
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

697

Abstract—Researchers have been applying artificial/computa-

tional intelligence (AI/CI) methods to computer games. In this
research field, further researchesare required to compare AI/CI
methods with respect to each game application. In thispaper, we report
our experimental result on the comparison of evolution strategy,
genetic algorithm and their hybrids, applied to evolving controller
agents for MarioAI. GA revealed its advantage in our experiment,
whereas the expected ability of ES in exploiting (fine-tuning) solutions
was not clearly observed. The blend crossover operator and the
mutation operator of GA might contribute well to explore the vast
search space.

Keywords—Evolutionary algorithm, autonomous game controller
agent, neuroevolutions, MarioAI

I. INTRODUCTION

ESEARCHERS have been applying artificial/computa-
tional intelligence (AI/CI) methods to computer games,

and reporting their research results in conferences including
IEEE Conference on Computational Intelligence and Games
(CIG) 1 and IEEE Congress on Evolutionary Computation
(CEC)2. In these conferences, competitions on autonomous
game AI agents have been held. For example, competitions on
Simulated Car Racing3, MarioAI4, Ms. Pac-Man5, etc., were
held in CIG 20116. To develop high performance agents, AI/CI
methods such as artificial neural networks, fuzzy sets,
evolutionary algorithms, swarm intelligence and enforcement
learning have been applied. In this research field, further
researchesare required to compare AI/CI methods with respect
to each game application: to investigate which methods can
derive better agents than others for which application and why.

In thispaper, we report our experimental result on the
comparison of two evolutionary algorithms (evolution strategy
(ES) [1], genetic algorithm (GA)[2])and their hybrids, applied
to evolving controller agents for MarioAI. We select ES and
GA because these are the representatives of evolutionary
algorithms.

II. MARIOAI

We selectedMarioAI as the game application because the
competition provided sample controller agents (written in Java)
on the web7. The sample agents were neural network based
ones: we expect sample agents will performwellas we tune
values of their unit connection weights and unit biases.

Authors are with Department of Intelligent Systems, Faculty of Computer

Science and Engineering, Kyoto Sangyo University, Japan (email:
hidehiko@cc.kyoto-su.ac.jp).

1http://www.ieee-cig.org/.
2http://cec2011.org/, for example.
3http://cig.ws.dei.polimi.it/?page_id=175
4http://www.marioai.org/
5http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
6http://cilab.sejong.ac.kr/cig2011/?page_id=100
7http://julian.togelius.com/mariocompetition2009/gettingstarted.php

We apply evolutionary algorithms to the tuning of the

weights and the biases. Training neural networks by means of
evolutionary algorithms is known as neuroevolutions[3],[4].
Unlike training with the back propagation algorithm,
neuroevolutions do not require training data sets and gradient
information of error functions.

Fig. 1 shows a screenshot of Mario game played by a
MarioAI agent. An autonomous agent controls Mario to “win
as many levels (of increasing difficulty) as possible.”7

Fig. 1 Screenshot of MarioAI game play

A starter kit has been provided on the web8. Samples of

Mario controller agents are included in
marioai/classes/ch/idsia/ai.The agents are
provided as Java classes. Source codes of the agents are also
provided. We experimentally utilized the agent
SmallSRNAgent(marioai/classes/ch/idsia/ai/
agents/ai/SmallSRNAgent.class)in this research.

The following command starts game play simulation7:

>javach/idsia/scenarios/Play evolved.xml

The argument of the Play class, evolved.xml, is
anXML-formattedfile. The XML file includes an <object>
element with which the agent class used as the controller in the
simulation is specified. For example, the following example of
description:

<object
type="ch.idsia.ai.agents.ai.SmallSRNAgent
" id="0">

denotes that the class
ch.idsia.ai.agents.ai.SmallSRNAgent is used as
the controller agent.

This SmallSRNAgent is implemented with a recurrent
multi-layer perceptron(RMLP): as the input, the RMLP
receives dataof environmentalstate captured by Mariosensors,
and the RMLP outputs data to actuate (control) Mario. Values
of RMLP weights and biases are specified with <array>

8http://julian.togelius.com/mariocompetition2009/marioai.zip

Comparison of Evolutionary Algorithmsand their
HybridsApplied to MarioAI

R

Hidehiko Okada and Yuki Fujii

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

698

elements in the XML file. Thus, better SmallSRNAgents
will be evolved as the values of <array> elements are tuned.
We experimentally compare the ability of evolutionary
algorithms and their hybrids on this
SmallSRNAgentneuroevolutions.

III. APPLYING EVOLUTIONARY ALGORITHMS TO MARIOAI

CONTROLLER

A solution of the optimization problem in our research is a
405 dimensional real vector ��= (x1, x2, …,x405). Each xi is a
variable for an <array> element in the XML file.

A. Evolution Strategy

The steps of evolution by means of ES in our research are
shown in Fig.2.

