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 
Abstract—Based on multivariate statistical analysis theory, this 

paper uses the principal component analysis method, Mahalanobis 
distance analysis method and fitting method to establish the 
photovoltaic health model to evaluate the health of photovoltaic 
panels. First of all, according to weather conditions, the photovoltaic 
panel variable data are classified into five categories: sunny, cloudy, 
rainy, foggy, overcast. The health of photovoltaic panels in these five 
types of weather is studied. Secondly, a scatterplot of the relationship 
between the amount of electricity produced by each kind of weather 
and other variables was plotted. It was found that the amount of 
electricity generated by photovoltaic panels has a significant 
nonlinear relationship with time. The fitting method was used to fit 
the relationship between the amount of weather generated and the 
time, and the nonlinear equation was obtained. Then, using the 
principal component analysis method to analyze the independent 
variables under five kinds of weather conditions, according to the 
Kaiser-Meyer-Olkin test, it was found that three types of weather 
such as overcast, foggy, and sunny meet the conditions for factor 
analysis, while cloudy and rainy weather do not satisfy the conditions 
for factor analysis. Therefore, through the principal component 
analysis method, the main components of overcast weather are 
temperature, AQI, and pm2.5. The main component of foggy weather 
is temperature, and the main components of sunny weather are 
temperature, AQI, and pm2.5. Cloudy and rainy weather require 
analysis of all of their variables, namely temperature, AQI, pm2.5, 
solar radiation intensity and time. Finally, taking the variable values 
in sunny weather as observed values, taking the main components of 
cloudy, foggy, overcast and rainy weather as sample data, the 
Mahalanobis distances between observed value and these sample 
values are obtained. A comparative analysis was carried out to 
compare the degree of deviation of the Mahalanobis distance to 
determine the health of the photovoltaic panels under different 
weather conditions. It was found that the weather conditions in which 
the Mahalanobis distance fluctuations ranged from small to large 
were: foggy, cloudy, overcast and rainy. 
 

Keywords—Fitting, principal component analysis, Mahalanobis 
distance, SPSS, MATLAB. 

I. INTRODUCTION 

HE reasonable selection of the characteristic parameters 
of the health state of the photovoltaic system is the 

prerequisite for the assessment of the health state of the 
photovoltaic system, and the selected characteristic parameters 
will have a direct or indirect effect on the performance state of 
the photovoltaic system. 
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In order to accurately reflect the health state of the 
photovoltaic system, this paper selects the solar radiation, 
ambient temperature, weather conditions, solar radiation 
intensity, air quality index and time as the characteristic 
parameters. According to different weather conditions, 
multivariate statistical analysis is used to classify these 
characteristics. The principal component analysis is used to 
preprocess the original multidimensional input variables, and 
the health degree of the system is characterized by 
mahalanobis distance for different weather conditions. 

II. LITERATURE REVIEW 

Haiying and Xiaomin considered the randomness and 
discontinuity of photovoltaic system power generation. The 
Monte Carlo method was used to establish a solar irradiance 
model and an energy conversion model to evaluate the 
operational risks of photovoltaic grid-connected systems, and 
examples were verified [1]. 

Ning et al. analyzed the mechanism of harmonic generation, 
deduced the Thevenin equivalent circuit of the 1MVA power 
generation unit, and established an impedance network model 
that approximated the actual grid connection. The relationship 
between the generation of harmonics and irradiance and the 
temperature of the photovoltaic panels was studied. The 
effectiveness of the model was verified by the measured data 
of Qinghai 50 MVA grid-connected photovoltaic power 
stations [2]. 

Qiaona and Zhong proposed to use back propagation (BP) 
neural network model to improve the forecasting accuracy of 
photovoltaic power generation [3]. 

Dandan et al. comprehensively analyzed the factors that 
affect power generation, such as weather type, temperature, 
irradiance, etc. For the intermittent and easily impacted power 
grids in photovoltaic power plants, a SOFM-LM-BP neural 
network model was established to predict power generation, 
and the difference between the predicted value and the actual 
value was compared. It was found that the model had a better 
prediction effect [4].  

Lin and Yingzi used the modified GM(1,1) residual 
correction model to establish a photovoltaic power generation 
forecasting model and predicted the power generation of a 5.6 
kW photovoltaic system [5]. 

