International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

Computable Function Representations Using
Effective Chebyshev Polynomial

Mohammed A. Abutheraa, and David Lester

Abstract—We show that Chebyshev Polynomials are a practical
representation of computable functions on the computable reals.
The paper presents error estimates for common operations and
demonstrates that Chebyshev Polynomial methods would be more
efficient than Taylor Series methods for evaluation of transcendental
functions.

Keywords—Approximation Theory, Chebyshev Polynomial, Com-
putable Functions, Computable Real Arithmetic, Integration, Numer-
ical Analysis.

[. INTRODUCTION

N this paper we explore the use of Chebyshev Polynomials

to represent some computable functions of the computable
reals. Our goal is to show that the class of representable
functions is sufficiently large to be of interest, and furthermore
that such representations are efficient enough to be practical.

In Section 2 we discuss the two approaches to defining com-
putable functions taken by Pour-El and Richards[12]. Whilst
more than satisfactory for theoretic purposes, the doubly expo-
nential algorithm implied by the effective Weierstrass Theorem
is an almost insuperable problem for practical exploration. In
Section 3 and 4 we discuss polynomial approximation and in
particular Chebyshev Polynomials. In Section 5, we show that
a set of standard transcendental functions can be conveniently
represented using Chebyshev Polynomial Approximation. In
Section 6 we show that these Chebyshev approximations are
more efficient. In Section 7 we show how to manipulate
the Chebyshev Polynomials to perform other basic operations
including Integration.

II. APPROXIMATION

“In recursive analysis, when we consider polynomial ap-
proximations to computable real functions, a recursive version
of the Weierstrass theorem holds”[5], [6]. The Weierstrass
approximation theorem is as follows [5], [6], [12].

Theorem 1: (Effective Weierstrass Theorem) Let f be a
continuous function on [0,1]. Then, for each k > 0, there
is a polynomial ¢y such that |f(z) — ¢k(z)| < 27F for all
x € [0,1].

In recursion-theoretic practice, a real number x is viewed
as a function ¢ : N — N. Then a function of a real
variable f(x) is viewed as functional. Moreover, a function of
computable real variable f(x) maps ¢ from functions a, a :
N — N into similar functions b. The function f is called
computable if the corresponding functional ¢ is recursive.
Therefore, there another version of the Weierstrass Theorem in

Mohammed A. Abutheraa and David Lester are with the School
of Computer Science, University of Manchester, Manchester, email:
{mabutheraa,dlester } @cs.manchester.ac.uk

recursive analysis which describe the above. Before stating this
definition, two definitions must be stated that are Definition A,
and Definition B.

Before going in details in these, it should been considered
the function f is defined on a closed bounded rectangle 79 C
R, where I? = {a; < x; < b;, 1< 1< q }. The end points
a;, b; are computable real.

Definition 2: (Definition A) let 19 C R? be a computable
rectangle. A function f:/9 — R is computable if:

1) fis sequentially computable,i.e f maps every computable
sequence of points ;, € I into a computable sequence
{f(zk)} of real numbers.

2) f is effectively uniformly continuous, i.e. there is a
recursive function d:N—N such that for x, ye ¢ and
all N:

| —y| < 1/d(N) implies |f(z) — f(y)l <27V

where | | denotes the euclidean norm.

Definition 3: (Definition B) let 19 C RY as in Definition A.
A function f : I9 — R is computable if there is a computable
sequence of rational polynomial which converges effectively
to f in uniform norm which means that there is a recursive
function e : N — N such that for all x € I9 and all N:

m > e(N) implies |f(x) — pm(z)] <27V

Theorem 4: (Weierstrass Theorem) Let [a,b] be an interval
with computable end points, and let f be a functions on [a,b]
which is computable in the sense of Definition A. Then there
exists a computable sequence of polynomials {p,,} which
converges effectively and uniformly to f on [a,b]-i.e f is
computable in the sense of Definition B.

[1I. POLYNOMIAL INTERPOLATION

Kincaid and Cheney stated in their book about how to
interpolate a function based on a data set. In other words,
if the points are known, then the aim is to find the polynomial
which exactly goes through these points.

