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Abstract—A dynamic of Bertrand duopoly game is analyzed, 

where players use different production methods and choose their 

prices with bounded rationality. The equilibriums of the corresponding 

discrete dynamical systems are investigated. The stability conditions 

of Nash equilibrium under a local adjustment process are studied. The 

stability conditions of Nash equilibrium under a local adjustment 

process are studied. The stability of Nash equilibrium, as some 

parameters of the model are varied, gives rise to complex dynamics 

such as cycles of higher order and chaos. On this basis, we discover 

that an increase of adjustment speed of bounded rational player can 

make Bertrand market sink into the chaotic state. Finally, the complex 

dynamics, bifurcations and chaos are displayed by numerical 

simulation. 

 

Keywords—Bertrand duopoly model, Discrete dynamical system, 

Heterogeneous expectations, Nash equilibrium. 

I. INTRODUCTION 

ERTRAND, a French mathematician, was first to 

introduce the Bertrand model which was widely use 

mathematical representations of duopoly market [1]. Bertrand 

model is a model of price competition between duopoly firms 

which results in each charging the price that would be charged 

under perfect competition, known as marginal cost pricing. The 

Bertrand model, in which each duopoly firm sets its optimal 

product’s price by competitors’ price, is a fully rational game 

based on the following assumptions: 

There are at least two competitive firms producing 

homogeneous products; each firm has a complete knowledge of 

the market demand function; all firms compete in price, and 

choose their respective prices simultaneously; consumers buy 

everything from the cheaper firm or half at each, if the price is 

equal.  

Under these conditions of full information all firms will try 

to reduce their products price, until the product is selling at no 

profit. It is a Nash equilibrium. This surprising result is referred 

to as the Bertrand paradox. The Bertrand paradox rarely 

appears in practice because real products are almost always 

differentiated in some way other than price. One way of 

avoiding the paradox is to allow the firms to sell differentiated 

products [2]. Bertrand model assumed the each player’s 

behavior is fully rational. But it is impossible that all players are 
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naive. There, different players’ expectations are proposed: 

naive player, bounded rational player and adaptive [3]-[5]. So 

each player adopts his expectations to adjust his product’s price 

in order to maximize his profit. 

In the past few years, several works of Bertrand model have 

been done. Robert [6] considered a model of Bertrand 

competition with fixed costs of entry or production. Walter and 

Elmar [7] analyzed a simple, repeated game of simultaneous 

entry and pricing. They report a surprising property of the 

symmetric equilibrium solution: If the number of potential 

competitors is increased above two, the market breaks down 

with higher probability, and the competitive outcome becomes 

less likely. More potential competition lowers welfare – 

another Bertrand paradox. Dufwenberg and Gneezy [8] studied 

the effects of the number of firms in a standard Bertrand 

competition framework with constant marginal cost and 

inelastic demand. In their experiments, price is above marginal 

cost for the case of two firms but equal to that cost for three and 

four firms. Carlos, Ana and Klaus [9] presented an evolutionary 

model of Bertrand competition in a market for a homogeneous 

good, where identical firms face a technology with decreasing 

returns to scale. They found that the dynamic process selects a 

strict subset of the Nash equilibrium of the underlying game, 

even under simple behavior. Lo and Kiang [10] applied 

“minimal” quantization rules to investigate the quantum 

version of the Bertrand duopoly with differentiated products. 

They found that while negative entanglement diminishes the 

profit of each firm below the classical limit, positive 

entanglement enhances the profit monotonically, reaching a 

maximum in the limit of maximal entanglement. Tao [11] 

considered a new type of share function in Bertrand model. 

Under his assumption, the firms can earn a positive profit in 

price competition no matter how many firms are present in the 

market. Yue, Samar and Zhu [12] considered a market where 

customers need to buy two complementary goods as mixed 

bundle, offered by two separate firms. They presented a profit 

maximization model to obtain optimal strategies for a firm 

making decisions under information asymmetry. Jason [13] 

studied a two-stage game with capacity precommitment 

followed by price competition where firms have incomplete 

information about their rival's marginal cost. The game has a 

Cournot outcome if and only if the lowest possible marginal 

cost is sufficiently high relative to the expected marginal cost. 

