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 
Abstract—This paper presents a comparative study of the Gauss 

Seidel and Newton-Raphson polar coordinates methods for power 
flow analysis. The effectiveness of these methods are evaluated and 
tested through a different IEEE bus test system on the basis of 
number of iteration, computational time, tolerance value and 
convergence. 

 
Keywords—Convergence time, Gauss-Seidel Method, Newton-

Raphson Method, number of iteration, power flow analysis. 

NOMENCLATURE 

Var       volt-ampere reactive 

jBGYY    complex nodal admittance matrix 

Z        nodal impedance matrix 
J        Jacobian matrix 
G        conductance 
B        susceptance 
N-bus      number of buses in system 
s        slack bus index 
NPV       number of generator buses 
NPQ       number of load buses 

iii VV     complex nodal voltage at ith bus 

Ii        complex nodal injected current at ith bus 
Pi        active power at ith bus 
Qi       reactive power at ith bus 

iii jQPS    complex nodal injected power at ith bus 

ΔPi = Pci -Pi    active power mismatch 
ΔQi = Qci -Qi    reactive power mismatch 

I. INTRODUCTION 

HE power flow studies, commonly referred to as load 
flow, are the backbone of power system analysis and 

design. They are necessary for planning future expansion, 
control, economic scheduling, and management of power 
systems as well as in determining the best operation of 
existing systems. In addition, power flow analysis is required 
for many other analyses such as transient stability and 
contingency studies. 

The network equations can be formulated systematically in 
a variety of forms. However, the node-voltage method is 
commonly used for power system analysis. The network 
equations which are in the nodal admittance form result in 
complex linear simultaneous algebraic equations in terms of 
node currents [1]. When node currents are specified, the set of 
linear equations can be solved for the node voltages. However, 
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in a power system, powers are known rather than currents. So, 
the steady-state performances of an interconnected power 
system can be modeled from a polynomial system equation in 
several variables called power flow equations become 
nonlinear. To approximate the solutions of these nonliner 
equations, the numerical methods should be used [2]. The 
algorithms applied to solve the power flow equations can be 
classified into two broad categories: coordinate category 
methods such as Gauss Seidel [1] and gradient category 
methods such as Newton-Raphson [4]-[6]... The power flow 
results give the bus voltage magnitude and phase angles and 
hence the power flow through the transmission lines, line 
losses and injection at all the buses. 

The power system is assumed to be operating under 
balanced condition and can be represented by a single-phase 
network. The power system network contains hundreds of 
buses and branches with impedances specified in per-unit on a 
common MVA base.  

In this work, we present a comparative study of these two 
categories iterative solution techniques for power flow 
analysis [7]. The performances of these methods are assessed 
from four aspects: Number of iterations, computational time, 
tolerance value and convergence. The two methods are tested 
on five IEEE standard 3-Bus, 5-Bus, 14-Bus, 30-Bus and 57-
Bus test systems. The simulation is carried out using 
MATLAB version 7.8.0.347 (R2008a) in Intel® Atom ™ 
CPU N450 @1,66GHz. 

This paper is organized as follows: After the introduction, 
the modelling and power flow problem formulation of an 
electric power system was briefly discussed and deals with the 
steady-state analysis of interconnected power system during 
normal operation in Section II. Section III describes the load 
flow solution using Gauss Seidel and Newton Raphson polar 
coordinates methods. Section IV introduces the simulation 
results and discussion. Finally Section V presents the 
conclusion. 

II. POWER FLOW PROBLEM FORMULATION 

A. Bus Classification 

In a power flow study, a bus is defined as the vertical line at 
which the several components such as generators, loads and 
transformers are connected. Each bus is associated with four 
variables: Magnitude of voltage, phase angle of voltage, active 
and reactive power. Two of the four variables are specified 
and the other two variables are unknown. The two unknown 
variables are determined through the solution of the nonlinear 
power flow equations. The buses are classified into three 
categories:  
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- Load (PQ bus): No generator is connected to the bus. The 
load drawn by these buses are defined by real power -PLi 

and reactive power QLi in which the negative sign 
accommodates for the power flowing out of the bus. The 
objective of the load flow is to find the bus voltage 
magnitude Vi and its angle δi. 

- Generator bus: The input power PGi and the bus voltage Vi 

are kept constant. We have to find the unknown angle δi 
of the bus voltage and the generated reactive power QGi 
through the load flow solution. 

