
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1288

 Abstract—The author previously proposed an extension of
differential evolution. The proposed method extends the processes of
DE to handle interval numbers as genotype values so that DE can be
applied to interval-valued optimization problems. The interval DE can
employ either of two interval models, the lower and upper model or the
center and width model, for specifying genotype values. Ability of the
interval DE in searching for solutions may depend on the model. In
this paper, the author compares the two models to investigate which
model contributes better for the interval DE to find better solutions.
Application of the interval DE is evolutionary training of
interval-valued neural networks. A result of preliminary study
indicates that the CW model is better than the LU model: the interval
DE with the CW model could evolve better neural networks.

Keywords—Evolutionary algorithms, differential evolution,
neural network, neuroevolution, interval arithmetic.

I. INTRODUCTION
IFFERENTIAL EVOLUTION (DE) [1], which is an
instance of evolutionary algorithms [2], employs real

numbers as genotype values for solving real-valued
optimization problems. The author previously proposed an
extension of DE. The proposed method [3] extends the
processes of DE to handle interval numbers as genotype values
so that DE can be applied to interval-valued optimization
problems. The author has applied the extended interval-valued
DE (IDE) to the evolution of interval-valued neural networks
(INN [4]) and showed that IDE could evolve INNs which
model interval target functions well despite that no training data
was explicitly provided [5].

An interval value can be specified by its lower and upper
limit values or its center and width values, and thus the IDE can
employ either of two interval models, the lower and upper
model (LU) or the center and width model(CW) for specifying
genotype values. Ability of the IDE in searching for solutions
may depend on the model. In this paper, the author compares
the two models to investigate which model contributes better
for the IDE to find solutions. Application of the IDE is the same
as that in our previous paper [5], i.e., evolutionary training of
the INNs.

II. NEURAL NETWORKS WITH INTERVAL WEIGHTS AND BIASES
The INN employed in our research is the same as in the

literature [4], which is a three-layered feed forward NN with
interval weights and biases. Fig. 1 shows its structure. An INN
receives an input real vector x and calculates its output interval
value O (for simplicity, the output layer includes a single unit)

Hidehiko Okada is with Department of Intelligent Systems, Faculty of
Computer Science and Engineering, Kyoto Sangyo University, Japan (e-mail:
hidehiko@cc.kyoto-su.ac.jp).

as follows [4]:

Fig. 1 Neural network with interval weights and biases [4]

Input layer:

oi=xi. (1)

Hidden layer:

Netj=ΣiWj,ioi +Θj,

(2)

Oj=f(Netj). (3)

Output layer:

Net=ΣjWjOj +Θ,

(4)

O=f(Net). (5)

In (1)-(5), xi and oi are real values, while Netj, Net, Wj,i, Wj,
Θj, Θ, Oj and Oare interval values. f(x) is the unit activation
function which is typically the sigmoid alone: f(x)=1/(1+e-x).
f(x) maps an interval input to an interval output as illustrated in
Fig. 2.

Fig. 2 Input-output relation of each unit in the hidden and output

layers [4]

...

...

x i

...

...

O

Input
Layer

Hidden
Layer

Output
Layer

W
=[w , w]

j,i

j,i j,i
L U

W =[w , w]j
L
j j

U

Comparison of Two Interval Models for
Interval-Valued Differential Evolution

Hidehiko Okada

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1289

For the feed forward calculation of the INN, the interval
arithmetic [6] is utilized. Let us denote two closed intervals as A
and B, where A = [aL, aU] and B = [bL, bU]. In this case,

A + B =[aL, aU] + [bL, bU] =[aL +bL, aU+ bU].
 (6)

k·A= k·[aL, aU]=[kaL, kaU], if k≥ 0, or [kaU, kaL], if k< 0
 (7)

A · B =[aL, aU] · [bL, bU]
A B=[min(aLbL,aLbU,aUbL,aUbU),
 max(aLbL,aLbU,aUbL,aUbU)].

(8)

The INN includes mn+m weights (i.e., nm weights between n

input units and m hidden units, and m weights between m
hidden units and an output unit) and m+1 biases (= the total
number of units in the hidden and output layers). Thus, the INN
includes mn+2m+1 interval variables in total. Our IDE handles
these interval variables as a genotype X = (X1, X2, …,XD) where
Xi is an interval and D = mn+2m+1. Each Xi can be specified by
its upper and lower real values or by its center and width: Xi =
[xi

L, xi
U] or Xi = (xi

c, xi
w) where xi

L, xi
U, xi

c andxi
w denote the

upper, lower, center and width of Xi respectively.

III. DIFFERENTIAL EVOLUTION WITH INTERVAL-VALUED
GENOTYPES

The IDE consists of the same processes as those in the
ordinary DE. Processes of initialization of populations,
reproduction and fitness evaluation are extended so that these
processes can handle interval-valued genotypes.