Andersson [14] analyzed the role of patience in a repeated 

Bertrand duopoly where firms bargain over which collusive 

price and market share to implement. He found that the least 

patient firm's market share is not monotone in its own discount 

factor. Fernanda and Flávio [15] considered an international 
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trade under Bertrand model with differentiated products and 

with unknown production costs. 

In this paper, we set up a Bertrand duopoly model with 

heterogeneous players and apply dynamic methods to 

investigate the dynamic behaviors of this duopoly game. The 

paper is organized as follows. In Section II, we determine a 

duopoly Bertrand model with heterogeneous expectations by a 

two-dimensional map. In Section III, we study the model of 

duopoly game. Explicit parametric conditions of the existence, 

local stability and bifurcation of equilibrium points will be 

given. In Section IV, we show the complex dynamic 

phenomenon of bifurcation, chaos and chaotic attractor by 

numerical simulations. 

II.  MODEL 

We consider that there are two firms which choose different 

prices for their products, respectively in an oligopoly market. 

Let 2,1),( =itp i
 represent the price of ith firm during period 

…,2,1,0=t . The quantity each firm sells 
iQ , a linear inverse 

demand function, is determined from the prices of their 

products in period t  [16]. 

 

,

,

122

211

dpbpaQ

dpbpaQ

+−=

+−=                            (1) 

 

where 0,0,0 >>> dba . The parameter d reflects the extent to 

which the two products are substitutes for each other. We 

assume that the firms have constant marginal costs equal to 
ic , 

and no fixed costs. Accordingly, the cost function is taken in the 

following form 

 

.2,1, == iQcC iii
                       (2) 

 

with above assumptions the profit of the ith firm in the single 

period is give by 

 

.2,1,)(),( 21 =−=Π iQcppp iiii
            (3) 

 

Hence ith firm’s price for period t+1 is decided by solving 

the optimization problem 
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where )1( +∗ tpi
represent the expectation of jth firm about jth 

firm’s price of product during period 1+t  ),2,1,( jiji ≠= . 

The marginal profit of the ith firm in period t is 
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This optimization problem has unique solution: 
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2
1
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Information in the market usually is incomplete, so players 

can use more complicated expectations such as bounded 

rationality and naive [3]. 

For the naive player, he determines price of production with 

his expectation of rival’s price which is the same as that 

previous period. Then the naïve player decides his output 

according to (6). 

 

)),(()1(
2
1 tdpbcatp jibi ++=+                      (7) 

 

The bounded rational player has no complete knowledge of 

market, hence he determines price of production with the 

information of local profit maximizers. He decides to increase 

(decrease) its price if it has a positive (negative) marginal 

profit. In [17], this adjustment mechanism has been called 

myopic by Dixit. Thus, the dynamic adjustment mechanism can 

be modelled as  
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where α  is a positive parameter which represents the speed of 

adjustment of ith firm. 

We assume firm 1 is a bounded rational player and firm 2 is a 

naïve player. With above assumptions, the duopoly game with 

heterogeneous players if described by a two dimensional 

nonlinear map ),(),( 2121 ppppT ′′→  defined as  
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where “′” denotes the unit-time advancement, that is, if the 

right-hand side variables are productions of period t, then the 

left-hand ones represent productions of period )1( +t . 

III. EQUILIBRIUM POINTS AND LOCAL STABILITY 

Because Bertrand model is a economic model, we only study 

the dynamic behavior of the nonnegative equilibrium points. 

The fixed points of the map (9) are obtained as nonnegative 

solution of the non-linear algebraic system 
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which is obtained by setting 2,1, ==′ ipp ii
in system (10). We 

have two fixed points of system (10) )2/)(,0( 20 bbcaE +=  

and ),( 211

∗∗= ppE where 
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Obviously, 
0E is a boundary equilibrium. The fixed point 

1E  

is a Nash equilibrium and has economic meaning when db >2 . 

