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Abstract—The protein domain structure has been widely used as 

the most informative sequence feature to computationally predict 
protein-protein interactions. However, in a recent study, a research 
group has reported a very high accuracy of 94% using 
hydrophobicity feature. Therefore, in this study we compare and 
verify the usefulness of protein domain structure and hydrophobicity 
properties as the sequence features. Using the Support Vector 
Machines (SVM) as the learning system, our results indicate that 
both features achieved accuracy of nearly 80%. Furthermore, 
domains structure had receiver operating characteristic (ROC) score 
of 0.8480 with running time of 34 seconds, while hydrophobicity had 
ROC score of 0.8159 with running time of 20,571 seconds (5.7 
hours). These results indicate that protein-protein interaction can be 
predicted from domain structure with reliable accuracy and 
acceptable running time. 
 

Keywords—Bioinformatics, Protein-protein interactions, Support 
Vector Machines, Protein Features  

I. INTRODUCTION 
NE of the major challenges in bioinformatics is assigning 
function to newly discovered proteins. Most methods 

annotating protein function utilize sequence homology to 
proteins of experimentally known function. However, such a 
homology-based annotation transfer is problematic and 
limited in scope [1]. This is due to the fact that proteins work 
in networks of many other proteins and rarely work in 
isolation. The recent studies of molecular biology realize that 
protein-protein interactions affect almost all processes in a cell 
[2], [3]. It is estimated that even simple single-celled 
organisms such as yeast have about 6000 proteins interact by 
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at least 3 interactions per protein, i.e. a total of 20,000 
interactions or more [4]. It is also estimated that, there may be 
nearly 100,000 interactions in the human body. 

Therefore, identifying protein-protein interactions (PPI) 
represents a crucial step in understanding proteins functions. 
Most of the interactions data was identified by high-
throughput technologies like the yeast two-hybrid system, 
which are known to yield many false positives [5]. In addition, 
in vivo experiments that identify protein-protein interaction 
are still time-consuming and labor-intensive; besides, they 
identify a small number of interactions. As a result, methods 
for computational prediction of protein-protein interactions 
based on sequence information are becoming increasingly 
important. 

Over the past few years, several computational approaches 
to predict protein-protein interaction have been proposed. 
Some of the earliest techniques were based on the similarity of 
expression profiles to predict interacting proteins [6], 
coordinatation of occurrence of gene products in genomes, 
description of similarity of phylogenetic profiles [7] or trees 
[8], and studying the patterns of domain fusion [9]. However, 
it has been noted that these methods predict protein–protein 
interactions in a general sense, meaning joint involvement in a 
certain biological process, and not necessarily actual physical 
interaction [10].   

Another recent method has been introduced based on the 
assumption that protein–protein interactions are evolutionary 
conserved. It involves the use of high-quality protein 
interaction map with interaction domain information as input 
to predict an interaction map in another organism [11]. 

Meanwhile, another approach to computationally predict 
protein-protein interactions is by associating experimental 
data on interacting proteins with annotated features of protein 
sequences using machine learning approaches, such as support 
vector machines (SVM) [12] and data mining techniques, such 
as association rule mining [13].  

The most common sequence feature used for this purpose is 
the protein domains structure. The motivation for this choice 
is that molecular interactions are typically mediated by a great 
variety of interacting domains [14]. It is thus logical to assume 
that the patterns of domain occurrence in interacting proteins 
provide useful information for training PPI prediction 
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methods.  
In a recent study, the notion of potentially interacting 

domain pair (PID) was introduced to describe domain pairs 
that occur in interacting proteins more frequently than would 
be expected by chance [15]. Assuming that each protein in the 
training set may contain different combinations of multiple 
domains, the tendency of two proteins to interact is then 
calculated as a sum over log odd ratios over all possible 
domain pairs in the interacting proteins. Using cross-
validation, the authors demonstrated 50% sensitivity and 98% 
specificity in reconstructing the training data set. In a similar 
approach, [20] developed a scoring scheme which takes into 
account both experimental PPI data and interaction pairs 
derived computationally based on domain fusion analysis. 

Reference [16] developed a probabilistic model to predict 
protein interactions in the context of regulatory networks. A 
biological network is represented as a directed graph with 
proteins as vertices and interactions as edges. A probability is 
assigned to every edge and non-edge, where the probability 
for each edge depends on how domains in two corresponding 
proteins “attract” and “repel” each other. The regulatory 
network is predicted as the one with the largest probability for 
its network topology. Using the database of interacting 
proteins, DIP [17], as the standard of truth and PFAM (Protein 
Families database) domains as sequence features, the authors 
built a probabilistic network of yeast interactions and reported 
an ROC score of 0.818. 