- Slack (swing) bus: Usually this generator bus is numbered 
1 for the load flow studies. This bus sets the angular 
reference for all the other buses. Since it is the angle 
difference between two voltage sources that dictates the 
real and reactive power flow between them, the particular 
angle of the slack bus is not important. However, it sets 
the reference against which angles of all the other bus 
voltages are measured. For this reason the angle of this 
bus is usually chosen as δ1=0. Furthermore, it is assumed 
that the magnitude of the voltage V1 of this bus is known. 

The bus classification is summarised in Table I. 

B. Network Models 

Power network can be operating under balanced or 
unbalanced conditions. The normal procedure for a load flow 
problem formulation is to assume balanced equations at the 
buses of the system and to use a single-phase representation 
equivalent to the positive sequence network and selecting a 
proper subset of these equations which will provide the 

minimum number of simultaneous equations in terms of an 
equal number of state variables (equal number of equations 
and unknowns). The solution of these equations provides the 
system state. 

The power flow model consists of a set of nonlinear 
algebraic equations. These equations formulate active and 
reactive line flows based on bus voltage magnitudes and phase 
angles. In most power system studies, transmission lines are 
represented by a π-equivalent circuit [8]. 

A systematic way of writing the power flow equations for 
any bus is given by (9), followed by the selection process. The 
power flow equations can be developed with reference to Fig. 
1 illustrating a general circuit between any two buses i and j 
buses. 

In general, one or more circuits may be connected to a bus. 
In addition, an admittance yii may be also connected to a bus (a 
capacitor, a reactor, etc.). It is assumed that electric current Igi 
is injected to bus i from the generators connected to this bus. 
Also, electric current Idi is absorbed from the electric load 
connected to this bus. One or both of these currents may be 
absent from a bus. The voltage of bus i is assumed to be Vi and 
the voltage of bus j is assumed to be Vj.  

 
TABLE I  

BUS CLASSIFICATION 

Bus Type Bus code Known variables Unknown variables 

Slack (Swing) bus 1 V∟ P and Q 

Generator (PV) bus 2 P and V Q and  

Load (PQ) bus 3 P and Q V∟ 
 

 

bus i bus j 

Vi Vj yii yjj 

Iij yij 
Igi 

Idi 



 

Fig. 1 Symbolic representation of a line model of an electric power system 
 

C. Bus Admittance Matrix 

The bus admittance matrix, or Y matrix, is a numerical 
model of the power system that characterizes the behaviour of 
the network components such as power lines, transformers and 
loads using the complex injected currents at the nodes and 
their relation to the complex node voltages, based on 
Kirchoff’s current law [1]. 

Generally, for a network with N independent buses, we can 
write the following N nodal equations for a power system 
network applying the Kirchoff's current law to bus i will yield: 

 

NiVYI
N

j
jiji ,...2,1

1

 


           (1) 

 

In matrix representation: 
 

]][[][ VYI                    (2) 
 

where: ][I : the bus current injection vector; ][V : the bus 

voltage vector; ][Y : the bus admittance matrix; iiY : the 

diagonal elements of bus admittance matrix, are called the 
self-admittance of bus i, which equals the sum of all branch 
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admittances connecting to bus i. 
ijY : the off-diagonal 

elements, of the bus admittance matrix, are the negative of the 
admittances buses i and j (

jiij YY  ). The off-diagonal 

elements are equal to zero if there is no line between buses i 
and j, obviously, the bus admittance matrix is a sparse matrix. 

D. Real and Reactive Power Injected in a Bus 

The complex power delivered to ith bus is given by: 
 

*
iii IVS   with i=1, 2, 3 … N            (3) 

 
and 

)()(***
digidigidigii QQjPPSSS        (4) 

 
where 

giS : the complex power injection vector generator 

connecting to bus i; diS : the complex power load vector 

connecting to bus i; Pgi: the real power output of the generator 
connecting to bus i; Qgi: the reactive power output of the 
generator connecting to bus i; Pdi: the real power load 
connecting to bus i; Qdi: the reactive power load connecting to 
bus i. 