For studying the local stability of equilibrium, the 

eigenvalues of the Jacobian matrix of the system (1) on the 

complex plane must be considered. The Jacobian matrix of 

system (1) at the point ),( 21 pp  has the form 

 

1 2 1 1

1 2

2

1 ( 4 )
( , )

0d
b

a bc dp bp dp
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=  
 

        (11)                            

 

Theorem 1 The boundary equilibrium 0E  of system (9) is a 

unstable equilibrium point. 

Proof. In order to prove these results, we consider the 

eigenvalues of Jacobian matrix J  at 0E  which take the form 
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whose eigenvalues are 
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From the condition that )2,1(,, =icba i  are positive 

parameters, we have that 11 >λ . Then 0E  is unstable 

equilibrium point of system (9). 

Now we investigate the local stability of Nash equilibrium 

1E . At 1E , the Jacobian matrix is  
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The characteristic equation of the )( 1EJ  has the form 

0)()()( 2 =+−= JDetJTrf λλλ , where )(JTr  is the trace and 

)(JDet  is  the determinant of the Jacobian matrix which are 

given by ∗−= 121)( bpJTr α  and bpdJDet 2/)( 1
2 ∗−= α , since 

bpdbpJDetJTr /2)21()(4)( 1
22

1
2 ∗∗ +−=− αα . 

With above assumption, it is clear that 0)(4)(2 >− JDetJTr , 

then the eigenvalues of Nash equilibrium are real.  

If the eigenvalues of the Jacobian matrix of fixed point 1E  

are inside the unit circle of complex plane, Nash equilibrium 

1E  is local stability. Hence the local stability of Nash 

equilibrium is given by jury’s condition which are the 

necessary and sufficient conditions for .2,1,1 =< iiλ  
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It is clear that the first condition and the third condition are 

always satisfied. The second condition becomes  
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This equation defines a region of stability of Nash 

equilibrium point 1E  about parameter α . If α is small, both 

players’ price will reach the Nash equilibrium point 1E  after 

rounds of games. But once there is an increase of the speed of 

adjustment of bounded rational player pushing α  beyond 

stable region  
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the Nash equilibrium point 1E  will lose stability.  

Theorem 2 The Nash equilibrium 1E  of system (9) is a 

stable provided that  
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From Theorem 2, we can obtain the region of stability of the 

Nash equilibrium point 1E about the model parameters. For 

example, an increase of the speed of adjustment of bounded 

rational player with the other parameters held fixed has a 

destabilizing effect. In factor, an increase of α , staring from a 

set of parameters which ensures the local stability of the Nash 

equilibrium can bring out the region of the stability of Nash 

equilibrium point, crossing the flip bifurcation surface  
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Obviously, the stability of Nash equilibrium point 1E  

depends on the parameters of system. We also consider other 

case that the parameters 1,,, cdbα  and 2c  are fixed parameters 

and parameter a  which represent the market capacity of the 

production. In this paper, the case parameter α  increases. 

Complex behaviors such as period doubling and chaotic 

attractors are generated where the Lyapunov exponents of the 

system (9) become positive. 

IV. NUMERICAL SIMULATIONS 

In this section, we use the bifurcation diagrams to illustration 

the above results and finding new dynamics of system (9) as the 

parameters varying. The complicated dynamic features of the 

dynamics of a Bertrand duopoly game with heterogeneous 

players will be shown. 

In order to study the local stability properties of the 

equilibrium points conveniently, we will use certain value data 

to simulate the dynamic evaluation of the system. Taking 

8.0,1.0,9.0,5 21 ==== ccba  and ,3.0=d  we can get Fig. 1 that 
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shows the bifurcation diagram with respect to α , while other 

parameters are fixed. From Fig. 1, we can see that the orbit with 

initial values )0,0(  approaches to the stabled fixed point 

)75.3,45.3(  for 313.0<α . If α increases, the Nash equilibrium 

point 1E becomes unstable and bifurcation scenario occurs. The 

first Hofp bifurcation occurs at 313.0=α . As α  increases, 

infinitely many period-doubling bifurcation of quantity 

behavior become chaotic. 

 

 

Fig. 1 The bifurcation diagram of the trajectories of the discrete 

dynamic system (9) 

 

 

Fig. 2 The strange attractor of the discrete dynamic system (9) 

 

Fig. 2 shows the strange attractor for the system (9) for 

3.0,8.0,1.0,9.0,5 21 ===== dccba and 467.0=α , which exhibits a 

fractal structure similar to Henon attractor [18]. 

