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Comparison results of two-point fuzzy boundary
value problems

Hsuan-Ku Liu

Abstract—This paper investigates the solutions of two-point fuzzy
boundary value problems as the form x′′ = f(t, x(t)), x(0) = A
and x(l) = B, where A and B are fuzzy numbers. There are
four different solutions for the problems when the lateral type of
H-derivative is employed to solve the problems. As f(t, x) is a
monotone function of x, these four solutions are reduced to two
different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = −λx(t),
solutions and several comparison results are presented to indicate
advantages of each solution.

Keywords—fuzzy derivative, lateral type of H-derivative, fuzzy
differential equations, fuzzy boundary value problems, boundary
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I. INTRODUCTION

BY using the H-derivative [9], several articles [5, 6,
9] have been denoted to the study of the solution of

fuzzy differential equations. However, this approach has a
disadvantage that it leads to solutions with increasing support
[1]. To solve the disadvantage, Bede and Gal [1] introduced a
generalized definition of fuzzy derivative for a fuzzy-number-
valued function. He showed that the new generalization allows
us to have f ′(x) = c · g′(x) for all x ∈ (a, b) when
g : [a, b] → R is differentiable and f(x) = c · g(x), where
c is a fuzzy number. Now, the generalized definition of fuzzy
derivative has throw a new light on the subject of fuzzy
differential equations.

Following the line of Bede and Gal [1], Chalco-Cano and
Román-Flores [4] rewrote the generalized definition of fuzzy
derivative to a lateral type of H-derivative. Under the lateral
type of H-derivative, there usually exists two solutions of first
order fuzzy initial value problems [3] and four solutions of
second order initial value problems [7]. For the first order
fuzzy initial value problems, the support of one solution
become bigger and bigger while those of another solutions
become smaller and smaller. For second-order initial value
problems, a study on the support of solutions has been made
by Liu [8].

So far, several published results are proposed to investigate
the solution of two-point fuzzy boundary value problems
(FBVPs). O’Regan et. al. [10] showed that a two-point FBVP
is equivalent to a fuzzy integral equation. Bede [2] gave a
counterexample to show that this statement does not hold
and argued that two-point FBVPs have no solution in many
solutions. To solve the inconvenient, Chen et al. [5] provided a
proof of this statement under certain conditions. However, we
did not find any published results which study on the support
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of solutions for two-point fuzzy boundary value problems.
Hence, to investigate the support of solutions such that the
solutions satisfy real world models becomes an interesting and
important problem on the filed of fuzzy differential equations.

In the current work, an investigation is made on the solution
of two-point FBVPs by using the lateral type of H-derivative.
To put it precisely, the two-point FBVP is given as the form

x′′(t) = f(t, x(t)), x(0) = A, and x(l) = B, (1)

where t ∈ T = [0, l] and [A]α = [A
α
, Aα] and [B]α =

[Bα, Bα] are fuzzy numbers. There are four different solutions
of the FBVP when the fuzzy derivative is consider by the
lateral type of H-derivative [4]. As f is a monotone function of
x, these four solutions are reduced to two different solutions.
As the FBPVs are given as the form

x′′(t) = λx(t), x(0) = A and x(l) = B, (2)

x′′(t) = −λx(t), x(0) = A and x(l) = B, (3)

fuzzy solutions are developed, where the boundary conditions
A and B are symmetric triangle fuzzy numbers. To make
advantages of each solution clearly, comparison results on
the properties of valid fuzzy level set and preserving shape
of boundaries are provided to these two problems (2) and
(3). That is, as boundary values are symmetric triangle fuzzy
numbers, we show that all solutions are symmetric triangle
fuzzy function of t but that some solutions are no longer a valid
fuzzy level set. Several examples are presented to indicate
advantages and the inconvenient of each solution clearly.

This paper is organized as follows. In Section 2, the basic
results of the fuzzy numbers and fuzzy calculus are discussed.
In Section 3, the four solutions obtained by the lateral type
of H-derivative are reduced to two different solutions as
f(t, x) is a monotone function of x. In Section 4, solutions
and comparison results for the given two-point FBVPs are
provided. In Section 5, we close this paper with a concise
conclusion.

II. PRELIMINARY AND GENERALIZED DEFINITION

There are various definitions for the concept of fuzzy num-
bers [1, 5]. In this section, an appropriate brief introduction to
preliminary topics such as fuzzy numbers and fuzzy calculus
will be introduced.