Theorem 5: If xg,x1,....z, are distinct real numbers, then
for arbitrary values yo, Y1, ....Yn, there is a unique polynomial
pr, of degree at most n such that p,(x;) = y; (0 < i < n)[4].
In this paper two forms of Interpolation polynomial will be
used in our interpretation which are the Newton form, and
the Lagrange form. The Newton form looks as follows:

k
pr(x) =Y e

=0 g

1
(z — ) (D
0

i

where ¢; are the coefficients [4], [7].

301



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

The coefficients of the Newton form are calculated using
the divided difference. Moreover, the coefficients calculation
will be as follows:

s = el =y )

. r1) — f(x
o ] = f[xoﬂtﬂ — JAM) 7 JA0)
1 — To
So from above we can obtain:

Cn = f[anl.h""al'n]
flz1, z2, .xn) — flzo, 21, .. Tpn-1]
Tp — X0

On the other hand, the Lagrange is expressed in the
following form:

p(x) = yolo(z) + oo + Ynln(@) = > _yile(x) ()
k=0

Such that Coordinal functions can be expressed in the follow-

ing form: I, (4], [7).
ing form (x)jzlolﬂ z 7%[ 1, (71

There are many ways to approximate a function. Two of the
most powerful ways are Taylor Series and Chebyshev Series.
In this paper, we are showing that Chebyshev Series provide

smaller approximation error than Taylor Series.

r—

IV. CHEBYSHEV POLYNOMIALS

Chebyshev polynomials play an important role in numerical
analysis. They have been used in approximation of functions,
computation of integrals, and solution of differential equations.
Also, these polynomials have been used in network synthesis.
These polynomials have many properties [2], [8], [9], [10],
[13]. Some of them are:

1) Continuous.

2) The least deviation from zero property.

3) The recurrence relation which is an important property

for efficient computation.

There are four Chebyshev Polynomials. Their power derives
from the close relation with the trigonometric functions ’cos’
and ’sin’. The first kind is the most important one and it is the
one referred to in most books and articles [9]. In this paper,
the first kind Chebyshev polynomial is the one that will be
used as well.

The first-kind Chebyshev polynomials are defined recur-
sively by:

Tn(z) = cos nf when x = cosb 3)

where x € [-1,1], and 6 € [0,7].
Recurrence relation for this kind of Chebyshev polynomial
can also be obtained by:

To(x) =22 -Tho1(x) = Th—2(x) n=2,3,.. ()]
With initial conditions:

To(x) =1 and Ti(z) == Q)

A. Chebyshev Series Expansions
Restricting the range on [-1,1], Chebyshev series expansion
of f(x) can be expressed in the form:

oo

fla) = cigi() ©6)

where ¢z(x) = Tz(x)>Uz($)7Vz(w)> or Wn(:L)

So, for the first kind Chebyshev polynomial, the Chebyshev
series expansion will be:

oo

fla) = 32" i) = SeoTolw) + aTi(@) + -
=0

where ¢; are the coefficients.

B. Chebyshev Interpolation
Theorem 6: (Runge phenomenon) if x), are chosen to be

the points zp = —1 + (k=0,...,n) (means that are

n+1
equally spaced at a distance

1 apart), then the interpo-

lating polynomial p,,(z) need not to converge uniformly on
[-1,1] as n— oo for the function f(x).
An example function of the

fx)=———.
(14 2522)
to ensure uniform convergence, still not necessary for every
continuous function, is the set of zeros of 1the Chebyshev
polynomial 7}, (x) where x = zp = co(s:(k;_fl)7r k=1,....n+1.
By expressing polynomial in terms of Chebyshev polynomials,
this can make the interpolation more efficient and stable from

choosing equally spaced set [9].

above theorem is

A better choice of interpolating points

C. Chebyshev Nodes

As mentioned in Section IV-B, the set of zeros of the Cheby-
shev polynomial can make the interpolation more efficient and
stable. The Chebyshev nodes of T}, 1 discussed by Mason and
Handscomb[9] can be expressed in one of the following ways:

(k~

— 7

Tk cos 1 7
2n+1 -2k

T —= COS(W’TF) (8)

Where k=0,...,n. Both of the above equations give the same
results, but they differ in the order of the results. Furthermore,
if the first equation gives the results 1, 0.5,-1, then the results
of the second equation will be -1,0.5,1.

