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 Abstract—The author previously proposed an extension of 
differential evolution. The proposed method extends the processes of 
DE to handle interval numbers as genotype values so that DE can be 
applied to interval-valued optimization problems. The interval DE can 
employ either of two interval models, the lower and upper model or the 
center and width model, for specifying genotype values. Ability of the 
interval DE in searching for solutions may depend on the model. In 
this paper, the author compares the two models to investigate which 
model contributes better for the interval DE to find better solutions. 
Application of the interval DE is evolutionary training of 
interval-valued neural networks. A result of preliminary study 
indicates that the CW model is better than the LU model: the interval 
DE with the CW model could evolve better neural networks.  
 

Keywords—Evolutionary algorithms, differential evolution, 
neural network, neuroevolution, interval arithmetic. 

I. INTRODUCTION 
IFFERENTIAL EVOLUTION (DE) [1], which is an 
instance of evolutionary algorithms [2], employs real 

numbers as genotype values for solving real-valued 
optimization problems. The author previously proposed an 
extension of DE. The proposed method [3] extends the 
processes of DE to handle interval numbers as genotype values 
so that DE can be applied to interval-valued optimization 
problems. The author has applied the extended interval-valued 
DE (IDE) to the evolution of interval-valued neural networks 
(INN [4]) and showed that IDE could evolve INNs which 
model interval target functions well despite that no training data 
was explicitly provided [5].  

An interval value can be specified by its lower and upper 
limit values or its center and width values, and thus the IDE can 
employ either of two interval models, the lower and upper 
model (LU) or the center and width model(CW) for specifying 
genotype values. Ability of the IDE in searching for solutions 
may depend on the model. In this paper, the author compares 
the two models to investigate which model contributes better 
for the IDE to find solutions. Application of the IDE is the same 
as that in our previous paper [5], i.e., evolutionary training of 
the INNs.  

II. NEURAL NETWORKS WITH INTERVAL WEIGHTS AND BIASES 
The INN employed in our research is the same as in the 

literature [4], which is a three-layered feed forward NN with 
interval weights and biases. Fig. 1 shows its structure. An INN 
receives an input real vector x and calculates its output interval 
value O (for simplicity, the output layer includes a single unit) 
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as follows [4]: 
 

 
Fig. 1 Neural network with interval weights and biases [4] 

 
Input layer: 

oi=xi. (1)
 
Hidden layer: 

Netj=ΣiWj,ioi +Θj, 
 

(2)

Oj=f(Netj). (3)
 
Output layer: 

Net=ΣjWjOj +Θ, 
 

(4)

O=f(Net). (5)
 

In (1)-(5), xi and oi are real values, while Netj, Net, Wj,i, Wj, 
Θj, Θ, Oj and Oare interval values. f(x) is the unit activation 
function which is typically the sigmoid alone: f(x)=1/(1+e-x). 
f(x) maps an interval input to an interval output as illustrated in 
Fig. 2.  

 

 
Fig. 2 Input-output relation of each unit in the hidden and output  

layers [4] 
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For the feed forward calculation of the INN, the interval 
arithmetic [6] is utilized. Let us denote two closed intervals as A 
and B, where A = [aL, aU] and B = [bL, bU]. In this case,  
 

A + B =[aL, aU] + [bL, bU] =[aL +bL, aU+ bU]. 
 (6)

k·A= k·[aL, aU]=[kaL, kaU], if k≥ 0, or [kaU, kaL], if k< 0
 (7)

A · B =[aL, aU] · [bL, bU] 
A    B=[min(aLbL,aLbU,aUbL,aUbU ),   
           max(aLbL,aLbU,aUbL,aUbU ) ]. 

(8)

 
The INN includes mn+m weights (i.e., nm weights between n 

input units and m hidden units, and m weights between m 
hidden units and an output unit) and m+1 biases (= the total 
number of units in the hidden and output layers). Thus, the INN 
includes mn+2m+1 interval variables in total. Our IDE handles 
these interval variables as a genotype X = (X1, X2, …,XD) where 
Xi is an interval and D = mn+2m+1. Each Xi can be specified by 
its upper and lower real values or by its center and width: Xi = 
[xi

L, xi
U] or Xi = (xi

c, xi
w) where xi

L, xi
U, xi

c andxi
w denote the 

upper, lower, center and width of Xi respectively.  