Definition 2.1: A fuzzy number is a function u : R → [0, 1]
satisfying the following properties:

1) u is normal;
2) u is convex fuzzy set;
3) u is upper semi-continuous on R;
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4) {x ∈ Rn|u(x) ≥ 0} is compact, where A denotes the
closure of A.

Definition 2.2: A fuzzy number in parametric form is pre-
sented by an ordered pair of functions (u

α
, uα), 0 ≤ α ≤ 1,

satisfying the following requirements:

1) u
α

is a bounded left-continuous non-decreasing function
of α over [0, 1].

2) uα is a bounded left-continuous non-increasing function
of α over [0, 1].

3) u
α
≤ uα, 0 ≤ α ≤ 1.

Definition 2.3: Let u be a fuzzy set in Rn. The α-level set
of u, denoted [u]α, 0 ≤ α ≤ 1, is

[u]α = {x ∈ Rn|u(x) ≥ α}.

If α = 0, the support of u is defined as

[u]0 = {x ∈ Rn|u(x) ≥ 0}.

Definition 2.4: If A is a symmetric triangular numbers with
supports [a, a], the α-level sets of [A]α is

[A]
α

=

[
a + (

a − a

2
)α, a − (

a − a

2
)α

]
.

If there is a α ∈ [0, 1] such that u
α

> uα in Definition 2.2,
then the order pair (u

α
, uα) is not a valid fuzzy level set.

It is well-known that the H-difference [9] for fuzzy sets was
initially introduced by Hukuhara as follows.

Definition 2.5: Let u and v be two fuzzy sets. If there exists
a fuzzy set w such that u = v + w, then w is called the H-
difference of u and v and it is denoted by u −

H

v.

The H-derivative for fuzzy mapping is based in the H-
difference of sets.

Definition 2.6: Let T = (a, b) and F : (a, b) → F be a
fuzzy mapping. We say that F is differentiable at t0 ∈ T if
there exists an element F ′(t0) ∈ F such that the limits

lim
h→o+

F (t0 + h) − F (t0)

h
= lim

h→o−

F (t0) − F (t0 − h)

h

exits and are equal to F ′(t0).
However, Bede and Gel showed that if f(t) = c · g(t),

where c is a fuzzy number and g : [a, b] → R is a real-
valued function with g′(t0) < 0, then f is not differential.
To overcome the inconvenient, they introduced a generalized
definition of derivative for fuzzy mapping. We consider the
following definition which is called a lateral type of H-
derivative in [4].

Definition 2.7: Let T = (a, b) and F : (a, b) → F be a
fuzzy mapping. A F is differentiable at t0 ∈ T if:

1) there exists an element F ′(t0) ∈ F such that, for all
h > 0 sufficiently near to 0, we have F (t0 +h)−F (t0),
F (t0) − F (t0 − h) and the limits

lim
h→o+

F (t0 + h) − F (t0)

h
= lim

h→o−

F (t0) − F (t0 − h)

h

exists and are equal to F ′(t0).

2) there exists an element F ′(t0) ∈ F such that, for all
h < 0 sufficiently near to 0, we have F (t0 +h)−F (t0),
F (t0) − F (t0 − h) and the limits

lim
h→o+

F (t0 + h) − F (t0)

h
= lim

h→o−

F (t0) − F (t0 − h)

h

exists and are equal to F ′(t0).

When f is a fuzzy-value function, Chalco-Cano and
Román-Flores [4] got the following results.

Theorem 2.8: Let f : T → F be a function and denote
[f(t)]α = [f

α
(t), fα(t)], for each α ∈ [0, 1]. Then

1) If f is differentiable in the first form, then f
α
(t)

and fα(t) are differentiable functions and [f ′]α =

[f ′
α
(t), f

′
α(t)].

2) If f is differentiable in the first form, then f
α
(t)

and f
α
(t) are differentiable functions and [f ′]α =

[f
′
α
(t), f ′

α
(t)].

In the following sections, the generalized definition of fuzzy
derivative and Theorem 2.8 will be used to discuss fuzzy
boundary value problems.

III. TWO-POINTS FUZZY BOUNDARY VALUE PROBLEMS

Consider the two-point FBVP

x′′(t) = f(t, x(t)), x(0) = A, and x(l) = B, (1)

where t ∈ T = [0, l] and [A]α = [Aα, Aα] and [B]α =
[B

α
, Bα] are fuzzy numbers.