A. Initialization of Population
In the initialization process, X1, X2, …,XP are randomly

initialized where P is the population size. Because the elements
in Xa (i.e., Xa,1, Xa,2, …, Xa,D) are interval weights and biases in
an INN in this research, smaller absolute values of Xa,i are
preferable as initial values. Thus, the initial values for Xa,i are
randomly sampled from the normal distribution N(0,ε) or
uniformly from an interval [-ε, ε] where ε is a small positive
number. In the case of the [lower, upper] model, two values are
sampled per Xa,i: the smaller (larger) one is set to xa,i

L (xa,i
U). In

the case of the (center, width) model, two values are sampled
per Xa,i: one of the two values is set to xa,i

c and the absolute
value of the other is set to xa,i

w because xa,i
w (the width of the

interval Xa,i) must be non-negative.

B. Fitness Evaluation
To evaluate fitness of an INN as a phenotype instance of the

corresponding genotype instance Xa = (Xa,1, Xa,2, …, Xa,D)
where Xaא{X1, X2, …, XP}, the INN is supplied with input real
vectors x1, x2, …, xS and calculates output interval values O1,
O2, …, OS. x1, x2, …, xS are sampled within the variable domain
of application. Fitness of the genotype instance Xa is evaluated
based on O1, O2, …,OS. The method for calculating the fitness
score depends on the task to which the INN is applied. For
example, in a case where the INN is applied to controlling an
automated robot system, some performance measure of the
system can be used as the fitness score of the genotype instance

corresponding to the INN.

C. Reproduction
There are several variants of reproduction methods for DE.

This paper describes the proposed extension of DE/rand/1/bin.
Suppose Xa is a parent, Xa’ is an offspring from Xa, Yais the
donor vector for Xa, Xb1,Xb2 andXb3 are three agents for deriving
Ya, andZa is the trial vector for Xa. For each Xain the current
population, Xb1,Xb2 andXb3are selected from the population in
the same manner as the ordinary DE/rand/1/bin.

In the case of the (center, width) model, Ya,i = (ya,i
c, ya,i

w)
where,

ya,i
c = xb1,i

c + F ·(xb2,i
c –xb3,i

c)
 (9)

ya,i
w = xb1,i

w + F ·(xb2,i
w –xb3,i

w) (10)

under the constraint that ya,i

w ൒ 0. If ya,i
w by (10) becomes

smaller than 0, then ya,i
w is repaired as 0.

In the case of the [lower,upper] model, Ya,i = [ya,i
L, ya,i

U]
where,

ya,i
L = xb1,i

L + F ·(xb2,i
L –xb3,i

L)
 (11)

ya,i
U = xb1,i

U + F ·(xb2,i
U –xb3,i

U) (12)

under the constraint that ya,i

L൑ ya,i
U. If ya,i

U by (12) becomes
smaller than ya,i

L by (11), then the mean value of ya,i
L and ya,i

U is
calculated and ya,i

U and ya,i
U are repaired as the mean value.

In (9)-(12), F is the scaling factor which is the same as that in
the ordinary DE. With the parent Xa and the donor Ya, the trial
vector Za is also determined by the same manner as in the
ordinary DE: e.g., in the case of employing the binominal
crossover, Za,i is either of Xa,i or Ya,i under the crossover rate of
CR. With the parent Xa and the trial Za, the offspring Xa’ is also
determined by the same manner as in the ordinary DE: the
better of XaorZa is employed as Xa’.

DE variants other than DE/rand/1/bin can also be extended
just in the same manner as described here for DE/rand/1/bin.

IV. COMPARISON OF LU/CW MODELS FOR INTERVAL
GENOTYPE VALUES IN IDE

As described above, the constraints for the two interval
parameters (i.e., the lower and upper values or the center and
width values) are different, and thus the methods for modifying
constraint-violating values are also different between the LU
and CW models. This difference may affect the performance of
IDE in searching for solutions. To compare the performances
between the two models, IDE with each of the two models is
applied to the same task. As the application task, evolution of
INNs is employed. The IDE is challenged to evolve INNs
which better model a hidden target interval function. The target
function is the following interval function in this study, F(x) =
[F(x)L, F(x)U], where F(x)L and F(x)U denote the lower and
upper limits of the interval function F(x).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1290

Fig. 3 Target interval function F(x) = [F(x)L,F(x)U]

F(x)L = 0.2sin(2πx)െ0.1x2+0.4
 (13)

F(x)U = 0.2sin(2πx)+0.1x2+0.6 (14)

Fig. 3 shows the shape of the target interval function

F(x)where FL and FU corresponds to F(x)L and F(x)U
respectively.

The INN is designed as follows.
 #Units: 1 input, 10 hidden, 1 output.
 Unit activation function: the sigmoidal one.
The IDE is designed as follows.
 Initial values for xa,i

L, xa,i
U, xa,i

c: uniformly random
within[-1.0, 1.0].

 Initial values for xa,i
w: uniformly random within[0.0, 1.0].

 -10.0 ൑xa,i
L,xa,i

U,xa,i
c൑ 10.0.