Jie and Yanxia proposed a feedback-based neural network 
short-term power generation forecasting model based on 
chaotic adaptive particle swarm optimization for the 
characteristics of photovoltaic power generation systems and 
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related influencing factors [6]. 
Siqing et al. comprehensively consider factors such as 

photovoltaic panel installation factors, meteorological 
conditions, total solar radiation and other factors, establish a 
model of surface radiation acceptance of photovoltaic panels, 
and conduct statistical analysis of the meteorological 
conditions in North China [7]. 

III. DATA PREPROCESSING 

Based on the existing data, the missing data are processed 
as follows: for the temperature, air quality, PM2.5, solar 
radiation intensity and power generation data, if there exists 
missing data, this article will take the average value of the two 
periods before and after the vacancy data to complement; for 
different weather data, the missing data can use the previous 
data to replace. 

 
TABLE I 

SYMBOL DESCRIPTION 

Symbols 1X  2X  3X  4X  5X  Y  

Meaning temperature AQI pm2.5 
Solar 

radiation 
intensity 

time 
Photovoltaic 

Power 
generation 

IV. ANALYSIS OF FACTORS AFFECTING POWER GENERATION 

Considering that the power generation may be affected by 
other variables, in order to reduce the complexity of the 
research, and to find out which factors in different weather 
conditions have the greatest impact on the health of the 
photovoltaic panels, in this paper, MATLAB software is used 
to plot the scatter diagram of the relationship between 
photovoltaic power generation and other variables under 
different weather conditions, take sunny weather condition as 
an example, the relationships are as follows: 

 

 

Fig. 1 Photovoltaic power generation and AQI 
 
From Figs. 1-4, the relation between photovoltaic power 

generation and other variables is fuzzy.  
From Fig. 5 it can be found that there is a more obvious 

nonlinear relationship between photovoltaic power generation 
and time. The relationship can be obtained by fitting method, 
as shown in Fig. 6. 

 

 

Fig. 2 Photovoltaic power generation and temperature 
 

 

Fig. 3 Photovoltaic power generation and pm2.5 
 

 

Fig. 4 Power generation and solar radiation intensity 
 

It is ideal to find the effect of the fitting diagram in Fig. 6, 
the fitting value can cover as many observations as possible, 
and the relation between power generation and time under 
sunny weather condition is obtained. 
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Similarly, the relationships of photovoltaic power 

generation with other variables under other conditions can be 
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obtained, the results show that photovoltaic power generation 
has close relationship with time under different conditions, the 
fitting graphics and equations are as Figs. 7-11. 

 

 

Fig. 5 Photovoltaic power generation and time 
 

 

Fig. 6 Fitting effect of power generation and time 
 

 

Fig. 7 Relation between power generation and time in overcast 
condition 6 5 4 3 2

5 5 5 5 5 50.0001 0.0082 0.2052 2.202 9.21 12.430 1.861Y X X X X X X        

 
From Fig. 11, it is found that the fitted values can not well 

reflect the relationship between the observed values and the 
time. In general, the relationship between power generation 
and time is not clear. In the same way, we get the relationship 
between the power generation and the time. 

 

Fig. 8 Relation between power generation and time in cloudy weather
6 5 4 3 2

5 5 5 5 5 50.0001 0.0066 0.1625 1.714 6.999 8.621 0.366Y X X X X X X        

 

 

Fig. 9 Relation between power generation and time under foggy 
condition 5 4 3 2

5 5 5 5 50.0027 0.0791 1.0717 6.7231 18.7095 17.9459Y X X X X X       

 

 

Fig. 10 Relation between power generation and time in rainy days 
5 4 3 2

5 5 5 5 50.0001 0.0024 0.0323 0.3285 1.2033 1.0929Y X X X X X       

 
4 3 2

5 5 5 50.0015 0.1086 3.7242 56.316 27.3791Y X X X X      (2) 

 
It is not difficult to find that the influence level of each 

factor on photovoltaic power generation is different, but there 
may be an overlapping correlation between the variables. In 
order to further reduce the complexity of the variables and 
find the factors which have great influences on the health of 

0 5 10 15 20 25
0

20

40

60

80

100

120

Time/hour

po
w

er
 g

en
er

at
io

n

0 5 10 15 20 25
-20

0

20

40

60

80

100

120

Time/hour

P
ow

er
 g

en
er

at
io

n

 

 

sample observations

fitted value

0 5 10 15 20 25
-20

0

20

40

60

80

100

Time/hour

P
ow

er
 g

en
er

at
io

n

 

 

sample observations

fitted value

0 5 10 15 20 25
-20

0

20

40

60

80

100

Time/hour

P
ow

er
 g

en
er

at
io

n

 

 

sample observations

fitted value

0 5 10 15 20 25
-2

0

2

4

6

8

10

Time/hour

P
ow

er
 g

en
er

at
io

n

 

 

sample observations

fitted value

0 5 10 15 20 25
-1

0

1

2

3

4

5

6

Time/hour

P
ow

er
 g

en
er

at
io

n

 

sample observations

fitted value



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:13, No:3, 2019

144

 

 

the photovoltaic board, this article carried out principal 
component analysis. 