III. DIFFERENTIAL EVOLUTION WITH INTERVAL-VALUED 
GENOTYPES 

The IDE consists of the same processes as those in the 
ordinary DE. Processes of initialization of populations, 
reproduction and fitness evaluation are extended so that these 
processes can handle interval-valued genotypes. 

A. Initialization of Population 
In the initialization process, X1, X2, …,XP are randomly 

initialized where P is the population size. Because the elements 
in Xa (i.e., Xa,1, Xa,2, …, Xa,D) are interval weights and biases in 
an INN in this research, smaller absolute values of Xa,i are 
preferable as initial values. Thus, the initial values for Xa,i are 
randomly sampled from the normal distribution N(0,ε) or 
uniformly from an interval [-ε, ε] where ε is a small positive 
number. In the case of the [lower, upper] model, two values are 
sampled per Xa,i: the smaller (larger) one is set to xa,i

L (xa,i
U). In 

the case of the (center, width) model, two values are sampled 
per Xa,i: one of the two values is set to xa,i

c and the absolute 
value of the other is set to xa,i

w because xa,i
w (the width of the 

interval Xa,i) must be non-negative. 

B. Fitness Evaluation 
To evaluate fitness of an INN as a phenotype instance of the 

corresponding genotype instance Xa = (Xa,1, Xa,2, …, Xa,D) 
where Xaא{X1, X2, …, XP}, the INN is supplied with input real 
vectors x1, x2, …, xS and calculates output interval values O1, 
O2, …, OS. x1, x2, …, xS are sampled within the variable domain 
of application. Fitness of the genotype instance Xa is evaluated 
based on O1, O2, …,OS. The method for calculating the fitness 
score depends on the task to which the INN is applied. For 
example, in a case where the INN is applied to controlling an 
automated robot system, some performance measure of the 
system can be used as the fitness score of the genotype instance 

corresponding to the INN.  

C. Reproduction 
There are several variants of reproduction methods for DE. 

This paper describes the proposed extension of DE/rand/1/bin. 
Suppose Xa is a parent, Xa’ is an offspring from Xa, Yais the 
donor vector for Xa, Xb1,Xb2 andXb3 are three agents for deriving 
Ya, andZa is the trial vector for Xa. For each Xain the current 
population, Xb1,Xb2 andXb3are selected from the population in 
the same manner as the ordinary DE/rand/1/bin.  

In the case of the (center, width) model, Ya,i = (ya,i
c, ya,i

w) 
where,  
 

ya,i
c = xb1,i

c + F ·(xb2,i
c –xb3,i

c) 
 (9)

ya,i
w = xb1,i

w + F ·(xb2,i
w –xb3,i

w) (10)
 
under the constraint that ya,i

w ൒ 0. If ya,i
w by (10) becomes 

smaller than 0, then ya,i
w is repaired as 0. 

In the case of the [lower,upper] model, Ya,i = [ya,i
L, ya,i

U] 
where,  
 

ya,i
L = xb1,i

L + F ·(xb2,i
L –xb3,i

L) 
 (11)

ya,i
U = xb1,i

U + F ·(xb2,i
U –xb3,i

U) (12)
 
under the constraint that ya,i

L൑ ya,i
U. If ya,i

U by (12) becomes 
smaller than ya,i

L by (11), then the mean value of ya,i
L and ya,i

U is 
calculated and ya,i

U  and ya,i
U are repaired as the mean value.  

In (9)-(12), F is the scaling factor which is the same as that in 
the ordinary DE. With the parent Xa and the donor Ya, the trial 
vector Za is also determined by the same manner as in the 
ordinary DE: e.g., in the case of employing the binominal 
crossover, Za,i is either of Xa,i or Ya,i under the crossover rate of 
CR. With the parent Xa and the trial Za, the offspring Xa’ is also 
determined by the same manner as in the ordinary DE: the 
better of XaorZa is employed as Xa’.  

DE variants other than DE/rand/1/bin can also be extended 
just in the same manner as described here for DE/rand/1/bin.  

IV. COMPARISON OF LU/CW MODELS FOR INTERVAL 
GENOTYPE VALUES IN IDE 

As described above, the constraints for the two interval 
parameters (i.e., the lower and upper values or the center and 
width values) are different, and thus the methods for modifying 
constraint-violating values are also different between the LU 
and CW models. This difference may affect the performance of 
IDE in searching for solutions. To compare the performances 
between the two models, IDE with each of the two models is 
applied to the same task. As the application task, evolution of 
INNs is employed. The IDE is challenged to evolve INNs 
which better model a hidden target interval function. The target 
function is the following interval function in this study, F(x) = 
[F(x)L, F(x)U], where F(x)L and F(x)U denote the lower and 
upper limits of the interval function F(x).  
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Fig. 3 Target interval function F(x) = [F(x)L,F(x)U] 

 
F(x)L = 0.2sin(2πx)െ0.1x2+0.4 
 (13)

F(x)U = 0.2sin(2πx)+0.1x2+0.6 (14)
 
Fig. 3 shows the shape of the target interval function 

F(x)where FL and FU corresponds to F(x)L and F(x)U 
respectively.  