Another sequence feature that has been used to predict PPI 
in-silico is the hydrophobicity properties of the amino acid 
residues. Reference [18] used SVM learning system to 
recognize and predict PPI in yeast Saccharomyces cerevisiae. 
They selected only the hydrophobicity properties as sequence 
feature and combine it to the amino acid sequence of 
interacting proteins. They reported 94% accuracy, 99% 
precision, and 90% recall in average. Although they achieved 
better results than the previous work using only 
hydrophobicity feature, their method of generating a negative 
dataset (i.e. non-interacting proteins pairs) is different from 
the previous work. They constructed the negative interaction 
set by replacing each value of the concatenated amino acid 
sequence with a random feature value. As they mention in 
their conclusion, this approach simplify the learning task and 
artificially raise classification accuracy for training data. 
However, there is no guarantee that the generalized 
classification accuracy will not degrade if the predictor is 
presented with new, previously unseen data which are hard to 
classify. Therefore, in this study we proposed a better and 
more realistic method to construct the negative interaction set. 
Then we compared the use of domain structure and 
hydrophobicity properties as the protein features for the 
learning system. The choice of these two features is motivated 
by the above discussed literature.   

This paper is organized as follows. The second section 
gives a general description of our method to design feature 
space, select training data, and conduct learning. The third 
section describes protein interaction data sets used in this 

work and the implementation of our predictor. In the forth 
section we present and discuss experimental results of this 
work. Finally, some ideas on future directions are provided in 
the fifth section. 

II. METHOD 
In order to compare two protein sequence features for the 

prediction of protein-protein interactions, we applied the same 
process on both features, as shown in Fig. 1. 

 

 
 

Fig. 1 The general operational framework 
 
This process starts by generating a dataset of interacting 

and non-interacting proteins pairs. For the interacting pair, it 
is simply obtained from the Database of Interacting Protein 
(DIP). But, there is no dataset of experimentally identified 
non-interacting proteins. Therefore we use a random method 
to generate proteins pairs, and then delete all pairs that appear 
in the DIP. This is acceptable for the purposes of comparing 
the feature representation since the resulting inaccuracy will 
be approximately uniform with respect to each feature 
representation. The Support Vector Machines have been used 
as the learning system. It has been trained to distinguish 
between interacting and non-interacting protein pairs using 
domain and hydrophobicity training sets. The following 
sections give some details about the methods that were used in 
this work.    
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A. Support Vector Machines 
The Support Vector Machine (SVM) is a binary 

classification algorithm. Thus, it is well suited for the task of 
discriminating between interacting and non-interacting protein 
pairs. The SVM is based on the idea of constructing the 
maximal margin hyperplane in the feature space [19]. Suppose 
we have a set of labeled training data {xi, yi}, i = 1,…, n, 
yi∈{1,-1}, xi∈Rd, and have the separating hyperplane (w . x) + 
b = 0, where feature vector: x ∈ Rd, w∈ Rd and b∈ R. In the 
linear separable case the SVM simply looks for the separating 
hyperplane that maximizes the margin by minimizing ||w||2/2 
subject to the following constraint: 

 
yi(w . xi + b) ≥ 1 ∀i , i = 1,…, n                        (1) 
 
In the linear non-separable case, the optimal separating 

hyperplane can be found by introducing slack variables ξi, i = 
1,…, n and user-adjustable parameter C and then minimizing 
||w||2/ 2 + C Σi ξi , subject to the following constraints: 

 
yi(w . xi + b) ≥ 1 - ξi,   ξi ≥ 0,  i = 1,…, n               (2) 
 
The dual optimization is solved here by introducing the 

Lagrange multipliers αi for the non-separable case. Because 
linear function classes are not sufficient in many cases, we can 
substitute Φ(xi) for each example xi and use the kernel 
function K such that K(xi,xj) = Φ(xi).Φ(xj). We thus get the 
following optimization problem: 
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SVM has the following advantages to process biological 

data [12]: (1) SVM is computationally efficient and it is 
characterized by fast training which is essential for high-
throughput screening of large protein datasets. (2) SVM is 
readily adaptable to new data, allowing for continuous model 
updates in parallel with the continuing growth of biological 
databases. (3) SVM provides a principled means to estimate 
generalization performance via an analytic upper bound on the 
generalization error. This means that a confidence level may 
be assigned to the prediction, and avoids problems with 
overfitting inherent in neural network function approximation. 