 

 

Fig. 11 The relationship between photovoltaic power generation and 
time for total sample data 

V. PRINCIPAL COMPONENT ANALYSIS MODEL 

Factors affecting photovoltaic power generation include 
temperature, AQI, PM2.5, weather, and solar radiation 
intensity. In order to more clearly study the relationship 
between factors and the impact on power generation, this 
paper selects principal component analysis method to extract 
the main variables. 

The principal component analysis calculates the data matrix 
formed by a plurality of sample input variables, obtains the 
correlation matrix of the data matrix and the contribution rate 
of the cumulative variance according to the eigenvalues of the 
correlation matrix. Finally, according to the feature vector of 
the correlation matrix, the main component is calculated. The 
specific steps are as follows: 

A. Standardization of Original Data  

In order to eliminate the influence of the original variable 
dimension and the large numerical value difference, the raw 
data should be standardized. Assuming that the original 
variables have a total of M groups of samples, each group of 
samples contains a total of N feature parameters, the original 
variables can be expressed as: 

 

11 1

1

N

M N

N MN

x x

X

x x


 
   
  


  


, 

 
By converting the above matrix through the center 

normalization to the matrix *
M NX  , the data unit of the matrix 

*
M NX   can be expressed as:  

* ( )

( )
ij j

ij

j

x E x
x

D x


 ,                (3) 

 

where 1, 2, , ;i M  1, 2, , ;j N  ijx is the data unit of 

the matrix M NX  ; jx is the jth feature parameter; ( )jE x  and 

( )jD x  are the expected and variance values of the variable 

jx , respectively. 

B. Creating a Correlation Matrix for Variables 

The correlation matrix of variables R  is established as: 
 

*

1

T
M NX

R
M




,                    (4)    

 

and calculate out the eigenvalues ( 1: )i i n   and 

eigenvectors ( 1: )it i n of the matrix. 

C. Determination of the Number of Principal Components 

Variance contribution rate:  
 

1

100%i
i n

ii






 


             (5)  

                   
Accumulated variance contribution rate: 

 

1

P

i
i

 


                     (6) 

 
The number of principal components selected depends on 

the contribution of the cumulative variance. Usually, when the 
cumulative variance contribution rate is greater than 85%, the 

corresponding first P  principal components contain most of 
the information that the original variable can provide.  

D. The Eigenvector Matrix  

The eigenvector matrix corresponding to the P  principal 
components is: 

 

1 2( , , , )N P pU u u u   ,            (7) 

 

Then the matrix of P  principal components of M samples 
of the photovoltaic system is: 

 
*

M N M N N pU X U                  (8) 

VI. SOLUTION TO PRINCIPAL COMPONENT ANALYSIS MODEL 

Using Spss software for principal component analysis, the 
KMO test and total variance for five weather conditions can 
be obtained, as shown in Tables II-IX. 

A. Cloudy Weather 
TABLE II 

EXAMINATION OF KMO AND BARTLETT IN CLOUDY WEATHER 

Kaiser-Meyer-Olkin metric for sampling enough 0.474 

Bartlett’s sphericity 
test 

Approximate Chi-square 287.791 

df 10 

Sig. .000 
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For cloudy weather, it can be seen from Table II that the 
KMO test value is less than 0.5 and does not satisfy the 
conditions for the principal component analysis. Therefore, the 
principal component analysis method cannot be used to extract 
the main factor. Therefore, in the computational model for the 
photovoltaic panel health under cloudy weather, the variables 

have to be taken, such as 1X , 2X , 3X , 4X , 5X . 

B. Overcast Weather 

From Table III, it can be found that the KMO test value is 

greater than 0.6, so the principal component analysis test can 
be performed under cloudy weather. The total variance 
explained is shown in Table IV. 

