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Abstract—Graph coloring is an important problem in computer 

science and many algorithms are known for obtaining reasonably 
good solutions in polynomial time. One method of comparing 
different algorithms is to test them on a set of standard graphs where 
the optimal solution is already known.  This investigation analyzes a 
set of 50 well known graph coloring instances according to a set of 
complexity measures. These instances come from a variety of 
sources some representing actual applications of graph coloring 
(register allocation) and others (mycieleski and leighton graphs) that 
are theoretically designed to be difficult to solve. The size of the 
graphs ranged from ranged from a low of 11 variables to a high of 
864 variables. The method used to solve the coloring problem was 
the square of the adjacency (i.e., correlation) matrix. The results 
show that the most difficult graphs to solve were the leighton and the 
queen graphs. Complexity measures such as density, mobility, 
deviation from uniform color class size and number of block 
diagonal zeros are calculated for each graph.  The results showed that 
the most difficult problems have low mobility (in the range of .2-.5) 
and relatively little deviation from uniform color class size.  
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I. INTRODUCTION 

SSUME a graph G=(V,E) where V is a set of vertices 
and E is a set of edges connecting some subset of n(n-

1)/2 pairs of vertices. The idea is to assign each vertex a color 
in such a way that no two adjacent vertices (connected by an 
edge) have the same color. In addition, the optimal solution 
uses the minimum number of colors possible (k*). This is the 
well-known graph coloring problem which is an np-hard 
problem[1]. A graph G can be represented by an binary 
symmetric matrix called the adjacency matrix (A) where a 1 in 
row i and column j represents an edge in the graph between 
vertex i and j and a 0 representing the absence of an edge in 
G. A decision function f(A) is a polynomial function in A that 
allows a graph coloring algorithm to choose a pair of vertices 
to combine (for example f(A)=max(A2))[2,3,4,5,6]. Each (i,j)  
element in A2 represents the number of shared constraints 
between vertices i and j.   Combining vertices that share the 
most constraints often leads to an optimal solution. The 
process is repeated until all vertices are combined.  
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A solution vector (s) is a mapping of each vertex xi into an 
integer si such that 1<= si <= k while ensuring that si ≠ sj when 
A[i,j] = 1.  If an optimal solution vector s* is permuted such 
that all equivalence classes are grouped together and the 
corresponding A matrix is permuted accordingly, it is seen 
that the A matrix takes on a block diagonal form.  A zero 
inside the block diagonal represents a good decision which 
leads towards an optimal solution. A zero outside the block 
diagonal or any zero of a suboptimal solution may be good or 
bad and may or may not lead to an optimal solution. A typical 
problem of n=100 variables has n2 = 10,000 elements each of 
which is a zero or a one. For example a system may have 5000 
zeros of which 3000 are inside the block diagonal (zin) and 
2000 which are outside (zout). Each zero represents a possible 
decision and at each step of the solution only one of these can 
be chosen. Clearly there can be a large number of choices and 
some kind of decision function is required to proceed towards 
a solution. A pair association {ij} occurs when a pair of 
variables xi and xj are combined into the same equivalence 
class. Generally speaking the lower the solution cardinality (k) 
the greater the  number of zeros in the blocks of the block 
diagonal form. 

The coloring instances  to be analyzed were obtained from 
an archival website at Carnegie-Mellon University that is 
dedicated to this purpose and has compiled these graphs from 
a variety of sources such as the Stanford GraphBase[7]. This 
site includes a variety of graphs such as book graphs, game 
graphs, miles graphs and queen graphs[7] all represented in 
DIMACS (Discrete Mathematics and theoretical Computer 
Science) format. The selection process started out with all 79 
graphs currently on the website and eliminated those were 
either (1) not in valid DIMACS format or (2) were not a valid 
graph or (3) did not have a known optimal coloring solution. 
This process eliminated a total of 29 of the graphs. The 
remaining 50 graphs were analyzed using the gcolor package 
of the R Language[8]. The gcolor (graph color) package of R 
Language provides tools for importing both ASCII and 
compressed binary DIMACS files into a matrix data structure 
in the R computing environment. The R Language gcolor 
package also provides the coloring algorithm (ineq) which 
implements the f(A)=max(A2) (correlation matrix) coloring 
algorithm. The results are shown in Tables I and II.  
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TABLE I  RESULTS OF DIMACS GRAPH COLORING ANALYSIS - PART 1 
 