Fig. 2 Steps of evolution by means of ES

1. Initialization
First, µ solutions �� 1, �� 2, …,�� µ are randomly generated.

Values of ��
� (i=1,2,…,405; j=1,2,…,µ)are sampled from the

normal Gaussian distribution with mean=0 and S.D.=1.

2. Reproduction
New λ offspring solutions are produced by using the currentµ

parent solutions. Fig.3 shows the steps of reproduction by
means of ES.

Fig. 3 Steps of reproduction by means of ES

In the step 2.2 in Fig.3, a new offspring solution �� c is

generated from the parent solution ��pas:

��c= ��p+ ��, (1)

where,�� is also a 405 dimensional vector (�� = (d1, d2, …, d405))

and dis are small random real values. In our experiment, di is
sampled from the normal Gaussian distribution with mean=0
and S.D.=1.

3. Evaluation
In this step, fitness of each solution is evaluated. The fitness

in this research is the score of Mario game played by the
controller agent in which values of xi(i=1,2,...,405) is utilized as
the associated <array> values in the XML file. In our
experiment, we obtain the fitness score by utilizing the
ch.dsia.scenarios.CompetitionScoreclass. This
class gives us the total score of the gameswith level 0, 3, 5 and
10 stages9.

4. Generation change
In this step, next-generation µsolutions are selected from the

population of the currentµ solutions and the newly
generatedλsolutions. Two different methods for this selection
are known as (µ+λ)-ES and (µ,λ)-ES [1]. As the
next-generation solutions, (µ+λ)-ES selects the bestµ solutions
among the µ+λ solutions, while (µ, λ)-ES selects the bestµ
solutions among thenew λsolutions. We experimentally applied
both methods and found that, for the optimization problem in
this research, (µ+λ)-ES was likely to evolve better solutions
than (µ, λ)-ES did.

The steps 2 to 5 in Fig.2 are repeated MAX_GEN times
where MAX_GENis a predefined numberof generations.

B. Genetic Algorithm

The steps of evolution by means of GA in our research are
shown in Fig.4.

Fig. 4 Steps of evolution by means of GA

The steps 1, 2, and 5 are the same as those for ES.

1. Reproduction
Figs.5 and 6 show the steps of reproduction and crossover by

means of GA respectively.New (1�e)�λoffspring solutions are
produced by using the current λparent solutions. Note that e�λ
solutions are copied from/to the current generation by the
elitism operation (so that the reproduction process produces
only (1�e)�λnew solutions).

9marioai/src/ch/idsia/scenarios/CompetitionScore.java

5. #Generation <= MAX_GEN?

1. Initialization

2. Reproduction

3. Evaluation

4. Generation change

6. STOP

No
Yes

No
Yes

2.1 A solution is randomly selected

as a parent from the current μ solutions.

2.2 A new solution is generated

from the parent solution.

2.3 #New solutions < λ?

2.4. Finish reproduction

5. #Generation <= MAX_GEN?

1. Initialization

2. Evaluation

3. Reproduction

4. Generation change

6. STOP

No
Yes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

699

Fig.5 Steps of reproduction by means of GA

Fig. 6 Steps of crossover by means of GA

C. ES&GA Hybrids

As hybrids of ES and GA, we switch the application of the
two algorithms between the first/last half of the total
generations. For example, GA is applied in the first half of the
total generations, and then ES takes over from GA in the last
half of the total generations.

IV. EXPERIMENTAL EVALUATION

To fairly compare the algorithms, we should make consistent
the total number of solutions being generated and tested by an
algorithm. In our experiment, the total number of generations
was set to 500, and the population size (the value ofλ) was set to
20. Thus, the total solutions being tested was 10,000 (= 20�500).
The value ofµ for (µ+λ)-ES was experimentally set to 4, and the
parameter values for GA wereexperimentally set to:

� Blend crossover: α=0.5,
� Elitism: e=10%,
� Truncation: t=60%, and
� Mutation: m=1%.

These values performedbetter than other values in our
experiment.

In the case of GA�ESswitch, GA with the above setting was
applied in the first 250 generations, and the offspring 20
solutions by GA in the 250th generation were taken over to
ESas the parent solutions in the 251th generation (the best 4
solutions among the 20 inherited solutions were actually used
as the parents because we utilized (4+20)-ES). Similarly, in the
case of ES�GA switch, ES with the above setting was applied
in the first 250 generations, and the offspring 20 solutions by
GA in the 250th generation were taken over to GA as the parent
solutions in the 251th generation.

Fig.7 and Table I show the result for comparing ES, GA and
the two switches (ES�GA and GA�ES), where the fitness
scores are the best onesso far at each generation (e.g., the
fitness scoresat the 250 generation in Fig.7 and Table I show
the best scoresduring the 1st-250th generations) by the
respective method.