The bus current can be represented by bus voltage and 
power: 

 

**

** )()(

i

digidigi

i

digi
i V

QQjPP

V

SS
I





       (5) 

 
Substituting (5) into (1), we have: 
 

NiVY
V

QQjPP
I

N

j
jij

i

digidigi
i ,...2,1

)()(

1
*




 


 (6) 

 
In the power flow problem, the load demands are known 

variables. We define the following bus power injections as: 
 

digii PPP                    (7) 

 

digii QQQ                   (8) 

 
Substituting the above two equations into (6), we can get the 

general form of power flow equation as 
 

NiVYVjQP
N

j
jijiii ,...2,1

1

*  


       (9) 

 
If we divide (9) into real and imaginary parts, we can get 

two equations for each bus with four variables, that are, 
voltage amplitudes V and phases  at load PQ buses, reactive 
power Q and voltage phases V at generator PV buses and 
active and reactive power (P, Q) at the slack bus, as given in 
Table I. The slack bus variables 1 and V1 are omitted, since 
they are already known. To solve the power flow equations, 

two of these should be known for each bus (Table I). 
Assuming the system consists of N buses. The 1th bus is the 
slack bus, buses 2 to M are PQ buses and buses (M+1) to N are 
PV buses. The variables and equations are twice the number of 
the network buses, then 2(N-1)-(M-1) unknowns variables. 

If the bus voltage is expressed using the polar coordinate 
system, the complex voltage, and admittance elements can be 
written as: 

 

)sin(cos iiiiii jVVV           (15) 

 

ijijij YY    with i, j =1, 2, 3 …N 

 

ijijijijijij jBGjYY  )sin(cos        (16) 

 

where ij=i−j, which is the angle difference between buses i 
and j. 

The power flow equations in polar coordinate are based on 
the nonlinear power flow equation gives by (9). The terms V, 
P and Q are represented in per-unit and  terms are 
represented in degrees. For each PV or PQ bus, we have the 
following real and reactive powers mismatch equations given 
by (17) and (18): 

 

0]sincos[
1

 


ijij

N

j
ijijjiiciici BGVVPPPP   (17) 

 

0]cossin[
1

 


ijij

N

j
ijijjiiciici BGVVQQQQ  (18) 

 
where Pic, Qic are, respectively, the calculated bus real and 
reactive power injections. 

The power flow equations (17) and (18) are nonlinear and 
cannot be explicitly inverted. To solve these nonlinear 
equations the numerical iterative techniques are used [2]. 

III. LOAD FLOW SOLUTION 

The mathematical recalls of the Gauss Seidel method and 
Newton Raphson polar coordinates method are given in this 
section. 

A.  Gauss Seidel Method 

The Gauss-Seidel iterative method [3] is the simplest of all 
the iterative methods. From (9), we get 

 

NiVY
V

jQP

Y
V

N

ij
j

jij

i

ii

ij
i ,...2,1

1

1
*




















 




   (10) 

 
According to the Gauss-Seidel method, the iteration 

formula (10) can be written as: 
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










  



 


1

1 1

1
*

1 1 i

j

N

ij

k
jij

k
jijk

i

ii

ij

k
i VYVY

V

jQP

Y
V   (11) 

 
Equation (11) is the formulation for the iterative solution of 

power flow problem by Gauss Seidel method; for the PQ bus, 
the real and reactive powers are known. Thus, if the initial bus 
voltage V̇i

0 is given, we can use (11) to perform the iteration 
calculation. 

For the PV bus, the bus real power and the magnitude of the 
voltage are known. It is necessary to give the initial value for 
bus reactive power. The bus reactive power will then be 
computed by iterative calculation. That is: 

 

1
* * 1* * *

1 1

Im Im
i N

k k k k k k
i i i i ij j ij j

j j i

Q V I V Y V Y V




  

  
          

  (12) 

 
After the iteration is over, all bus real and reactive power, as 

well as the voltage, are obtained. The power of the slack bus 
can be obtained by solving: 

 





N

j
jjVYVjQP

1

**
1111

           (13) 

 
The line complex power flow can be also obtained as: 

 
****

0
2* )( ijjiiiiijiijijij YVVVYVIVjQPS      (14) 

 
where Yij is the admittance of the branch i-j and Yi0 is the 
admittance of the ground branch at the end i. 