GRAPH SIZE(n) k*OPTIMAL/kfound density/mobility zozi/zratio 
anna 138 11/11 .05/1.54 4.01/2.08 
david 87 11/11 .11/1.18 5.10/1.61 
homer 561 13/13 .01/2.24 4.16/2.49 
huck 74 11/11 .11/1.35 6.32/1.34 
jean 80 10/10 .08/1.57 3.66/1.98 
fpsol21 496 65/65 .09/1.38 3.64/12.69 
fpsol22 451 30/30 .09/.78 7.01/3.43 
fpsol23 425 30/30 .10/.73 8.32/2.91 
games120 120 9/9 .09/.85 6.39/1.11 
inithx1 864 54/54 .05/1.25 3.41/11.63 
inithx2 645 31/31 .07/.72 8.01/3.21 
inithx3 621 31/31 .07/.69 8.35/3.07 
mulsol1 197 49/49 .20/1.23 6.37/5.30 
mulsol2 188 31/31 .22/.75 10.96/2.02 
mulsol3 184 31/31 .23/.73 11.08/1.97 
mulsol4 185 31/31 .23/.73 11.08/1.97 
mulsol5 186 31/31 .23/.73 8.38/2.55 
myciel3 11 4/4 .33/1.10 1.08/1.29 
myciel4 23 5/5 .27/.81 1.87/1.28 
myciel5 47 6/6 .21/.60 2.27/1.44 
myciel6 95 7/7 .17/.44 3.10/1.42 
myciel7 191 8/8 .13/.32 3.40/1.58 
miles250 128 8/8 .05/1.32 4.94/1.28 
miles500 128 20/20 .14/1.09 12.13/1.31 
miles750 128 31/31 .26/.94 17.09/1.27 
miles1000 128 42/42 .39/.84 18.90/1.28 
miles1500 128 73/73 .63/.90 20.70/1.23 
zeroin1 211 49/49 .18/1.26 4.82/6.86 
zeroin2 211 30/30 .16/.89 3.38/5.76 
zeroin3 206 30/30 .17/.87 3.65/5.37 

  
 

II. RESULTS 
The total of 50 graphs selected for analysis was further 

subdivided into two groups: those which had a 100% success 
rate (Table I) and those which had less than 100% success rate 
(Table II).  For each instance the size of the graph (number of 
variables (n)), the known optimal coloring solution (k*), the 
actual coloring solution found by the algorithm (k), the 
constraint density (d), the average vertex mobility (k/(d*n)), 
the deviation from uniform color class size (zratio=zin/zmin) 
and the ratio of the number of zeros outside the block diagonal 
to inside the block diagonal (zozi=zout/zin) were tabulated. 
The constraint density (d) is the number of ones in the A 
matrix divided by the maximum possible number (n)(n-1)/2. 

 
 

 
The vertex mobility (k/(d*n)) is the optimal number of 

color classes divided by the average vertex degree (n*d) and 
reflects the ability of a vertex to move between color classes 
(a measure of how constrained the system is).  

The parameter zin is the number of zeros in the block 
diagonal of an optimal solution whereas zout is the number of 
zeros not in the block diagonal of an optimal solution and zmin 
is the minimum number of zeros in the block diagonal for a 
given k (as close to a uniform color class size as possible).  A 
total of 30 out of the 50 graphs successfully solved using the 
f(A)=max(A2) algorithm are found in Table I (including 
inithx1 which has 864 vertices).  
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TABLE II  RESULTS OF DIMACS GRAPH COLORING - PART 2 
 