The INN is designed as follows. 
 #Units: 1 input, 10 hidden, 1 output.  
 Unit activation function: the sigmoidal one.  
The IDE is designed as follows. 
 Initial values for xa,i

L, xa,i
U, xa,i

c: uniformly random 
within[-1.0, 1.0].  

 Initial values for xa,i
w: uniformly random within[0.0, 1.0].  

 -10.0 ൑xa,i
L,xa,i

U,xa,i
c൑ 10.0. 

 0.0 ൑xa,i
w൑ 10.0. 

 #Total INNsevolved in a single run: 1,000,000. 
 Population size and #generation: (100,10,000) or (500, 

2,000).  
 Scaling factor F: 0.5. 
 Crossover rate for the binominal crossover CR: 0.8. 
The total number of INNs evolved in a single run is set to the 

same value among the two different population sizes. The 
number of generations is 10,000 (2,000) for the population size 
of 100 (500) so that the total number of INNs evolved is 
constantly 1,000,000 in each run.  

Genotype instances X1, X2, …,XP are ranked as follows. An 
INN which corresponds to a genotype instance Xi is supplied 
with a real input value xr and calculates its output interval Yr = 
[yr

L, yr
U]. xr is sampled within the input domain [0, 1] as xr= 0.0, 

0.01, 0.02, …, 0.99 and 1.0. Each value of xr is supplied to the 
target function F(x) and the interval output value of F(xr) = [fr

L, 
fr

U] is obtained. Then, the error er for xr is calculated aser = 
(yr

L–fr
L)2 + (yr

U–fr
U)2. Fig. 4 illustrates the error between Yr and 

F(xr).er is calculated 101 times (e0,e1, …, e100) for the 101 
different values of xr, and the sum of er is used for ranking a 
genotype instance. A genotype instance with a smaller sum of 
er is ranked better. Note that, in contrast to the training of neural 
networks by the back propagation algorithm, the error scores 
are not utilized for calculating the modification amount of 
weight/bias values. The error scores are utilized for only 
ranking the genotype instances. Thus, the target function F(x) is 
completely hidden from the reproduction process of the IDE.  

 
Fig. 4 Error between the target interval Yr = [yr

L, yr
U] and the INN 

output F(xr) = [fr
L, fr

U] for the input value xr. 
 

Fig. 5 shows the output interval function of the best INN 
among the total 20,000,000 INNs (= [1,000,000 INN in each 
run] כ  [5 runs] כ  [2 variations of population sizes] כ  [2 
variations of interval models]) evolved by the IDE. The best 
INN could model the target function F(x) with the error score of 
1.5 כ 10ିଷ. The best INN could model the target function F(x) 
very well.  

 

 
Fig. 5 Output interval function of the best INN evolved by IDE 

 

 
Fig. 6 Error values of the best INN at each number of INNs evolved 

(the error values are averaged over 5 runs) 
 

Fig. 6 shows the error values of the best INN among each 
number of INNs evolved (e.g., 500,000 INNs are evolved in 
total at the 5,000th generation with the population size of 100). 
In Fig. 6, “LU (100)” denotes the result with the LU model and 
the population size of 100. “LU (500)”, “CW (100)” and “CW 
(500)” denote their results in the same manner as “LU (100)”. 
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The error values are the averaged ones over 5 runs. Fig. 6 
revealed that the CW model contributed better to the IDE than 
the LU model did with both of the population sizes of 100 and 
500. After the 1,000,000 INNs evolved, the dotted curves for 
the CW model went below the solid curves for the LU model. 

V. CONCLUSION 
The two models for specifying intervals, i.e., the LU model 

and the CW model, were compared so that which model was 
better for the genotype values in the interval-valued differential 
evolution. The experimental result indicates that the CW model 
is better than the LU model. In future work, the author will 
further compare the two models for other application tasks and 
confirm that the CW model contributes better than the LU 
model. In addition, the author will investigate the reason why 
the model contributes better.  
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