Fig. 7 Result of evolutions by the four algorithms

TABLE I

FITNESS SCORES BY THE FOURALGORITHMS

Generation ES GA ES�GA GA�ES

1 1152 1426 1654 1155

25 7101 9948 10212 9284

50 9239 13001 13405 13642

100 12206 14729 14355 15618

200 13540 15793 14398 16218

250 14122 15793 14822 16358

300 14122 15793 15384 16358

400 14625 15793 15791 16358

500 14686 15793 16104 16358

Fig. 7 and Table I revealed the followings.

� In the total 500 generations, GA�ES switch found a better
solution than the other three algorithms. Note that the score
by GA�ESwas not improved in the last half of generations.
Thus, the best score 16,358 was a result of GA, not of the
GA�ES switch.

� At the 250th generation, the scores were better for GA and
GA�ES than for ES and ES�GA. Thus, GA outperformed
ES in the first half of generations.

No
Yes

3.1 Elitism:

The best e% solutions in the current λ

solutions are copied to the next generation.

3.2 Selection:

The worst t% solutions in the current λ

solutions are truncated from the current λ

solutions (so that the number of the current

solutions decreases from λ to (1-t) λ).

3.3 Crossover:

A new solution is produced by the crossover

with two parent solutions and .

3.4 #New solutions < (1-e) λ?

3.5 Finish reproduction

3.4 Mutation:

Each of the 162 value in the offspring solutions

is mutated under the probability m%. The mutation

changes the current real value to a random one

as that in the initialization process.

3.3.1 From the current (1-t) solutions,

two parents and are randomly selected.

3.3.2 An offspring is produced by the blend

crossover (BLX-α)[5] with the two parents.

3.3.3 Finish crossover. 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 1

0

0

2

0

0

3

0

0

4

0

0

5

0

0

ES GA ES→GA GA→ES

Generation
100 200 300 400 500

2

4

6

8

10

12

14

16

18

F
i
t
n
e
s
s
(

∗1
0

)
3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

700

These might due to the highdimensionality of the search
spaceand the nature of ES/GA. In our application, the search
space is a405 dimensional real valued one (R405) so that the
search efficiency by an algorithmwill depend much on its
ability of exploration in the early stage of generations. The
blend crossover operator might contribute for GA to
explorebroaderarea in the search space, because the operator
could not only exploit between the two parents but also explore
outside of the two parents. The mutation operation might also
contribute for GA to explore the space. On the contrary, the
search by ES is neighborhoodoriented (due to its reproduction
process) so thatES was likely to contribute better for
exploitation thanfor exploration.

We expected that GA�ES would perform the best among
the four algorithms, because GA�ES would first explore
promisingarea by GA and then exploit the promising area by
ES, but the result was not consistent with the expectation.
Further investigations are required on balancing the exploration
and exploitation by mixtures of evolutionary algorithms.
Recently, hybrid uses of evolutionary algorithms and local
search algorithms have been researched, known as memetic
algorithms [6]-[8]. Our future work includes application and
evaluation of the memetic algorithms.

V. CONCLUSION

In this paper, we evaluated effectiveness of ES, GA, and
their switching hybrids(ES�GA and GA�ES) on the
optimization problem of the neuro-based MarioAI controller.
GA revealed its advantage in this optimization problem,
whereas the expected ability of ESin exploiting (fine-tuning)
solutions was not clearly observed. The blend crossover
operator and the mutation operator of GA mightcontribute well
to explore the vast search space. Future work includes
application and evaluation of memetic algorithms and
otherAI/CI methods to this optimization problem.

ACKNOWLEDGMENT

This research was partially supported byKyotoSangyo
University Research Grants.

REFERENCES
[1] H.-P.Schwefel, Evolution and Optimum Seeking. New York: Wiley &

Sons, 1995.
[2] D. E.Goldberg, Genetic Algorithms in Search Optimization and Machine

Learning. Addison Wesley, 1989.
[3] X. Yao, “A review of evolutionary artificial neural

networks,”International Journal of Intelligent Systems, vol.4,
pp.539-567, 1993.

[4] K.O. Stanley and R. Miikkulainen,“Evolving neural networks through
augmenting topologies,”EvolutionaryComputation, vol.10, no.2,
pp.99-127, 2002.

[5] L.J.Eshelman, “Real-coded genetic algorithms and
interval-schemata,”Foundations of Genetic Algorithms 2, pp.187-202,
1993.

[6] Y.S. Ong, M.H.Lim, N. Zhu and K.W.Wong, “Classification of adaptive
memetic algorithms: acomparative study,”IEEE Transactions on Systems
Man and Cybernetics–Part B, vol.36, no.1, pp.141-152, 2006.

[7] J.E.Smith, “Coevolving memetic algorithms: areview and progress
report,”IEEE Transactions on Systems Man and Cybernetics –Part B,
vol.37, no.1, pp.6-17, 2007.

[8] F. Neri, C. Cotta, and P. Moscato (eds), Handbook of Memetic
Algorithms. Springer, 2011.