GRAPH SIZE(n) k*OPTIMAL/kfound density/mobility zozi/zratio 
le450_5a 450 5/7  .06/.28 4.64/1.17 
le450_5b 450 5/5* .06/.20 3.72/1.00 
le450_5c 450 5/7 .10/.16 4.73/1.10 
le450_5d 450 5/5* .10/.12 3.52/1.00 
le450_15a 450 15/17 .08/.47 13.27/1.10 
le450_15b 450 15/16 .08/.44 13.27/1.03 
le450_15c 450 15/24 .16/.32 17.78/1.07 
le450_15d 450 15/23 .17/.31 17.93/1.01 
le450_25a 450 25/25* .08/.68 17.56/1.24 
le450_25b 450 25/25* .08/.68 20.47/1.07 
le450_25c 450 25/29 .17/.38 21.77/1.06 
le450_25d 450 25/29 .17/.37 21.86/1.05 
queen5 25 5/5* .51/.39 1.44/1.00 
queen6 36 7/8 .45/.50 3.07/1.09 
queen7 49 7/10 .40/.51 4.51/1.10 
queen8 64 9/11 .36/.48 5.77/1.05 
queen8x12 96 12/13 .30/.46 7.95/1.02 
queen9 81 10/11 .32/.42 6.12/1.05 
queen11 121 11/14 .27/.43 8.88/1.03 
queen13 169 13/16 .23/.41 10.90/1.03 

 
  
The f(A)=max(A2) algorithm showed a 100% success rate 

on all graphs except for the set of Leighton graphs(4/12=33%) 
and the set of queen graphs(1/8=12.5%). This raises several 
important questions. First of all, what is inherently different 
about the graphs in Table 2 that makes them more difficult to 
solve? Clearly it is not simply the size of the problem (note 
queen6 with only 36 variables) although that might have 
something to do with it.  Secondly, it might be asked (for 
example), why is it possible that a graph such as le450_5a 
cannot be solved by a particular algorithm while le450_5b 
(which is the same size and perhaps differing by a few edges) 
can be solved?  

For insight into these questions it is helpful to go back to 
the f(A)=max(A2) algorithm and see what that tells us about 
the problems it can solve.  The f(A)=max(A2) algorithm 
solves all complete k-partite graphs and all graphs reasonably 
close to complete k-partite (derived by removing some subset 
of edges). These are highly overconstrained systems with 
unique optimal solution (vertex mobility is zero).  If enough 
edges are removed from a complete k-partite system it will 
move from being overconstrained to perfectly constrained and 
finally  to an underconstrained system which is easily solved 
because there are so many optimal solutions. Somewhere in 
between there has to be a maximum difficulty which is 
somewhere in the region of a perfectly constrained system. In 
terms of vertex mobility it is expected that this would be near 
one (at vertex mobility = 1 the average vertex degree equals 
the optimal number of color classes). 

Another important complexity metric is the difference 
between k* (optimal) and k (found). By this metric the most 
difficult istance would be le450_25c which had a difference 
kfound-k*optimal = 24-15 = 9. This is apparently a result of a 
cascading effect of making a poor decision near the start of 
the solution process. The equivalence class subset 
algorithm[6] has been developed to overcome this limitation 
of the f(A)=max(A2) decision function.   It is based on the fact 
that every problem that cannot be solved using the 
f(A)=max(A2) decision function is near (in some sense) to one 
that can be solved by that decision function.   

It should also be noted that for all complete k-partite graphs 
the zozi ratio is zero since there are no zeros outside the block 
diagonal. Any graph with zozi ratio of zero is trivially 
solvable. This  implies that the most difficult systems to solve 
would be expected therefore have a high zozi ratio. A high 
zozi ratio can be achieved by either maximizing zo or 
minimizing zin. Maximizing zo has already been considered 
so the only other method is to reduce zin which brings us to 
the concept of the uniform color class size (which minimizes 
zin which is the number of zeros in the block diagonal). 
Notice that in Table 2 the zratio is very close to 1 while in 
Table 1 it is significantly greater than 1. zratio is the ratio of 
zin to zmin which is a measure of deviation from uniform 
color class size. zratio along with the vertex mobility are 
extremely important measures of complexity for graph 
coloring problems as will be seen in Figures 3 and 4.  
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

539

 

 

0 5 10 15

0
20

40
60

80

correlation

co
un

t

inside block diagonal
outside block diagonal

 
Fig. 1  A2 values for the queen5 matrix 

 

III. DISCUSSION 
Considerable discussion has been put forth on the ones 

density of the A matrix and the number of zeros inside and 
outside of the block diagonal. From a  probabilistic viewpoint 
the odds of making a good decision depends on the ratio of 
good to bad which is related to the number of zeros inside and 
outside of the block diagonal. The decision function works 
most of the time but it most error prone for moderately low 
density systems. By contrast, in a complete k-partite system 
(the opposite extreme) there are only good decisions. For any 
given system and optimal solution vector s* there will be a 
zozi ratio given by equation (1): 

 
           zozi = zout/zin                                                                                        (1) 

 
The higher the zozi ratio the more difficult the problem.  