D. Chebyshev Approximation Error

The nodes z; that will be used in our approximation are the
roots of the Chebyshev polynomial T, ;. So, as stated in [4],
[9] , the error can be defined as follows:
2(b — a)n+1 n+1
|f(z) = Po(x)| < 0 £ 1)1 maza<z<o| [ (2)] (9)
Where a, and b are the end points of the interval [a,b] of
approximation, and n is the order of Interpolating polynomial.

302



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

Therefore, if we only look at the interval [-1,1], then the
following theorem from Kincaid and Cheney[4] holds.

Theorem 7: (Theorem on Interpolation error, Chebyshev
Nodes) If the nodes xz; are the roots of the Chebyshev
polynomial 75,1, then error formula will be:

[f(@) = p(e) < ymazy<l TG (10)

-
2"(n+1)

for |z| < 1.

V. REPRESENTING ELEMENTARY FUNCTIONS

In this Section, the Chebyshev series will be used to
represent elementary functions such as sin(x), cos(x), exp(x),
and log(x). The process of representing these functions using
Chebyshev will be done with a known error bound using the
equation defined in Section IV-D. Then, complex functions
such as an addition , subtraction , multiplication , division, or
composite of any two or more elementary functions will be
shown how to be represented using Chebyshev.

The functions that are tried to be approximated using
Chebyshev in the following Sections are continuous unless
stated otherwise.

A. Trigonometric Functions

The process of how to represent cos and sin functions using
Chebyshev will be explained. However, only cos(x) will be
used in the rest of this Section as the sin and cos behave in
similar way.

The Lagrange form of polynomial interpolation as shown
in Section III will be used to find the polynomials that best
approximate the function cos(x) using Chebyshev. First of all,
the Chebyshev nodes need to be calculated as mentioned in
Section IV-C. Then, the coefficients need to be calculated as
follows:

1 < 1 <
co = n+1;)f($k-) To(xk):ﬁ;)f(xk)
1 n
¢ = n+2k2=0f(xk)Tj(xk)
1 & 2n+1—2k
= n+2kzzof(xk)003(]wﬂ)

After the coefficients has been calculated, the the interpo-
lating polynomial of f(x) can be defined as follows:

n

f(z) ~ Py (z) = ZCJ' Tj(x)

Jj=0

This way of approximation can perfectly approximate the
functions cos(x) and sin(x). As n — oo, the error of the
polynomial P, that approximates cos(x) and sin(x) approaches
0. Figure 1 shows how Chebyshev series approximate cos(x).

cos{x)
P1{x)

P2{x}>
Pa(x)

-1 -8.5 a 8.5 1

Fig. 1. Approximating cos(x) using Chebyshev

B. Exponential Functions

Exponential functions can be represented using Chebyshev
series in the same way as show in the trigonometric functions
in Section V-A. Chebyshev series approximate f(x) = exp(x)
with small errors that can be calculated using the formula
defined in Section IV-D.

The Chebyshev nodes and the coefficients of the interpo-
lating polynomials for the functions f(x) = exp(x) can be
calculated exactly like the function f(x) = cos(x). This will
gives the following polynomials when the range is [-1,1]:

Similar to the trigonometric functions, Chebyshev series
can perfectly approximate the function exp(x). As n — oo,
the error of the polynomial P, that approximates exp(x)
approaches 0. Similar to the trigonometric functions, Cheby-
shev series can perfectly approximate the function exp(x). As
n — oo, the error of the polynomial P, that approximates
exp(x) approaches 0. Figure 2 shows how Chebyshev series
approximate exp(x).