B. Newton Raphson Method 

According to the Newton method [4]-[6], the power flow 
equations (17) and (18) can be expanded into Taylor series and 
the following first-order approximation. The result is a linear 
system of equations that can be expressed as: 

 




















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






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

VVJJ

JJ

Q
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/43

21 
           (19) 

 
where: 
 

VVVV D  1/  
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
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The partial derivatives in each Jacobian matrix block, 

derived from (17) and (18) are given by: 

J1 is an (N-1)x(N-1) matrix, and its element is 
j

i
ij

P
J




1
 

J2 is an (N-1)xM matrix, and its element is 
j

i
jij V

P
VJ




2
 

J3 is an Mx(N-1) matrix, and its element is 
j

i
ij

Q
J




3
 

J4 is an MxM matrix, and its element is 
j

i
jij V

Q
VJ




4
 

If i≠j the expressions for the elements in Jacobian matrix 
are as: 

 

]cossin[1 ijijijijjiij BGVVJ            (20) 

 

]sincos[2 ijijijijjiij BGVVJ            (21) 

 

]sincos[3 ijijijijjiij BGVVJ            (22) 

 

]cossin[4 ijijijijjiij BGVVJ            (23) 

 
If i=j, the expressions for the elements in the Jacobian 

matrix are as: 
 

iiiiii QBVJ  2
1                (24) 

 

iiiiii PGVJ  2
2                (25) 

 

iiiiii PGVJ  2
3                (26) 

 

iiiiii QBVJ  2
4               (27) 

 
The steps for calculation of the Newton power flow 

solutions are as follows [1], [2]: 
1 Given input data. 
2 Form bus admittance matrix. 
3 Assume the initial values of bus voltage. 
4 Compute the power mismatch according to (17) and (18). 

Check whether the convergence conditions are satisfied. 
 

1
)(  k

iPMax                 (28) 

 

2
)(  k

iQMax                (29) 

 
If (28) and (29) are met, stop the iteration, and calculate the 

line flows and real and reactive powers of the slack bus. If not, 
go to next step. 
5 Compute the elements in the Jacobian matrix (19)–(27). 
6 Compute the corrected values of the bus voltage using 

(30). 
Then compute the bus voltage. 
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i VVV 1               (30) 

 
k
i

k
i

k
i  1               (31) 

 
7 Return to Step (4) with new values of the bus voltage. 

The Jacobian matrix gives the linearized relationship 
between small changes in angle and voltage magnitude with 
the small changes in real and reactive power. This method 
begins with initial guesses of all unknown variables (voltage 
magnitude and angles at load buses and voltage angles at 
generator buses). The good initial guess is needed to start the 
iterative process [4]. Typically a flat start is an acceptable 
initial guess. The algorithm stops if the variable increments are 
lower than a given tolerance or the number of iterations is 
greater than a given limit. In the latter case, the algorithm has 
likely failed to converge. In this case it will be seen that J1=J4 
and J2=-J3. Or, in other words the symmetry is restored. The 
number of elements to be calculated for an N-dimensional 
Jacobian matrix are only N + N2/2 instead of N2, thus again 
saving computer time and storage. 

IV. SIMULATION RESULTS AND DISCUSSION 

A. Simulation Results 

The simulation results of the comparative study of Gauss 
Seidel (GS) and Newton-Raphson (NR) methods for power 
flow analysis are presented for different standard IEEE bus 
test systems [7]. The performances of this comparative study 
are assessed from number of iterations, computational time, 
tolerance value and convergence. The simulation is carried out 
using MATLAB version 7.8.0.347 (R2008a) in Intel® Atom 
™ CPU N450 @1,66GHz. 

The standard IEEE 3-bus test system diagram is given in 
Fig. 1. The circuit data and the bus data of the standard IEEE 
3-bus test system are respectively given in Tables II and III. 

The NR and GS comparative results of power flow analysis 
for a simple standard IEEE 3-bus test system are respectively 
given in Tables IV and V. The line flow and losses of a 
standard IEEE 3-bus test system are given in Table VI. 

The comparison results of convergence, number of 
iterations and computational time using NR and GS methods 
are given respectively in Figs. 2, 3 and 4. The summary of the 
obtained results are given in Table VII. 

 

 1 2 

3 

~

~

0.0125+j0.025pu 0.01+j0.03pu 

0.02+j0.04pu 
P2=400MW 
 
Q2=250MVAR
 
V2=1.050° V3=1.04?pu 

P3=200MW 
Q3=? 

