worked as Chairman
of NBA Ad-hoc Committees of AICTE, New Delhi, and chaired project
review committee of HAL, Korwa. He has been Member of several national
committees of UGC, CSIR, DST, DRDO and reputed academic institutions of
the country. Prof. Mohan was also Member of Executive Council, Banaras
Hindu University, Governor’s Nominee, Rajasthan Technical University,
Kota, and presently he is Member of Governing Councils of HBTI, Kanpur,
IET, Lucknow, and many other reputed institutions of Engineering &
Technology.