C. Logarithmic Functions

Logarithmic Functions can be represented using Chebyshev
series in Newton form explained previously in Section III.
Newton form of Chebyshev better approximates the function
f(x) = log(x). The error of this approximation approaches O
as n — oo. The Newton form uses the divided difference to
calculate the coefficients of the interpolating polynomials. This
way of calculating the coefficients is time consuming.

Using Chebyshev nodes in Newton form to approximate
f(x) = log(x) on [0,4] will gives the better approximation as
shown in figure 3.

VI. COMPARISON BETWEEN TAYLOR AND CHEBYSHEV
Taylor series is one of the common way that is being used
to approximate functions. It is also called power series as it

303



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

expix)
P1(x)
P2(x}

Fig. 2. Approximating exp(x) using Chebyshev

Togixy
P1Ge)
P24
P3{x)
[T

8 8,5 1 1,5 2 2,5 3 3.5 4

Fig. 3. Approximating log(x) using Chebyshev

is approximate any function as a series of powers. It has a
lot of other benefits such as that the Taylor coefficients has
been used to derive the characterisation of Laplace transform
as shown by Pavlovic and Escardo[11].

The main aim of using Chebyshev nodes for approximation
is that it will ensure less level of error than Taylor Series.
Taylor series is faster than Chebyshev in calculating the
interpolating polynomial as Chebyshev uses sin/cos in its
calculation, which consumes time. This all will be shown in
Sections VI-B and VI-C.

A. Taylor Series

Taylor series has specific formula for different kind of
functions. In this Section, the formula of cos(x),In(x+1), and
exp(x) will be shown.

There is a general formula for Taylor approximation. This
formula along with the error for Taylor series can be found in
the Taylor’s Theorem below defined by Anton[1].

Theorem 8: (Taylor’s Theorem) Suppose that a function f
can be differentiated n + 1 times at each point in an interval
containing the point a, and let

f//(a) (I _ a)Q

+ fla)(z—a)+—;
) (q
+ ...+fT!()(x—a)"

pu(®) = f(a)

be the nth Taylor polynomial about x = a for f. Then for each
x in the interval, there is at least one point ¢ between a and x
such that

(n+1) c ’
—pulz) = f(nfl()!)(xia)nﬂ (11)
B. Time Complexity

Many experiments have been carried out to measure the time
for Taylor series, and Chebyshev polynomial to approximate
a function. The results of all these tests and experiments have
shown that the Taylor series is faster than any polynomial
interpolation using Chebyshev nodes.

The time measured in the implementation is in milliseconds.
Then, transfered into seconds by multiplying the answer by
1073, So, the time will be affected by any processes run by
the computer during the run time of the program.

For exp(x) and cos(x), the interpolating polynomials are
calculated in Lagrange form that is why they are included
in one table. On the other hand, In(x+1) is calculated using
Newton form. In Newton form, the coefficients are calculated
using divided difference. Divided difference is time consuming
and it will take long time to compute.

It can be concluded that Taylor series is faster than polyno-
mial interpolation using Chebyshev nodes. However, if it has
been assumed that the cos values of the Chebyshev nodes is
been already calculated, then the time complexity will change
and will make the Chebyshev approximate functions faster.
This will works only in the Lagrange form of Chebyshev
approximation as the more time is spent in the evaluating of
cos. On the other hand, this will not affect the Newton form
of the Chebyshev approximation as it spends large amount of
time in the divided difference calculations of the coefficients.

In the next Section it will be proved that the error for
Chebyshev is much smaller than the error in Taylor.

C. Error Analysis

In the previous Section, it has been found that the Taylor
series is faster than Chebyshev in time. However, in this
Section we will prove that Chebyshev will ensure much
smaller error than Taylor when the cos/sin values are not
recorded. However, if the cos/sin values are recorded then
Chebyshev will be faster if it is represented in Lagrange form.