P1=? 
Q1=? 
V1=1.050°pu 

 

Fig. 1 Standard IEEE 3-bus test system diagram 
 

TABLE II 
STANDARD EEE 3-BUS TEST SYSTEM CIRCUIT DATA  

From 
bus° 

To bus 
Resistance 

R pu 
Reactance 

X pu 
Susceptance 

B/2 pu 
Transformer 

TAP  
1 2 0.02 0.04 0.03 1 

1 3 0.01 0.03 0.02 1 

2 3 0.0125 0.025 0.025 1 

 
TABLE III  

STANDARD IEEE 3-BUS TEST SYSTEM BUS DATA  

Bus 
N° 

Bus 
type 

Bus 
Voltage 

Pu  deg 

Power 
generated 

MW MVAR 

Load 
MW 

MVAR 
  

|V|   PGi QGi PLi QLi Qmin Qmax 

1 1 1.05 0 0 0 0 0 0 0 

2 3 1.00 0 0 0 400 250 -40 50 

3 2 1.04 0 200 0 0 0 0 40 

 
TABLE IV  

NR LOAD FLOW ANALYSIS 

Bus |V|  
Power Injection 
MW  MVAR 

Power Generation 
MW  MVAR 

Load 
MW MVAR 

N° pu deg P Q P Q P Q 

1 1.05 0.00 219.85 236.17 219.85 236.17 0.00 0.00 

2 0.96 -2.51 -400 -250 0.00 0.00 400 250 

3 1.02 -0.67 200 39.18 200 39.18 0.00 0.00 

Total 19.85 25.35 419.85 275.35 400 250 

 
TABLE V  

GS LOAD FLOW ANALYSIS 

Bus |V|  Power Injection Power Generation Load 

N° pu deg P Q P Q P Q 

   MW MVAR MW MVAR MW MVAR

1 1.05 0.00 219.82 235.28 219.82 235.28 0.00 0.00 

2 0.96 -2.51 -399.99 -249.99 0.01 0.01 400 250 

3 1.02 -0.70 199.99 40.00 199.99 40 0.00 0.00 

Total 19.82 25.29 419.82 275.29 400 250 

 
TABLE VI 

LINE FLOW AND LOSSES OF STANDARD IEEE 3- BUS TEST SYSTEM (NR) 

From Bus To Bus  P(MW) Q (MVar) From Bus To Bus P(MW) Q(MVar) 
Line Loss 

P(MW) Q(MVar) 

1 2 184.58 148.14 2 1 -174.42 -127.82 10.16 20.32 

1 3 35.24 92.65 3 1 -34.35 -89.98 0.89 2.68 

2 3 -225.57 -117.11 3 2 234.35 134.66 8.77 17.55 
Total Loss 19.83 40.54 
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Fig. 2 Comparison of convergence for different standard IEEE test bus system using NR method and GS method 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:9, 2018

633

 

 

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

 Number of Bus 

It
er

at
io

ns
 N

um
be

r

Iter=f(Nbus) 



Newton Raphson

 Gauss seidel

 

Fig. 3 Comparison of number of iterations for different standard bus 
test system using NR method and GS method 
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Fig. 4 Comparison computational time for different standard IEEE 
test bus system using NR method and GS method 

 
TABLE VII  

PERFORMANCES OF THE COMPARED STUDY 

IEEE Bus System test 3 5 14 30 57 

GS 

Number of Iterations 11 22 77 199 308 

Computation Time (s) 1.06 1.09 1.09 1.54 2.93 

NR 

Number of Iterations 8 11 7 5 11 

Computation Time (s) 1.32 1.23 1.45 1.57 2.17 

B. Discussion 

The GS method is relatively easy to program however 
programming of NR method is more involved and becomes 
more complicated mostly if the buses are randomly numbered 
and the storage requirements are more (Jacobian elements). 

The time per iteration in NR method is larger than in the GS 
method. In NR method, the time per iteration increases 
directly as the number of buses. 

The number of iterations is determined by the convergence 
characteristic of the method. The GS method exhibits a linear 
convergence characteristic as compared to the NR method 

which has a quadratic convergence. Hence, the GS method 
requires more number of iterations to get a converged solution 
as compared to the NR method. In the GS method, the number 
of iterations increases directly as the size of the system 
increases. In contrast, the number of iterations is relatively 
constant in NR method. They require about 10 iterations for 
convergence in large systems. 

V. CONCLUSION 

This paper has described a comparison of NR and GS 
methods for Power Flow Analysis. Five different standard 
IEEE bus test systems are considered to investigate the 
effectiveness of the proposed methods. The compared results 
show that the NR is the most reliable method because it has 
the least number of iteration and converges faster. 
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