 0.0 ൑xa,i
w൑ 10.0.

 #Total INNsevolved in a single run: 1,000,000.
 Population size and #generation: (100,10,000) or (500,

2,000).
 Scaling factor F: 0.5.
 Crossover rate for the binominal crossover CR: 0.8.
The total number of INNs evolved in a single run is set to the

same value among the two different population sizes. The
number of generations is 10,000 (2,000) for the population size
of 100 (500) so that the total number of INNs evolved is
constantly 1,000,000 in each run.

Genotype instances X1, X2, …,XP are ranked as follows. An
INN which corresponds to a genotype instance Xi is supplied
with a real input value xr and calculates its output interval Yr =
[yr

L, yr
U]. xr is sampled within the input domain [0, 1] as xr= 0.0,

0.01, 0.02, …, 0.99 and 1.0. Each value of xr is supplied to the
target function F(x) and the interval output value of F(xr) = [fr

L,
fr

U] is obtained. Then, the error er for xr is calculated aser =
(yr

L–fr
L)2 + (yr

U–fr
U)2. Fig. 4 illustrates the error between Yr and

F(xr).er is calculated 101 times (e0,e1, …, e100) for the 101
different values of xr, and the sum of er is used for ranking a
genotype instance. A genotype instance with a smaller sum of
er is ranked better. Note that, in contrast to the training of neural
networks by the back propagation algorithm, the error scores
are not utilized for calculating the modification amount of
weight/bias values. The error scores are utilized for only
ranking the genotype instances. Thus, the target function F(x) is
completely hidden from the reproduction process of the IDE.

Fig. 4 Error between the target interval Yr = [yr

L, yr
U] and the INN

output F(xr) = [fr
L, fr

U] for the input value xr.

Fig. 5 shows the output interval function of the best INN
among the total 20,000,000 INNs (= [1,000,000 INN in each
run] כ [5 runs] כ [2 variations of population sizes] כ [2
variations of interval models]) evolved by the IDE. The best
INN could model the target function F(x) with the error score of
1.5 כ 10ିଷ. The best INN could model the target function F(x)
very well.

Fig. 5 Output interval function of the best INN evolved by IDE

Fig. 6 Error values of the best INN at each number of INNs evolved

(the error values are averaged over 5 runs)

Fig. 6 shows the error values of the best INN among each
number of INNs evolved (e.g., 500,000 INNs are evolved in
total at the 5,000th generation with the population size of 100).
In Fig. 6, “LU (100)” denotes the result with the LU model and
the population size of 100. “LU (500)”, “CW (100)” and “CW
(500)” denote their results in the same manner as “LU (100)”.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

O
u
tp
u
t
V
a
lu
e

Input V alue

FL FU

yr
L

Yr

| yr
L – fr

L |

yr
Ufr

L fr
U

| yr
U – fr

U |

F(xr)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

O
u
tp
u
t
V
a
lu
e

Input V alue

FL FU N N L N N U

0.001

0.01

0.1

1

10

100

0 200000 400000 600000 800000 1000000

E
rr
o
r
V
a
lu
e

IN N s evolved

LU (100) C W (100) LU (500) C W (500)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1291

The error values are the averaged ones over 5 runs. Fig. 6
revealed that the CW model contributed better to the IDE than
the LU model did with both of the population sizes of 100 and
500. After the 1,000,000 INNs evolved, the dotted curves for
the CW model went below the solid curves for the LU model.

V. CONCLUSION
The two models for specifying intervals, i.e., the LU model

and the CW model, were compared so that which model was
better for the genotype values in the interval-valued differential
evolution. The experimental result indicates that the CW model
is better than the LU model. In future work, the author will
further compare the two models for other application tasks and
confirm that the CW model contributes better than the LU
model. In addition, the author will investigate the reason why
the model contributes better.

ACKNOWLEDGMENT
This work is supported by Kyoto Sangyo University

Research Grant.

REFERENCES
[1] R. Storn and K. Price, Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces, Journal of
Global Optimization, Vol.11, No.4, pp.341-359, 1997.

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms, Oxford
Univ. Press, 1996.

[3] H. Okada, Proposal of fuzzy evolutionary algorithms for fuzzy-valued
genotypes, Proc. of Int. Conf. on Instrumentation, Control, Information
Technology and System Integration (SICE Annual Conference) 2012,
pp.1538-1541, 2012.

[4] H. Ishibuchi, H. Tanaka and H. Okada, An architecture of neural
networks with interval weights and its application to fuzzy regression
analysis, Fuzzy Sets and Systems, Vol.57, No.1, pp.27-39, 1993.

[5] H. Okada: Interval-valued differential evolution for evolving neural
networks with interval weights and biases, Proc. of the 6th International
Workshop on Computational Intelligence & Applications (IWCIA2013),
pp.81-84, 2013.

[6] G. Alefeld and J. Herzberger, Introduction to Interval Computation,
Academic Press, 1983.