304



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

TABLE I
TAYLOR VS. CHEBYSHEV ERROR VALUES FOR COS(X) AND EXP(X)

exp(x) cos(x)

n Chebyshev Taylor Chebyshev Taylor
0 | 27182 27182 || 1 0.841
5 | 0.0001 0.0037 || 0.00004 0.0007
10 | 6.65x 10711 6.80 x 1078 || 2.44x 10711 2.10 x 1078
15 | 3.96x 10718 1.29% 10713 1.45% 10718 258x 1071
20 | 5.07x 1026 532x 10720 || - 1.88x 1072%  1.64x 10720
25 | 2.008x 1073*  6.74x 10727 || 7.38x 1073° 1.34x 10727
30 | 3.07x 10743 3.30x 10734 1.13x 10743 1.02x 10734
TABLE II

TAYLOR VS. CHEBYSHEV ERROR VALUES FOR LOG(X)

exp(x)

n | Chebyshev Taylor
0 |05 1
5 | 0.0001 1
10 | 1.19x 1077 1
15 | 1.16x 1071° 1
20 | 1.13x 10713 1
25 | L.11x 10716 1
30 | 1.08x 1071 1

The experiments for error analysis are carried out using
Java. The data type used to store the error is Big Decimal. Big
Decimal data type in Java allows us to have more accurate
results. It provides for immutable arbitrary-precision signed
decimal numbers. However, the results that will be shown
will be rounded to suitable number of decimals for viewing
purpose. The error calculation for both approximation ways
can be seen in Tables I and II.

When calculating the error for Taylor series, some assump-
tion has been made. For the Taylor’s error equations in VI-A,
the following values has been given to the variables: ¢ = 1, a
= 0 and x = 1. These values have been chosen to make the
comparison between Taylor and Chebyshev as fair as possible.

On the other hand, the range for Chebyshev approximation
varies. For f(x) = cos(x) and f(x) = exp(x), the range used in
the error calculation is [-1,1]. However, for f(x) = In(x), the
range used is [0,1].

It can be concluded from this Section, that Chebyshev
will ensure smaller error that Chebyshev. So, Chebyshev
approximates continuous functions much better than Taylor.

VII. OTHER OPERATIONS ON CHEBYSHEV POLYNOMIALS

In this Section, a way of using Chebyshev to represent com-
plex functions is described. Complex functions, is a mixture of
the elementary functions discussed in Section V. Furthermore,
complex function can be defined by doing an operation be-
tween two or more elementary functions. Operations between
functions vary; it can be addition, subtraction, multiplication,
division and composition. An example of such functions can

exp(x)
sin(x)

Java programming language and C programming language
has been used to implement operations such as addition,
subtraction, multiplication, division, and composition. Anton
has defined in [1] the basic operations on functions. The
following is his definition on operations between functions.

, log(exp(x)), and cos(x) x log(x).

Definition 9: Given functions f and g, their sum f + g,
difference f - g, product f - g, and quotient f/g are defined
by

o (f+2)x) =1(x) + g(x)

o (-9 =1(x) - g(x)

o (f-2)x)=1(x) - g(x)

o (f/2)x)=1(x)/g(x)

For the functions f + g, f - g, and f - g the domain is defined
to be the intersection of the domains of f and g, and for f/g
the domain is this intersection with the points where g(x)=0
excluded.

D’Aguanno, Nobile, and Roman has implemented some of
these operations in FORTRAN [3].

A. Addition and Subtraction

In this Section, an explanation of how to approximate
functions such as exp(x) + cos(x) or cos(x) - log(x) using
Chebyshev is explained. As mentioned in Section V, elemen-
tary functions can be approximated by Chebyshev series. So,
for functions like exp(x) + sin(x), we will have a Chebyshev
series for each term. To approximate the whole function f(x)
= exp(x) + cos(x), an addition operation must be applied to
the two Chebyshev series. This has been implemented using
Java, and it is proved to work. An addition operation can be
applied to two or more Chebyshev series of any orders.

For example, in adding two Chebyshev polynomials
Ty(x) = —1.0 + 2.022 and Ts(x) = 5.0x — 20.02° + 16.02°.
The result of this computation is —1.0 4+ 5.0z + 2.022 —
20.023416.02°. So, any two functions can be added together.

This is also the case when dealing with subtraction opera-
tion. So, any complex function ,which contains a mixture of
the elementary functions, with addition or subtraction opera-
tions can be approximated or represented using Chebyshev.