 

B. Feature Representation 
The construction of an appropriate feature space that 

describes the training data is essential for any supervised 
machine learning system. In the context of protein-protein 
interactions, it is believed that the likelihood of two proteins 
to interact with each other is associated with their structural 

domain composition [14], [15], [20]. It is also assumed that 
the hydrophobic effects drive protein-protein interactions [4], 
[18]. For these reasons, this study investigates the 
applicability of the domain structure and hydrophobicity 
properties as protein features to facilitate the prediction of 
protein-protein interactions using the support vector machines. 

The domain data was retrieved from the PFAM database. 
PFAM is a reliable collection of multiple sequence alignments 
of protein families and profile hidden Markov models [21]. 
The current version 10.0 contains 6190 fully annotated 
PFAM-A families. PFAM-B provides additional PRODOM-
generated alignments of sequence clusters in SWISSPROT 
and TrEMBL that are not modeled in PFAM-A.  

When the domain information is used, the dimension size of 
the feature vector becomes the number of domains appeared in 
all the yeast proteins. The feature vector for each protein was 
thus formulated as: 

 
x = [d1, d2, …, di, …, dn]                           (5) 

 
where di = m when the protein p has m pieces of domain di, 
and di = 0 otherwise. This formula allows the effect of 
multiple domains to be taken into account. Another 
representation is by using domain scores that is calculated by 
PFAM. In this case di can be calculated as following:  
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where Sj(di) is the score of di in the allocation j, and k is the 
number of the occurrence of di in the protein p. In order to 
scale the feature value to the interval [-1,1], we use the 
following formula. 
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In the same manner, the amino acid hydrophobicity 

properties can be used to construct the feature vectors for 
SVM. The amino acids hydrophobicity properties are obtained 
from [22]. The hydrophobicity features can be represented in 
feature vector as: 

 
x = [h1, h2, …, hi, …, hn]                               (8) 
 

where k is the number of amino acid in the protein x, hi = 1 
when the amino acid is hydrophobic and hi = 0 when the 
amino acid is hydrophilic. We also consider the case where 
the hydrophobicity scale can be included in the feature vector 
by replacing the amino acid with its correspondent 
hydrophobicity value.  

Using the above described four feature representations, we 
constructed four training set (domains, domains score, 
hydrophobicity, hydrophobicity scale). Each training example 
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is a pair of interacting proteins (positive example) or a pair of 
proteins known or presumed not to interact (negative 
example).  

III. MATERIALS AND IMPLEMENTATIONS 

A. Data sets 
We obtained the protein interaction data from the Database 

of Interacting Proteins (DIP). The DIP database was 
developed to store and organize information on binary 
protein–protein interactions that was retrieved from individual 
research articles. The DIP database provides sets of manually 
curated protein-protein interactions in Saccharomyces 
cerevisiae. The current version contains 4749 proteins 
involved in 15675 interactions for which there is domain 
information. DIP also provides a high quality core set of 2609 
yeast proteins that are involved in 6355 interactions which 
have been determined by at least one small-scale experiment 
or at least two independent experiments and predicted as 
positive by a scoring system [23]. Table I shows detailed 
description of the datasets that are comprised by DIP.  

 
TABLE I 

THE PROTEIN INTERACTIONS OF YEAST S. CEREVISIAE IDENTIFIED BY WET LAB 
EXPERIMENTS 

Number of 
Proteins 

Number or 
Interactions 

Number of 
Experiments 

Number of 
Interactions 

1 13653 

2 1278 

3 407 

4 167 

5 84 

4749 15675 

6+ 101 

 
 
The proteins sequences files were obtained for the 

Saccharomyces Genome Database (SGD) [24]. The SGD 
project collects information and maintains a database of the 
molecular biology of the yeast Saccharomyces cerevisiae. 
This database includes a variety of genomic and biological 
information and is maintained and updated by SGD curators. 
The proteins sequence information is needed in this research 
in order to elucidate the domain structure of the proteins 
involved in the interaction and to represent the amino acid 
hydrophobicity in the feature vectors. 

 

B. Data Preprocessing 
Since proteins domains are highly informative for the 

protein-protein interaction, we used the domain structure of a 
protein as the main feature of the sequence. We focused on 
domain data retrieved from the PFAM database which is a 
reliable collection of multiple sequence alignments of protein 
families and profile hidden Markov models. In order to 
elucidate the PFAM domain structure in the yeast proteins, we 
first obtain all sequences of yeast proteins from SGD. Given 
that sequence file, we then run InterProScan [25] to examine 
which PFAM domains appear in each protein. We used the 
stand-alone version of InterProScan. A part of the result file is 
shown in Fig. 2. 