Let y = x′. The FBVP can be transformed into a system of
first-order fuzzy differential equations (FDEs){

x′ = y

y′ = f(t, x(t))
(4)

with x(0) = A and x(l) = B. Denote

[x(t)]
α

= [x
α
(t), xα(t)], [y(t)]

α
= [y

α
(t), yα(t)]. (5)

Since x(t) and y(t) are differentiable in first and second form
by Theorem 2.8, there are four s, which are labeled as (i,j)-
solution, i,j=1,2, to the system of FDEs (4). Here, the (i,j)-
solution means that x is differentiable in the i-th form and y

is differentiable in the j-th form, i,j=1,2.
Theorem 3.1: Let [x(t)]α = [x

α
(t), xα(t)] be a solution of

(1).
(i) As f is a monotone increasing function of x, the lower and
upper solutions, x

α
(t) and xα(t), solve the system{

x′′
α
(t) = f(t, x

α
(t)), x

α
(0) = A

α
and x

α
(l) = B

α
;

x′′
α
(t) = f(t, xα(t)), xα(0) = Aα and xα(l) = Bα,

for (1,1)-solution and (2,2)-solution; and the lower and upper
solutions, xα(t) and xα(t), solve the system{

x′′
α(t) = f(t, xα(t)), xα(0) = Aα and xα(l) = Bα;

x′′
α(t) = f(t, x

α
(t)), xα(0) = Aα and xα(l) = Bα,
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for (1,2)-solution and (2,1)-solution.
(ii) As f is a monotone decreasing function of x, the lower
and upper solutions, xα(t) and xα(t), solve the system{

x′′
α(t) = f(t, xα(t)), xα(0) = Aα and xα(l) = Bα;

x′′
α(t) = f(t, xα(t)), xα(0) = Aα and xα(l) = Bα,

for (1,1)-solution and (2,2)-solution; and the lower and upper
solutions, x

α
(t) and xα(t), solve the system{

x′′
α
(t) = f(t, x

α
(t)), x

α
(0) = A

α
and x

α
(l) = B

α
;

x′′
α
(t) = f(t, xα(t)), xα(0) = Aα and xα(l) = Bα,

for (1,2)-solution and (2,1)-solution.
Proof: We only prove the solution of that f is a monotone

increasing function of x. The similar idea can be applied to
the discussion of the monotone decreasing function f .

As f is a monotone increasing function of x, we have
f(t, xα) < f(t, xα) and

[f(t, x(t))]
α

= [f(t, x
α
(t)), f(t, xα(t))], (6)

For (1,1)-solution, x and y are differentiable in the first
form; that is

[x′(t)]α = [x′
α
(t), x′

α
(t)],

[y′(t)]α = [y′
α
(t), y′

α(t)].

Substituting (5) and (6) into (4), we have

[x′
α
(t), x′

α
(t)] =

[
y

α
(t), y

α
(t)
]
,[

y′
α
(t), y′

α
(t)
]

= [f(t, x′
α
(t)), f(t, x′

α
(t))] ,

Hence to solve the fuzzy differential system (4) becomes to
solve a real-valued system of the differential equation (DE) as
below:

x′
α
(t) = y

α
(t), (7)

x′
α(t) = yα(t), (8)

y′
α
(t) = f(t, x

α
(t)), (9)

y′
α(t) = f(t, xα(t)). (10)

Differentiating (7) and (8) yields

x′′
α
(t) = y′

α
and x′′

α
(t) = y′

α
(t). (11)

Substituting (11) into (9) and (10) respectively, we get{
x′′

α(t) = f(t, xα(t)),

x′′
α
(t) = f(t, xα(t)).

(12)

Since [A]α = [Aα, Aα] and [B]
α

= [Bα, Bα], boundary
conditions of (12) are x

α
(0) = A

α
, x

α
(l) = B

α
, xα(0) = Aα

and xα(l) = Bα.
For (1,2)-solution, x is differentiable in the first form and

y is differentiable in the second form; that is

[x′(t)]α = [x′
α
(t), x′

α(t)],

[y′(t)]α = [y′
α
(t), y′

α
(t)].

This becomes to solve the differential system

[x′
α
(t), x′

α(t)] =
[
y

α
(t), yα(t)

]
,[

y′
α
(t), y′

α
(t)
]

= [f(t, x′
α
(t)), f(t, x′

α
(t))] .

Using the same procedure in (1,1)-solution produces the
following systems of BVPs

x′′
α
(t) = f(t, x

α
(t)), x

α
(0) = A

α
, x

α
(l) = B

α

x′′
α
(t) = f(t, xα(t)), xα(0) = Aα, xα(l) = Bα.