Recall for example that the easiest problems all have a zozi 
ratio of zozi=0. Difficulty can be defined as the average time 
complexity of solving a problem or as the difficulty of 
guessing at random and getting the correct answer.  This leads 
to the question of how it is possible to construct problems 
which have the highest ratio of zeros outside to zeros inside 
the block diagonal. Simply decreasing the ones density does 
not necessarily accomplish the desired result as it can result in 
the trivial problem where the ones density is zero. Referring to 
equation (1) it can be seen that to maximize the zozi ratio it 
would be necessary to consider both maximizing the 
numerator and minimizing the denominator of the fraction. 
The formula for calculating the minimum number zeros in the 
block diagonal is given by equation (2): 
 

zmin = k*(n/k)2 = n2/k                                       (2)          
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                     Fig. 2  A2 values for the queen6 matrix 
 
which gives approximately the minimum number of block 
diagonal zeros for solution cardinality k (exactly if n is 
divisible by k). This tells us that the minimum number of 
zeros on the block diagonal occurs when the size of all the 
equivalence classes are the same (n/k) which is the case of 
uniform color class size. 

To illustrate these concepts further consider Figure 1 which 
shows the result of calculating the correlation decision 
function f(A)=max(A2) for the queen5 graph. The solid curve 
shows the values of the A2 matrix corresponding to vertices in 
the same color class of an optimal solution. On the other hand 
the dashed curve shows the values of the A2 matrix 
corresponding to vertices that are not in the same color class 
of an optimal solution. It is seen by this that the decision 
function can reliably distinguish (at least in this case) between 
vertices in the same color class of an optimal solution and 
those that are not. This is typical of an easy problem. However 
if the same calculation is performed on the queen6 graph the 
distinction is not so clear. In fact, it is virtually impossible for 
f(A)=max(A2) to tell the difference between the categories 
because they look the same. This is characteristic of a difficult 
problem.  

There is another important observation concerning Figures 
1 and 2 and it involves the zozi ratio. In Figures 1 and 2 it can 
be seen that zo is the area under the dashed line curve while zi 
is the area under the solid curve. In Figure 1 the zozi ratio is 
near 1 (1.44) but for Figure 2 it is significantly greater (3.07) 
which is another  indication of increased problem difficulty.  
Looking at the zozi ratio in Table II shows that there is not a 
single easy problem among them based on the zozi metric 
(queen5 was actually the easiest of all).           
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Fig. 3  Plot of zratio versus vertex mobility  
 

Figures 3 and 4 show the plots of some key complexity 
measures across all 50 graphs in the study. The points marked 
with an asterisk are from Table I (easy) and those marked with 
with an h (hard) are from Table II. 

It has been noted that that one of the main measures of 
problem complexity is  the ratio of the number of zeros inside 
the block diagonal zin to those outside the block diagonal zout 
which can also be called the zozi ratio. It was further 
determined that the problems with the smallest number of 
zeros in the block diagonal would also be among the most 
difficult and this was corroborated by experimental results.  

Figure 3 shows two complexity measures (vertex mobility 
and zratio) and how they differ between Tables I and II.  
Figure 3 shows very clearly the most difficult Table II (h) 
problems clustered in the lower left hand corner of the graph. 
All of the hard problems from Table II had very low deviation 
from uniform color class size. On the average the hard 
problems had about a 6% deviation from uniform color class 
size while the easy problems from Table I averaged about a 

200% deviation (this effect is predictable from the nature of 
the decision function  f(A)=max(A2)).  