In order to analyze the parameter sets for which aperiodic 

behavior occurs, we study the largest Lyapunov exponent, 

which depends on α . It is an evidence for chaos that the 

Largest Lyapunov exponent is positive. By the method of [19], 

we have Fig. 3 that displays the related maximal Lyapunov 

exponent as a function of α . From Fig. 3, we can easily get the 

degree of the local stability for different values α  when the 

largest Lyapunov exponent is positive. We also determine the 

parameter sets for which the system (9) converges to cycles, 

aperiodic and chaotic behavior. 

Strange attractors are typically characterized by fractal 

dimensions. We examine the important characteristic of 

neighboring chaotic orbits to see how rapidly they separate 

each other. The Lyapunov dimension is defined as follows [20]: 

 

j

ji

i
i

L jd
λ

λ∑
=

=+= 1  

with ,,,, 21 nλλλ …  where j  is the largest integer such 

0
1

≥∑
=

=

ji

i
iλ  and 0

1

1
≤∑

+=

=

ji

i
iλ . 

In our paper, two dimensional map (9) has a Lyapunov 

dimension  
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2

1 0,1 λλ
λ

λ
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By the definition of Lyapunov dimension [20] and 

simulation of the computer, we have the Lyapunov dimension 

of strange attractor of system (9). At the parameter values 

( ) )46.0,3.0,8.0,1.0,9.0,5(,,,,, 21 =αdccba , system (9) has two 

different Lyapunov exponents, 51.01 =λ and 81.12 −=λ . 

Therefore, the system (9) has a fractal dimension 

28.1)81.1/51.0(1 ≈+=Ld . Then the system (9) exhibits a fractal 

structure and its attractor has the fractal dimension 28.1≈Ld . 

 

 

Fig. 3 Related the largest Lyapunov exponents as function of α  

 

To demonstrate the sensitivity to initial conditions of system 

(9), we compute two orbits with initial points 2010, pp  and 

2010 ,00001.0 pp + at the parameter values 

3.0,8.0,1.0,9.0,5 21 ===== dccba and 46.0=α respectively. We can 

get two firms’ game results which are shown in Fig. 4. At the 

beginning the results are indistinguishable, but after a number 

of games, the difference between them builds up rapidly. 
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(b) )3,00001.3(),( 2010 =pp  

Fig. 4 Shows sensitive dependence on initial conditions, the two orbits 

of 1p coordinates for ( ) )46.0,3.0,8.0,1.0,9.0,5(,,,,, 21 =αdccba  

 

The same to variable 2p , Fig. 5 shows the sensitivity 

dependence on initial conditions, 2p coordinates of the two 

orbits with the parameter values ( ) )46.0,3.0,8.0,1.0,9.0,5(,,,,, 21 =αdccba ; 

the 2p  coordinates of initial conditions differ by 0.00001. 

 

 

(a) )3,3(),( 2010 =pp
 

 

 

(b) )00001.3,3(),( 2010 =pp  

Fig. 5 Shows sensitive dependence on initial conditions, the two     

orbits of 2p coordinates for ( ) )46.0,3.0,8.0,1.0,9.0,5(,,,,, 21 =αdccba  

V. CONCLUSIONS 

In this paper, we have analyzed the complex dynamics of a 

repeated oligopoly Bertrand model with heterogeneous players: 

bounded rational player and naive player. The stability of two 

equilibrium points is investigated in this game. We found the 

parameter α (speed of adjustment of bounded rational player) 

may change the stability of Nash equilibrium point and cause 

bifurcation and chaos to occur. For the low values speeds of 

adjustment, the game has a stable Nash equilibrium. Increasing 

the values of speeds of adjustment, the Nash equilibrium 

becomes unstable, through period doubling bifurcation, more 

complex attractors obtained, which may be periodic cycles or 

chaotic sets. In the above discussion, we have given economic 

explanations to various dynamic phenomenons in the Bertrand 

market and provided theoretical reference for firms. 
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