(13)
For (2,1)-solution, x is differentiable in the second form and

y is differentiable in the first form; that is

[x′(t)]α = [x′
α
(t), x′

α
(t)] ,

[y′(t)]α =
[
y′

α
(t), y′

α
(t)
]
.

This becomes to solve the differential system

[x′
α
(t), x′

α
(t)] =

[
y

α
(t), y

α
(t)
]
,[

y′
α
(t), y′

α(t)
]

= [f(t, x′
α(t)), f(t, x′

α(t))] .

Using the same procedure in (1,2)-solution produces the
following systems of BVPs

x′′
α(t) = f(t, xα(t)), xα(0) = Aα, xα(l) = Bα

x′′
α(t) = f(t, xα(t)), xα(0) = Aα, xα(l) = Bα.

For (2,2)-solution, x and y are differentiable in the second
form; that is

x′(t)α = [x′
α(t), x′

α(t)],

y′(t)α = [y′
α
(t), y′

α
(t)].

This becomes to solve the differential system

[x′
α
(t), x′

α
(t)] =

[
y

α
(t), yα(t)

]
,[

y′
α
(t), y′

α
(t)
]

= [f(t, x′
α
(t)), f(t, x′

α
(t))] .

Using the same procedure in (1,1)-solution produces the
following systems of BVPs

x′′
α
(t) = f(t, x

α
(t)), x

α
(0) = A

α
, x

α
(l) = B

α

x′′
α
(t) = f(t, xα(t)), xα(0) = Aα, xα(l) = Bα.

IV. SECOND ORDER FUZZY LINEAR DIFFERENTIAL

EQUATIONS WITH CONSTANT COEFFICIENTS

A. The case of positive constant coefficients

Consider the FBVP{
x′′(t) = λx(t),

x(0) = A, and x(l) = B,
(2)

where λ > 0. Boundary conditions [A]α = [a + (
a−a

2 )α, a −
(

a−a

2 )α] and [B]α = [b + (
b−b

2 )α, b − (
b−b

2 )α] are symmetric
triangular numbers.

Theorem 4.1: 1) For the (1,1)-solution and (2,2)-
solution, the lower and upper solutions are

x(t) = c1e
√

λt + c2e
−
√

λt,

x(t) = c1e
√

λt + c2e
−
√

λt,
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where

c1 =

(
b+(

b−b

2
)α

)
−
(

a+(
a−a

2
)α

)
e
−

√
λl

e

√
λl−e−

√
λl

,

c2 =

(
a+(

a−a

2
)α

)
e

√
λl−
(

b+(
b−b

2
)α

)
e

√
λl−e−

√
λl

,

c1 =

(
b−(

b−b

2
)α

)
−
(

a−(
a−a

2
)α

)
e
−

√
λl

e

√
λl−e−

√
λl

,

c2 =

(
a−(

a−a

2
)α

)
e

√
λl−
(

b−(
b−b

2
)α

)
e

√
λl−e−

√
λl

.

2) For the (1,2)-solution and (2,1)-solution, the lower and
upper solutions are

xα(t) = aα

1 e
√

λt+aα

2 e−
√

λt−aα

3 sin(
√

λt)−aα

4 cos(
√

λt),
(14)

xα(t) = aα

1 e
√

λt+aα

2 e−
√

λt+aα

3 sin(
√

λt)+aα

4 cos(
√

λt),
(15)

where a1, a2, a3 and a4 are

aα
1 =

(b+b)−e
−

√
λl(a+a)

2(e
√

λl−e−
√

λl)
,

aα
2 =

e

√
λl(a+a)−(b+b)

2(e
√

λl−e−
√

λl)
,

aα
3 =

(
1−α

2

) ( (b−b)−(a−a) cos(
√

λl)

sin(
√

λl)

)
,

aα
4 =

(
1−α

2

)
(a − a) .

Proof: Using Theorem 3.1, the lower solution and the up-
per solution of (2), satisfy the following differential equations⎧⎨
⎩ x′′

α
(t) = λx

α
(t), x

α
(0) = a + (

a−a

2 )α, x
α
(l) = b + (

b−b

2 )α,

x′′
α
(t) = λxα(t), xα(0) = a − (

a−a

2 )α, b − (
b−b

2 )α,

respectively.
Hence the solution can be obtained as

x(t) = c1e
√

λt + c2e
−
√

λt,

x(t) = c1e
√

λt + c2e
−
√

λt.