The other important factor is the mobility which was very 
low (<1) for all of the graphs in Table II. Also notice the wide 
range of mobility values for the Table I graphs as compared to 
the narrow range of the Table II graphs (this effect is 
predictable from the nature of the decision function  
f(A)=max(A2)). It is clearly seen in Figure 3 for example that 
the most difficult (h) problems had a very narrow range of 
vertex mobility between about .2-.5. This is exactly in 
accordance with the results in[2] which analyzed the 
complexity of randomly generated graphs of size n=100 and 
solution caridinality k=3. The only difference was that in[2] 
the range of mobility was shifted slightly higher such that the 
most difficult problems were in the vertex mobility range of 
.375-.75.  However it does help to provide some confidence  
that randomly produced graphs can give a reasonable 
approximation to what might be considered the general case.    
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Fig. 4  Plot of Graph Constraint Density versus Vertex Mobility  

 

 Figure 4 illustrates the density versus the mobility and 
shows how the hard problems of Table II are spread out over a 
wide range of constraint density values. In addition Figure 4 
does give an indication that while hard problems can be found 
over a wide range of constraint density values they are more 
likely to occur at lower constraint densities (as would be 
predicted). As seen in Tables I and II the values of both 
density and zozi vary widely and therefore by themselves are 
not clear indicators of problem difficulty.  Hard problems can 
occur over a wide range of zozi values however they are more 
likely to occur at the higher zozi values. The best predictor od 
difficulty appears to be a combination of low mobility, high 
zozi and low zratio (e.g., comparing  le450_25a,b,c,d). 

A summary of the results in Tables I and II is given in Table 
III by type of graph. Out of the 50 graphs in the study 35/50 
or 70% were solved by the decision function  f(A)=max(A2). 
All of the remaining queens problems in Table II were 
subsequently solved using a more sophisticated version of 
f(A)=max(A2) called the equivalence class subset algorithm 
(ecsa) which is described in[6] although it took many 
iterations to do so. If these were added to the graphs 
successfully solved by f(A)=max(A2) it would raise the 
overall success rate to 84%. A complete discussion of the 
application of ecsa to the queen graphs and the unsolved 
Leighton graphs of Table II have been deferred to a future 
study.   
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TABLE III  SUMMARY OF RESULTS FOR ALL 50 DIMACS COLORING INSTANCES  
  

CATEGORY SIZE (n) k OPTIMAL SUCCESS PERCENT 
literature 74-561 11-13 5/5 100% 
fpsol 425-496 30-65 3/3 100% 
games 120 9 1/1 100% 
inithx 621-864 31-54 3/3 100% 
mulsol 184-197 31-49 5/5 100% 
myciel 11-191 4-8 5/5 100% 
miles 128 8-73 5/5 100% 
zeroin 206-211 30-49 3/3 100% 
leighton 450 5-25 4/12 33% 
queen 25-169 5-11 1/8 12% 

 

IV. SUMMARY AND CONCLUSIONS 
This investigation analyzes a set of 50 well known graph 

coloring instances according to a set of complexity measures. 
These instances come from a variety of sources some 
representing actual applications of graph coloring (register 
allocation) and others (mycieleski and leighton graphs) that 
are theoretically designed to be difficult to solve. The size of 
the graphs ranged from ranged from a low of 11 variables to a 
high of 864 variables. The primary method used to solve the 
coloring problem was the square of the adjacency (i.e., 
correlation or A2) matrix.  

Complexity measures such as density, mobility, deviation 
from uniform color class size and number of block diagonal 
zeros were calculated for each graph.  The results show that  
the most difficult to solve were the leighton graphs and the 
queen graphs. The results showed that the most difficult 
problems have low mobility (in the range of .2-.5),  relatively 
little deviation from uniform color class size (zratio close to 1) 
and high zozi ratio. Based on percentages the queen graphs 
were the most difficult, despite their relatively small size. A   
discussion of the unsolved queen graphs and the unsolved 
Leighton graphs of Table II is deferred to a future study.  

The results in this investigation were obtained using the 
gcolor (graph color) package in the R Language programming 
environment[8]. The gcolor (graph color) package of R 
Language provides tools for importing both ASCII and 
compressed binary DIMACS files into a matrix data structure 
in the R environment. The R Language gcolor package also 
provides the coloring algorithm (ineq) which implements the 
f(A)=max(A2) decision function  coloring algorithm.   
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