 

 
 

Fig. 2 A part from the protein domains file 
 
From the output file of InterProScan, we list up all PFAM 

domains that appear in yeast proteins and index them. Fig. 3 
shows an example of protein domains that appears in yeast 
genome. The first column represents a protein whereas the 
following columns represent the domains that appear in the 
protein. The order of this list is not important as long we keep 
it through the whole procedure. The number of all domains 
listed and indexed in this way is considered the dimension size 
of the feature vector, and the index of each PFAM domain 
within the list now indicates one of the elements in a feature 
vector. 

The next step is to construct a feature vector for each 
protein. For example, if a protein has domain A and B which 
happened to be indexed 12 and 56 respectively in the above 
step, then we assign "1" to the 12th and 56th elements in the 
feature vector, and "0" to all the other elements. Next we 
focus on the protein pair to be used for SVM training and 
testing. The assembling of feature vector for each protein pair 
can be done by concatenating the feature vectors of proteins 
constructed in the previous step. When hydrophobicity is 
used, each amino acid will be replaced by 1 if it is 
hydrophobic and 0 if it is hydrophilic. Two separate training 
sets for domain and hydrophobicity features have been 
constructed.   

<protein id="Q0065" length="544" crc64="A77CD9ADBDCA6465" > 
<interpro id="IPR000883" name="Cytochrome c oxidase, subunit I" 
type="Family"> 
    <child_list> 
        <rel_ref ipr_ref="IPR004677"/> 
    </child_list> 
    <match id="PF00115" name="COX1" dbname="PFAM"> 
        <location start="5" end="339" score="8.2e-67" status="T" 
evidence="HMMPfam" /> 
    </match> 
</interpro> 
<interpro id="IPR001982" name="Homing endonuclease, LAGLIDADG/HNH" 
type="Domain"> 
    <match id="PF00961" name="LAGLIDADG_1" dbname="PFAM"> 
        <location start="316" end="403" score="6.4e-22" status="T" 
evidence="HMMPfam" /> 
        <location start="422" end="515" score="3.2e-11" status="T" 
evidence="HMMPfam" /> 
    </match> 
</interpro>
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Fig. 3 An example of protein domains that appear in yeast genome 
 

IV. RESULTS AND DISCUSSION 
We developed programs using Perl for parsing the DIP 

databases, control of randomization and sampling of records 
and sequences, and replacing amino acid sequences of 
interacting proteins with its corresponding feature. To make a 
positive interaction set, we represent an interaction pair by 
concatenating feature vectors of each proteins pair that are 
listed in the DIP-CORE as interacting proteins. For the 
domain feature we include only the proteins that have 
structure domains. The resulting positive set for domain 
feature contains 1879 protein pairs. But when using 
hydrophobicity feature, all protein in DIP-CORE were 
included which yielded 3002 protein pairs.  

Constructing a negative interaction set is not an easy task. 
This is due to the fact that there are no experimental data in 
which protein pairs have confirmed to be non-interacting 
pairs. As a result, using a random approach to construct the 
negative data set is an avoidable at this moment. Furthermore, 
for the purposes of comparing prediction algorithms or feature 
representation, the resulting inaccuracy will be approximately 
uniform with respect to each computational method or feature 
representation. For these reasons, the negative interaction set 
was constructed by generating random protein pairs. Then, all 
protein pairs that exist in DIP were eliminated. This random 
approach can generate as many as 20202318 potentially 
negative candidates. Hence, the number of positive protein 
pairs is quite small compared to that of potentially negative 
pairs. The excessive potentially negative examples in the 
training set may lead to yield many false negatives because 
many of the positive examples are ambiguously discriminative 
from the negative examples in the feature space. For this 
reason, a negative interaction set was constructed containing 
the same number of protein pairs as for the positive interaction 
set for domain and hydrophobicity features.       

In this study, we used the LIBSVM software [26] as a 
classification tool. The standard radial basis function (RBF) as 
available in LIBSVM was selected as a kernel function. 
Different values of γ for the kernel K(x, y) = exp(-γ ||x-y||2 ), 

γ>0 were systematically tested to optimize the balance 
between sensitivity and specificity of the prediction. Ten-fold 
cross-validation was used to obtain the training accuracy. The 
entire set of training pairs was split into 10 folds so that each 
fold contained approximately equal number of positive and 
negative pairs. Each trial involved selecting one fold as a test 
set, utilizing the remaining nine folds for training our model, 
and then applying the trained model to the test set. Then the 
cross-validation accuracy is calculated in each run as the 
number of corrected prediction divided by the total number of 
data ((TP+TN)/(TP+FP+TN+FP)). Then the average is 
calculated for the 10 folds. 