On the other hand, the FBVP (2) is transformed into a linear
system of real-valued DEs{

x′′
α
(t) = λx

α
(t),

x′′
α
(t) = λxα(t),

(16)

with

x
α
(0) = a + (

a − a

2
)α and x

α
(l) = b + (

b − b

2
)α, (17)

xα(0) = a − (
a − a

2
)α and xα(l) = b − (

b − b

2
)α. (18)

The solutions of (16) are given as

x
α
(t) = aα

1 e
√

λt + aα

2 e−
√

λt − aα

3 sin(
√

λt) − aα

4 cos(
√

λt),
(19)

xα(t) = aα

1 e
√

λt + aα

2 e−
√

λt + aα

3 sin(
√

λt) + aα

4 cos(
√

λt).
(20)

Substituting boundary conditions (17) and (18) into (19) and
(20) respectively, coefficients a1, a2, a3 and a4 are solved as

aα
1 =

(b+b)−e
−

√
λl(a+a)

2(e
√

λl−e−
√

λl)
,

aα
2 =

e

√
λl(a+a)−(b+b)

2(e
√

λl−e−
√

λl)
,

aα
3 =

(
1−α

2

) ( (b−b)−(a−a) cos(
√

λl)

sin(
√

λl)

)
,

aα
4 =

(
1−α

2

)
(a − a) .

Proposition 4.2: 1) For (1,1)-solution and (2,2)-
solution, the solution [x(t)]α = [x

α
(t), xα(t)] of (2) is

a valid fuzzy level set if (b − b) ≥ (a − a)e−
√

λl.
2) For (1,2)-solution and (2,1)-solution, the solution

[x(t)]α = [xα(t), xα(t)] of (2) is no longer a valid fuzzy
level set if

t >
1√
λ

cot−1(−
(

(b − b) − (a − a) cos(
√

λl)

a − a sin(
√

λl)

)
).

Proof: Given t ∈ [0, l],

xα(t) − x
α
(t)

= (c1 − c1)e
√

λt + (c2 − c2)e
−
√

λt

= e−
√

λt[(c1 − c1)e
2
√

λt + (c2 − c2)].

Let f(t) = (c1 − c1)e
2
√

λt + (c2 − c2) then f(0) = a− a > 0
and

f ′(t) = (2
√

λc1 − c1)e
2
√

λt)

= 2
√

λ

(
b−b)−(a−a)e−

√
λl

e−
√

λl−e−
√

λl

)
e2

√
λt > 0,

if (b − b) ≥ (a − a)e−
√

λl.
For (1,2)-solution and (2,1)-solution, the difference between

xα and x
α

is xα(t)−x
α
(t) = 2aα

3 sin(
√

λt)+2aα
4 cos(

√
λt).

The solution of this inequality xα(t) − xα(t) ≥ 0 can be
obtained by solving

aα

3 sin(
√

λt) ≥ −aα

4 cos(
√

λt).

As
√

λt ∈ (0, π), we have sin(
√

λt) > 0. Since −aα
4 =

−(1−α

2 )(a − a) < 0, the inequality is transformed to

−aα
3

aα
4

≤ cos(
√

λt)

sin(
√

λt)
= cot(

√
λt);

that is
0 ≤ t ≤ 1√

λ
cot−1(−aα

3

aα
4

),

where
aα
3

aα
4

=

(
(b − b) − (a − a) cos(

√
λl)

a − a sin(
√

λl)

)
.

Therefore, as t > 1√
λ

cot−1(−a
α
3

aα
4

) we have xα − x
α
(t) < 0.

This implies that the solution [x(t)]α = [x
α
(t), xα(t)] is not

a valid fuzzy level set if t > 1√
λ

cot−1(−a
α
3

aα
4

).
Proposition 4.3: For any t ∈ [0, l], the solution [x(t)]α =

[x
α
(t), xα(t)] of (2) is a symmetric triangle fuzzy number.

Proof: The solutions [x(t)]α of (19) and (20) are triangle
fuzzy numbers since solutions are a straight line of α. It
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Fig. 1. The upper line, mid-line and lower line are the graphs of x0(t),
x1(t) = x

1
(t) and x

0
(t), respectively.

suffices to verify the symmetry of the solutions. For (1,1)-
solution and (2,2)-solution, we have

x1(t) − x
α
(t)

=
(

b−b

2
)(1−α)−(

a−a

2
)(1−α)e−

√
λl

e

√
λl−e−

√
λl

e
√

λt

+
−(

b−b

2
)(1−α)+(

a−a

2
)(1−α)e−

√
λl

e

√
λl−e−

√
λl

e−
√

λt

= xα(t) − x1(t).