 
TABLE III 

EXAMINATION OF KMO AND BARTLETT IN OVERCAST WEATHER 

Kaiser-Meyer-Olkin metric for sampling enough 0.644 

Bartlett’s sphericity 
test 

Approximate Chi-square 224.797 

df 10 

Sig. .000 

 
 

TABLE IV 
TOTAL VARIANCE EXPLAINED IN OVERCAST WEATHER 

Ingredients 
Initial feature value Extract and load Rotation squared and loaded 

Total Variance% Accumulation % Total Variance% Accumulation % Total Variance% 

1 2.397 47.939 47.939 2.397 47.939 47.939 2.388 47.763 

2 1.050 20.995 68.934 1.050 20.995 68.934 1.059 21.171 

3 0.925 18.495 87.429      

4 0.433 8.650 96.079      

5 0.196 3.921 100.000      

 

As can be seen from Table IV, when the first three 
components are selected, the cumulative variance contribution 
rate reaches 87.429%, and the first three components have 
eigenvalues greater than 1 or close to 1, so the first 3 
components are selected as the main components, i.e., 
temperature, AQI, pm2.5. 

C. Foggy Weather 

Using the principal component analysis method, the total 
variance of the KMO test and the interpretation under foggy 

weather conditions can be obtained, as shown in Tables V and 
VI. 

 
TABLE V 

EXAMINATION OF KMO AND BARTLETT IN FOGGY WEATHER 

Kaiser-Meyer-Olkin metric for sampling enough 0.810 

Bartlett’s sphericity test 

Approximate Chi-square 65.973 

df 6 

Sig. .000 

 

 
TABLE VI 

TOTAL VARIANCE EXPLAINED IN FOGGY WEATHER 

Ingredients 
Initial feature value Extract and load 

Total Variance % Accumulation % Total Variance % Accumulation % 

1 3.887 97.181 97.181 3.887 97.181 97.181 

2 0.085 2.122 99.303    

3 0.014 0.352 99.655    

4 0.014 0.345 100.000    

 

As can be seen from Table V, the KMO value is greater 
than 0.8 and is suitable for principal component analysis. 

D. Rain Weather 

Using the principal component analysis method, the KMO 
test value under rainy weather conditions can be obtained, as 
shown in Table VII. 

From Table VII, it can be seen that the KMO value is less 
than 0.5, which does not satisfy the principal component 
analysis conditions. Therefore, in the calculation model for the 
photovoltaic panel health degree on a rainy day, variables 

1X , 

2X , 
3X , 

4X , 
5X  have to be taken into account. 

E. Sunny Weather 

Under the conditions of sunny weather, the principal 
component analysis of the variables can obtain the KMO test 
value and the total variance value, as shown in Tables VIII 
and IX. 

From Table VIII, it can be seen that the KMO value is 
greater than 0.55, so the principal component analysis can be 
done under sunny conditions. 

From Table IX, we can find that the extraction of the first 
three components can significantly increase the cumulative 
variance contribution rate, and the first three components have 
eigenvalues greater than 1 or close to 1, so the first 3 
components are selected as the main components, ie, 
temperature, AQI, pm2.5. 

 
TABLE VII 

EXAMINATION OF KMO AND BARTLETT IN RAIN WEATHER 

Kaiser-Meyer-Olkin metric for sampling enough 0.365 

Bartlett’s sphericity test 

Approximate Chi-square 35.390 

df 10 

Sig. .000 

 
After the principal component analysis was used to extract 
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the main components, the power generation conditions under 
sunny conditions were used to as health standards to establish 
a Mahalanobis distance model to analyze the health of 
photovoltaic power generation under different weather 
conditions. 

 
 

TABLE VIII 
EXAMINATION OF KMO AND BARTLETT IN SUNNY WEATHER 

Kaiser-Meyer-Olkin metric for sampling enough 0.551 

Bartlett’s sphericity 
test 

Approximate Chi-square 496.804 

Df 10 

Sig. .000 

TABLE IX 
TOTAL VARIANCE EXPLAINED IN SUNNY WEATHER 

Ingredients 
Initial feature value Extract and load 

Total Variance % Accumulation % Total Variance % Accumulation % 

1 2.253 45.065 45.065 2.253 45.065 45.065 

2 1.296 25.928 70.993 1.296 25.928 70.993 

3 0.827 16.547 87.540    

4 0.398 7.965 95.505    

5 0.225 4.495 100.000    

 
VII. MAHALANOBIS DISTANCE MODEL 

In order to reasonably assess the hourly health of 
photovoltaic panels, the degree of health needs to be measured 
by data under normal conditions and abnormal conditions, and 
the degree of health is determined by differences in data 
points. 