Figure 4 shows how Chebyshev is able to approximate
the function f(x) = exp(x) + cos(x) and Figure 5 shows
how Chebyshev is able to approximate the function f(z) =
exp(z) — cos(x).

B. Division and Multiplication

The long division between Chebyshev polynomials has
been implemented. The result of this operation will give two
polynomials. One of them is the answer of long division and
the other one is the reminder of this division. For example,
when trying to divide Tg(x) = 322°% — 48z + 1822 — 1 by
Ts(z) = 423 — 3, then the result of such operation is 823 —6x
and the reminder is -1.

Therefore, three methods have been written. One, to handle
the division process. The second one is to return the answer
of the division, and the last one will return the reminder of
the division.

On the other hand, multiplication between Chebyshev poly-
nomials has been implemented as well. The answer of this will
give the result polynomial. The process involves multiplying
each term from one polynomial by all the terms in the second
polynomial. Then, an addition operation shall be done to add
the terms with the same power.

305



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

enpix} + cos(x}
exp_cos..appri_of _order_2

-1 -8.5 a 8.5 1

Fig. 4. Approximating exp(x) + cos(x) using Chebyshev

enplx} - cosx)
exp_cos_apprx_of _order_2

-8.5

-1 -8.5 a 6.5 1

Fig. 5. Approximating exp(x) - cos(x) using Chebyshev

If we have the two polynomials: 322 + 2 4+ 10 and 2z2 +
3z + 2, then the result of multiplying these polynomials is
: 20.0 + 36.0x + 35.002 + 15.02% + 6.0x. Figure 6 shows
how Chebyshev is able to approximate the function f(z) =
exp(z) * cos(x).

As a result of that, functions that consist of the multi-
plication or division between elementary functions can be
approximated using Chebyshev. Moreover, this will allow us

. . exp(x
to approximate functions such as p(z)
cos(x)

or exp(x) X log(x).

-1 -8.5 a 8.5 1

Fig. 6. Approximating exp(x) * cos(x) using Chebyshev

C. Composition

One of the most difficult functions to approximate is the one
that has a composite operation within its terms. A composite
is an operation on functions. It can be written as f(g(x)) or
(f o g)(x). The following is a definition of composition by
Anton[1].

Definition 10: Given functions f and g, the composition
of f with g, denoted f o g, is the functions defined by

(fog)(x) = f(g(x))

The domain of fog is defined to consist of all x in the domain
of g for which g(x) is in the domain of f.

At the end, it has been managed to implement composition
of functions using Java. For example, if f(g(x)) need to be
calculated where f(x) = Ty(z) = 1.0 — 8.022 + 8.0z* and
g(x) = T3(z) = —3.0z + 4.0z3. Then the result of the
composite operation is f(g(x)) = 1.0 — 72.02% + 840.02* —
3584.02% + 6912.02% — 6144.0x'° + 2048.02'2. Figure 7
shows how Chebyshev is able to approximate the function
f(x) = exp(cos(x)).

This result will enable us to use the composition operation
between any two functions. Therefore, a composite function
which consists of elementary functions can be approximate
using Chebyshev. Simply, by approximating each function
alone using Chebyshev series. Then the composite of theses
two approximation can be calculated.

D. Integration

These polynomials have important properties such as the
least deviation from zero property, the recurrence relation
which is an important property for efficient computation, and
the fact that there are continuous. These properties will make
the integration over these polynomials and there series more
efficient and easy.

306



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:7, 2007

" ewplcostn}y — —
enp_cos..appri_of order_2 ——

Fig. 7. Approximating exp(cos(x)) using Chebyshev

The error of evaluating the integration of these functions
over a closed interval [a,b] can be easily estimated. This is
due to that we can approximate the functions by Chebyshev
with a defined error bound.