For (1,2)-solution and (2,1)-solution, we have x1(t) =

aα
1 e

√
λt + aα

2 e−
√

λt = x1(t) and

x1(t) − x
α
(t) = aα

3 sin(
√

λt) + aα
4 cos(

√
λt)

= xα(t) − x1(t).

Hence solutions (19) and (20) are symmetric fuzzy function
of t.

Example 4.4: Consider the FBVP{
x′′(t) = x(t), t ∈ (0, 3

2π),

x(0) = [1 + 1
2α, 2 − 1

2α], and x(3π

2 ) = [3 + 1
2α, 4 − 1

2α].

For (1,1)-solution and (2,2)-solution, the fuzzy solution is
obtained as

x
α
(t) = c1e

t + c2e
−t,

xα(t) = c1e
t + c2e

−t,

where

c1 =
(3+ 1

2
α)−(1+ 1

2
α)e

− 3π
2

e
3π
2 −e

− 3π
2

, c2 =
(1+ 1

2
α)e

3π
2 −(3+ 1

2
α)

e
3π
2 −e

− 3π
2

,

c1 =
(4− 1

2
α)−(2− 1

2
α)e

− 3π
2

e
3π
2 −e

− 3π
2

, c2 =
(2− 1

2
α)e

3π
2 −(4− 1

2
α)

e
3π
2 −e

− 3π
2

.

For (1,2)-solution and (2,1)-solution, the fuzzy solution is
obtained as

x
α

=
(

7−3e
−π/2

eπ/2−e−π/2

)
et +

(
3e

3π/2−7
e3π/2−e−3π/2

)
e−t

− (1−α

2

)
sin(t) − ( 1−α

2

)
cos(t)

xα =
(

7−3e
−3π/2

e3π/2−e−3π/2

)
et +

(
3e

3π/2−7
e3π/2−e−3π/2

)
e−t

+
(

1−α

2

)
sin(t) +

(
1−α

2

)
cos(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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0
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4
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Fig. 2. The upper line, mid-line and lower line are the graphs of x0(t),
x1(t) = x

1
(t) and x

0
(t), respectively.

For (1,1)-solution and (2,2)-solution, the graph of the fuzzy
function x(t) is displayed in Figure 1.

As we can see, the solution is a valid fuzzy level set and a
symmetric fuzzy function for all t ∈ [0, 3π

2 ].
For (1,2)-solution and (2,1)-solution, the graph of the fuzzy

function x(t) is displayed in Figure 2.

As we can see, the solution is a not valid fuzzy level set.

B. The case of negative constant coefficients

Consider the FBVP{
x′′(t) = −λx(t),

x(0) = A, and x(l) = B,
(3)

where λ > 0 and [A]α = [a + (
a−a

2 )α, a − (
a−a

2 )α] and

[B]α = [b+(
b−b

2 )α, b−(
b−b

2 )α] are symmetric fuzzy numbers.
Theorem 4.5: 1) For the (1,2)-solution and (2,1)-

solution, the upper and lower solutions of (3) are

xα(t) =
(
a + (

a−a

2 )α
)

cos(
√

λt) + c sin(
√

λt),

xα(t) =
(
a − (

a−a

2 )α
)

cos(
√

λt) + c sin(
√

λt),

where

c =

[(
b +

(
b−b

2

)
α
)
−
(
a +

(
a−a

2

)
α
)

cos(
√

λl)
]

sin(
√

λl)
,

c =

[(
b −

(
b−b

2

)
α
)
−
(
a −

(
a−a

2

)
α
)

cos(
√

λl)
]

sin(
√

λl)
.

and l �= nπ√
λ

, n ∈ N ;
2) For the (1,1)-solution and (2,2)-solution, the upper and

lower solutions of (3) are

x
α
(t) = −aα

1 e
√

λt−aα

2 e−
√

λt+aα

3 sin(
√

λt)+aα

4 cos(
√

λt),
(21)

xα(t) = aα

1 e
√

λt+aα

2 e−
√

λt+aα

3 sin(
√

λt)+aα

4 cos(
√

λt),
(22)
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where a1, a2, a3 and a4 are

aα
1 =

(
1−α

2

)( (b−b)−e
−

√
λl(a−a)

e

√
λl−e−

√
λl

)

aα
2 =

(
1−α

2

)(
(a − a) − (b−b)−e

−
√

λl(a−a)

e

√
λl−e−

√
λl

)
aα
3 =

(b+b)−(a+a) cos(
√

λl)

2 sin(
√

λl)
,

aα
4 =

a+a

2 .