Mahalanobis distance is a method for effectively calculating 
the similarity of two unknown sample sets. It can take into 
account the relationship between various characteristics and 
the scale is irrelevant, indicating the covariance distance of the 
data. The specific operation steps of the model are as follows: 

A. Determine Observation Data and Sample Data Points 

Take the data under the sunny conditions as the observed 
data Y , and use the data under cloudy, foggy, overcast, and 
rainy conditions as the sample data point X . Both the sample 
observations and the sample data points have the same 
dimensions, but the number of samples does not have to be the 
same.  

According to the principal component analysis method, the 
main components under the cloudy weather are 

1X 、
2X 、

3X , 

and the main component under foggy weather is 
1X . Since the 

cloudy and rainy conditions cannot satisfy the factor analysis 
conditions, the variables 

1X 、
2X 、

3X 、
4X 、

5X  are sample 

variables under cloudy and rainy conditions. Considering that 
the dimensions between the observation data and the sample 
data points must be the same, the variable data under the 
sunny conditions in the same dimension as the sample data 
points are selected as observation data. 

(1) Determine the Mean and Covariance Matrix of the 
Sample 

The mean of the sample is:  

1 2 3( , , , , )T
p      , 

 
that is: 

1

1
( 1, 2, , )

M

j ij
i

P j P
M




   ,        (9) 

 

where 
ijP  is the data unit of the matrix. 

The sample’s covariance matrix is a square matrix with the 
same dimension as the sample dimensions. For two variables, 
the covariance of x  and y  is: 

 

( , ) ( ( ))( ( ))Cov x y E x E x y E y       (10) 
 

For multiple column vectors, the covariance matrix is: 
 

cov( , )ij i jDim Dim             (11) 

(2) Calculate Mahalanobis Distance 

 1( )TMD x x              (12) 

 
For the multivariate vector 1 2 3( , , , , )px x x x x  , the 

covariance   and the mean   and other related data are 

substituted into the formula to obtain the Mahalanobis 
distance between the sample observations and the sample data 
points. 

VIII. SOLUTION OF MAHALANOBIS DISTANCE MODEL 

 

Fig. 12 Mahalanobis distance in overcast conditions 
 

Substituting the relevant data into the model and using 
MATLAB software to solve it, we finally obtain the 
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Mahalanobis distance under conditions of overcast, cloudy, 
foggy, and rainy, as shown in Figs. 12-16. 

 

 

Fig. 13 Mahalanobis distance in cloudy conditions 
 

 

Fig.  14 Mahalanobis distance under foggy conditions 
 

In general, the Mahalanobis distance fluctuates the most in 
rainy conditions, with the largest degree of deviation. Under 
cloudy conditions, the Mahalanobis distance between 50 and 
100 and fluctuates fiercely, and fluctuations in other areas are 
relatively stable. Under overcast conditions, the Mahalanobis 
distance between 80 and 140 fluctuates relatively, and it is 
relatively stable in other areas. Under the foggy conditions, the 
Mahalanobis distance fluctuation is relatively small and stable. 

 

 

Fig. 15 Mahalanobis distance in rainy conditions 

 

Fig. 16 Comparison of Mahalanobis distance under different weather 
conditions 

 
From the results, it can be found that when the sample 

points are between 50-100 and 250-300, the Mahalanobis 
distance under rainy conditions and overcast conditions will 
fluctuate to a greater degree.  

In summary, according to the established Mahalanobis 
distance model, it is known that the Mahalanobis distance 
fluctuation value is the smallest in the foggy weather, which 
indicates that the photovoltaic panel is in the most healthy 
condition in the foggy weather. 

IX. CONCLUSIONS 

In this paper, we mainly used the principal component 
analysis method to extract principal components of variables 
affecting power generation in various weather conditions. The 
Mahalanobis distance model was established to evaluate the 
health of photovoltaic power generation under different kinds 
of weather. We can find the health status of photovoltaic 
power generation different under different kinds of weather. 
Therefore, for different cities, the photovoltaic power 
generation should consider many influencing factors. City 
managers should take different weather into consideration. 
Under different weather conditions, they should take different 
methods to obtain more photovoltaic power generation to 
promote sustainable urban development.  
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