The receiver operating characteristic (ROC) is also used to 
evaluate the results of our experiments. It is a graphical plot of 
the sensitivity (fraction of true positives - TP) vs. 1-specificity 
(the fraction of false positives - FP) for a binary classifier 
system as its discrimination threshold is varied. The sensitivity 
can be defined as: TP / (TP + FN) where TP and FN stand for 
true positive and false negative, respectively. The specificity 
can be defined as: TN / (TN + FP) where TN and FP stand for 
true negative and false positive, respectively. The area under 
the ROC curve is called ROC score.  

The results of our experiments are summarized in Table II. 
All experiments reported in this work, run in Redhat 
Enterprise Linux AS release 3.2 on 1.8 GHz SMP CPUs with 
2 GB of memory.  

 
TABLE II 

THE OVERALL PERFORMANCE OF SVM FOR PREDICTING PPI USING DOMAIN 
AND HYDROPHOBICITY FEATURES 

Feature Accuracy  ROC score Running time 

Domain 79.4372 % 0.8480 34 seconds 

Domain Scores 76.397 % 0.8190 38 seconds 

Hydrophobicity 78.6214 % 0.8159 20,571 seconds (5.7 hours) 

Hydrophobicity Scales 79.1375 % 0.7716 34,602 seconds (9.6 hours) 

 
When only domain structure was considered as the protein 

feature without information on domain appearance score, the 
cross-validation accuracy and ROC score were respectively 
79.4372% and 0.8480. When domain scores were included the 
cross-validation accuracy and ROC score were decreased to 
76.397% and 0.8190 respectively. These results indicate that it 
is not important to include the domains score information to 
the feature representation of the protein pairs. It is informative 
enough to consider only the existence of domains structure in 
the protein pairs. It is important here to note that the 
performance of the prediction algorithm is far better than an 
absolute random approach which has ROC score of 0.5. This 
indicates that the difference between interacting and non-
interacting protein pairs can be learned from the available 
data. 

In the case of hydrophobicity dataset, the cross-validation 
and ROC score were respectively 78.6214% and 0.8159. We 
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can see from these results that both domain dataset and 
hydrophobicity dataset have little difference in terms of cross-
validation accuracy. On the other hand, ROC score indicates 
that domain structure is noticeably better than hydrophobic 
properties (see Fig. 4). Another aspect is the running time for 
both features. Clearly, when domain structure used, the data 
set is much smaller than the data set for the hydrophobic 
properties. Consequently, the running time required for 
domain structure training data is much less than the running 
time required for the hydrophobic training data as shown in 
Table II.  

 

 

Fig. 4 ROC curves and scores for predicting protein-protein 
interactions 

 
These results are better and came aligned with the results 

that have been obtained by [16] who reported ROC score of 
0.818. Whereas our predictor achieved ROC score of 0.848 
for domains feature dataset. However, Chung et al. (2004) 
reported accuracy of 94% by using hydrophobicity as the 
protein feature. The reason behind this big difference between 
our result and their results lies in the approach of constructing 
the negative interaction dataset. They assign random value to 
each amino acid in the protein pair sequence. This leads to get 
new pairs that considered negative interacting pairs and 
greatly different from the pairs in the positive interaction set. 
This leads to simplify the learning task and artificially raise 
classification accuracy for training data. There is no 
guarantee, however, that the generalized classification 
accuracy will not degrade if the predictor is presented with 
new, previously unseen data which are hard to classify. In our 
work we constructed the negative interactions set by randomly 
generating non-interacting protein pairs which would be more 
difficult to distinguish from the positive set than entirely 
randomizing features values. This makes the learning problem 
more realistic and ensures that our training accuracy better 
reflects generalized classification accuracy. 

V. CONCLUSION 
The prediction approach reported in this paper generates a 

binary decision regarding potential protein-protein 
interactions based on the domain structure or hydrophobicity 
properties of the interacting proteins. One difficult challenge 
in this research is to find negative examples of interacting 
proteins, i.e., to find non-interacting protein pairs. For 
negative examples of SVM training and testing, we use a 
randomizing method. However, finding proper non-interacting 
protein pairs is important to ensure that prediction system 
reflects the real world. Discovering interacting protein 
patterns using primary structures of known protein interaction 
pairs may be subsequently enhanced by using other features 
such as protein secondary and tertiary structure in the learning 
machine. In conclusion the result of this study suggests that 
protein-protein interactions can be predicted from domain 
structure with reliable accuracy and acceptable running time. 
Consequently, these results show the possibility of proceeding 
directly from the automated identification of a cell’s gene 
products to inference of the protein interaction pairs, 
facilitating protein function and cellular signaling pathway 
identification. 
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