Proof: Using Theorem 3.1, the lower solution x(t) and
the upper solution x(t) satisfy{

x′′
α
(t) = −λx

α
(t),

x
α
(0) = a + (

a−a

2 )α, x
α
(l) = b + (

b−b

2 )α,
(23)

and {
x′′

α(t) = −λxα(t),

xα(0) = a − (
a−a

2 )α, xα(l) = b − (
b−b

2 )α,
(24)

respectively.
Hence the solutions are

x
α
(t) =

(
a + (

a−a

2 )α
)

cos(
√

λt) + c sin(
√

λt),

xα(t) =
(
a − (

a−a

2 )α
)

cos(
√

λt) + c sin(
√

λt).

On the other hand, the FBVP (3) is transformed into a linear
system of real-valued DEs{

x′′
α(t) = −λx

α
(t),

x′′
α
(t) = −λxα(t),

(25)

with

xα(0) = a + (
a − a

2
)α and xα(l) = b + (

b − b

2
)α, (26)

xα(0) = a − (
a − a

2
)α and xα(l) = b − (

b − b

2
)α, (27)

The solutions of (25) have been known as

x
α
(t) = −aα

1 e
√

λt − aα

2 e−
√

λt + aα

3 sin(
√

λt) + aα

4 cos(
√

λt),
(28)

xα(t) = aα

1 e
√

λt + aα

2 e−
√

λt + aα

3 sin(
√

λt) + aα

4 cos(
√

λt).
(29)

Substituting (26) and (27) into (28) and (29) respectively,
coefficients a1, a2, a3 and a4 are obtained as

aα
1 =

(
1−α

2

)( (b−b)−e
−

√
λl(a−a)

e

√
λl−e−

√
λl

)

aα
2 =

(
1−α

2

)(
(a − a) − (b−b)−e

−
√

λl(a−a)

e

√
λl−e−

√
λl

)
aα
3 =

(b+b)−(a+a) cos(
√

λl)

2 sin(
√

λl)
,

aα
4 =

a+a

2 .

Proposition 4.6: For (1,2)-solution and (2,1)-solution, the
solution [x(t)]

α
= [x

α
(t), xα(t)] of (3) is no longer a valid

fuzzy level set as

t >
1√
λ

cot−1

( −c

(1 − α)(a − a)

)
,

where

c =

[
(b − b)(1 − α) − (a − a)(1 − α) cos(

√
λl)
]

sin(
√

λl)
.

For (1,1)-solution and (2,2)-solution, the solution [x(t)]α =
[x

α
(t), xα(t)] of (25) is a valid fuzzy level set for all t ∈ [0, l]

if aα
1 > 0.
Proof: We first consider the (1,2)-solution and (2,1)-

solution. To show that [x(t)]α is a valid fuzzy level set, it
suffices to show that the difference

zα(t) = xα(t) − x
α
(t) ≥ 0

for all t ∈ [0, l], l ≤ l∗ and α ∈ [0, 1]. The difference zα(t) is
obtained as

zα(t) = (a − a)(1 − α) cos(
√

λt) − c sin(
√

λt),

where

c =

[
(b − b)(1 − α) − (a − a)(1 − α) cos(

√
λl)
]

sin(
√

λl)

and l �= nπ√
λ

, for all integer n. To find the support of zα ≥ 0,
it is equal to solve the inequality

(a − a)(1 − α) cos(
√

λt) ≥ −c sin(
√

λt).

As t ∈ [0, π], we have

cot(
√

λt) =
cos(

√
λt)

sin(
√

λt)
≥ −c

(1 − α)(a − a)
;

that is

0 ≤ t ≤ 1√
λ

cot−1

( −c

(1 − α)(a − a)

)
.

Secondly, we consider the (1,1)-solution and (2,2)-solution.
the difference of xα and x

α
is

xα(t) − x
α
(t) = 2(aα

1 e
√

λt + aα
2 e−

√
λt)

= 2e−
√

λt(aα
1 e2

√
λt + aα

2 ).