E. A Counter-Example

In the previous Sections, the functions that we looked at
are only continuous functions. So, in this Section we will be
looking at discontinuous functions. The discontinuous function
that is looked at here is the step functions. Step functions can
be defined as follows on [-1,2):

-1 -1<z<0
flzy=¢ 0 0<z<l1
1 1<x<?2

The function need to be differentiable n+1 times in order
for Chebyshev to approximate it. However, step functions
can not be differentiated n+1 time. Thus, Chebyshev cannot
approximate step functions. As a result, Chebyshev cannot be
used directly to represent discontinuous functions. Note that
we could use piecewise approximation in the case of functions
that are discontinuous at only finitely many points.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have described the polynomial approxima-
tion to functions. Partically, it has been shown that Chebyshev
can approximate functions with much less error than Taylor.
Also, if we record sin/cos values needed, we will get the results
in much less time than Taylor series.

Chebyshev play a great role in the Approximation The-
ory. Moreover, Chebyshev can only approximate continuous
functions on the interval [a,b]. However, it has been shown
in Section VII-E that it can not approximate discontinuous
functions such as step functions. This is due to that the

functions are not differentiable n+1 times when we are trying
to approximate it with n order Chebyshev for some integer n.

Chebyshev polynomials and series have been shown to
be superior in terms of accuracy and computational effi-
ciency over Taylor series. Also, it has been shown that they
can perfectly approximate elementary funcitons, and com-
plex functions(addition, subtraction, multiplication, division,
or composition of two or more elementary functions). In
addition we can easily integrate these functions.

One interesting line of further work is to see whether
we can incorporate some of the ideas of Brisebarre, Muller,
and Tisserand[2] on machine-efficient Chebyshev Polynomials
Approximations. There are also applications to the solution of
integral equations that might prove faithful.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Len Freeman for his
review feedback.

REFERENCES

[1] Howard Anton, Calculus With Analytic Geometry, Fourth edition. Anton
Textbooks, Inc., 1992.

[2] Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand, Comput-
ing Machine-Efficient Polynomial Approximation. ACM Transactions on
Mathematical Software, Number 2, Volume 32,pp. 236-256 ,2006.

[3] B. D’Aguanno, A. Nobile, and E. Roman, CHPACK: A Package For
The Manipulation of Chebyshev Approximations. ~ Computer Physics
Communications, Number 29, pp. 361-374 ,1983.

[4] David Kincaid and Ward Cheney, Numerical Analysis: Mathematics of
Scientific Computing. Brooks/Cole, 2002.

[5]1 Ker-1 Ko, On the Computational Complexity of Best Chebyshev Approx-
imations. Complexity, Number 2,pp. 65-120 ,1986.

[6] Ker-I Ko, Complexity Theory of Real Functions. Boston: Birkhauser,
1991.

[7] Roland E. Larson, Robert P. Hostetler, Bruch H. Edwards and David E.
Heyd, Calculus with Analytic Geometry. D. C. Heath and Company,
1994.

[8] J. Mason, Chebyshev Polynomials: Theory and Applications. Kluwer
Academic, 1996.

[9] John C. Mason, and David C. Handscomb, Chebyshev Polynomials. CRC
Press Compan, 2003.

[10] Jean-Michel Muller, Elementary Functions: Algorithms and Implemen-
tation. Birkhauser, 1997.

[11] D. Pavlovic and M.H. Escardo, Calculus in Conductive Form. Thir-
teenth Annual IEEE Symposium on Logic in Computer Science, pp. 408-
417 ,1998.

[12] Marian Pour-El and J. Ian Richards, Computability in Analysis and
Physics. Berlin: Springer-Verlag, 1989.

[13] Theodore J. Rivlin, Chebyshev Polynomials: from approximation theory
to algebra and number theory. New York, Chichester : Wiley, 1990.

Mohammed A. Abutheraa Abutheraa is currently a PhD student in the
School of Computer Science at the University of Manchester. He has got
his Bachelor of Science degree on Software Engineering from the same
University. His main research topic is computer arithmetic. He is specifically
working in Exact Arithmetic.

David Lester Lester is a Lecturer in the Department of Computer Science at
the University of Manchester. He is member of Advanced Processor Techology
and Foundation of Mathematics research groups.

307