Let f(t) = aα
1 e2

√
λt + aα

2 ). Then f(0) = a − a > 0 and
f ′(t) = 2

√
λaα

1 e2
√

λt > 0 as aα
1 > 0. Hence f(t) ≥ 0 as

aα
1 > 0 since f(t) is an increasing function with f(0) > 0.

Therefore, xα(t) − x
α
(t) = 2e−

√
λtf(t) > 0 as aα

1 > 0.

Remark 4.7: If l > − 1√
λ

log
b−b

a−a
then aα

1 > 0.
Proposition 4.8: For (1,2)-solution and (2,1)-solution, the

solution [x(t)]α = [x
α
(t), xα(t)] of (25) is a symmetric

triangle fuzzy number as t ∈ [0, l]. For (1,2)-solution and
(2,1)-solution, the solution [x(t)]α = [x

α
(t), xα(t)] of (25)

is a symmetric fuzzy number as t ∈ [0, l].
Proof: The solutions [x(t)]α of (25) are triangle fuzzy

numbers since solutions are a straight line of α. It suffices to
verify the symmetry of the solutions. For (1,2)-solution and
(2,1)-solution, given t ∈ [0, l] fixed, we have

x1(t) − x
α
(t)

= (
a−a

2 )(1 − α) cos(
√

λt)

+
(

b−b

2
)(1−α)−(

a−a

2
)(1−α) cos(

√
λl)

sin(
√

λl)
sin(

√
λt)

= xα(t) − x1(t).
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Fig. 3. The upper line, mid-line and lower line are the graphs of x0(t),
x1(t) = x

1
and x

0
, respectively.

For (1,1)-solution and (2,2)-solution, given t ∈ [0, l] fixed, we
have

x1(t) − x
α
(t) = aα

1 e
√

λt + aα
2 e−

√
λt = xα(t) − x1(t)

since x1(t) = x1(t) = aα
3 sin(

√
λt)+aα

4 cos(
√

λt). Hence the
solution [x(t)]α of (25) is a symmetric fuzzy number.

Example 4.9: Consider the FBVP{
x′′(t) = −x(t), t ∈ [0, 3π

2 ],

x(0) = [1, 2], and x(3π

2 ) = [3, 4].

The lower and upper solutions are obtained as

x
α
(t) = (1 + 1

2α) cos(t) − (3 + 1
2α) sin(t), t ∈ [0, 3π

2 ],

xα(t) = (2 − 1
2α) cos(t) − (4 − 1

2α) sin(t), t ∈ [0, 3π

2 ].

for (1,2)-solution and (2,1)-solution; and the lower and upper
solutions are obtained as

xα(t) =
(

1−α

2

)(
1−e

− 3
2

π

e
3
2

π−e
− 3

2
π

)
et +

(
1−α

2

)(
e

3
2

π−1

e
3
2

π−e
− 3

2
π

)
e−t

− 7
2 sin(t) + 3

2 cos(t),

xα(t) =
(

1−α

2

)(
e
− 3

2
π−1

e
3
2

π−e
− 3

2
π

)
et +

(
1−α

2

)(
1−e

3
2

π

e
3
2

π−e
− 3

2
π

)
e−t

− 7
2 sin(t) + 3

2 cos(t).

for (1,1)-solution and (2,2)-solution.
As α = 0 and α = 1, the graphs of (1,2)-solution and

(2,1)-solution is displayed in Figure 3.

Figure 3 indicates that the solution is not a valid fuzzy level
set when l > cot−1(−1).

As α = 0 and α = 1, the graphs of (1,1)-solution and (2,2)-
solution are displayed in Figure 4. As we can see, the solution
[x

α
(t), xα(t)] of (3) is a symmetric triangle valid fuzzy level

set as t ∈ [0, 3
2π].

V. CONCLUSIONS

There are four different solutions for two-point FBVPs
when the fuzzy derivative is regarded as a lateral type of
H-derivative. This paper reduces these four solutions to two
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α=1

Fig. 4. The upper line, mid-line and lower line are the graphs of x0(t),
x1(t) = x

1
and x

0
, respectively.

different solutions as f(t, x) in (1) is a monotone function of
x. Moreover, the fuzzy solutions of (2) and (3) are provided
respectively, when boundary conditions are given as symmetric
triangle fuzzy numbers. As boundary values are symmetric
triangle fuzzy numbers, we show that solutions are symmetric
triangle fuzzy function of t, but that some solutions are
not a valid fuzzy level set. The presented examples indicate
advantages and the inconvenient of each solution clearly.
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