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Abstract—Flow field around hypersonic vehicles is very 
complex and difficult to simulate. The boundary layers are squeezed 
between shock layer and body surface. Resolution of boundary layer, 
shock wave and turbulent regions where the flow field has high 
values is difficult of capture. Detached eddy simulation (DES) is a 
modification of a RANS model in which the model switches to a 
subgrid scale formulation in regions fine enough for LES 
calculations. Regions near solid body boundaries and where the 
turbulent length scale is less than the maximum grid dimension are 
assigned the RANS mode of solution. As the turbulent length scale 
exceeds the grid dimension, the regions are solved using the LES 
mode. Therefore the grid resolution is not as demanding as pure LES, 
thereby considerably cutting down the cost of the computation. In 
this research study hypersonic flow is simulated at Mach 8 and 
different angle of attacks to resolve the proper boundary layers and 
discontinuities. The flow is also simulated in the long wake regions. 
Mesh is little different than RANS simulations and it is made dense 
near the boundary layers and in the wake regions to resolve it 
properly. Hypersonic blunt cone cylinder body with frustrum at angle 
5o and 10 o   are simulated and there aerodynamics study is performed 
to calculate aerodynamics characteristics of different geometries. The 
results and then compared with experimental as well as with some 
turbulence model (SA Model). The results achieved with DES 
simulation have very good resolution as well as have excellent 
agreement with experimental and available data. Unsteady 
simulations are performed for DES calculations by using duel time 
stepping method or implicit time stepping. The simulations are 
performed at Mach number 8 and angle of attack from 0o to 10o for 
all these cases. The results and resolutions for DES model found 
much better than SA turbulence model. 
 

Keywords—Detached eddy simulation, dual time stepping, 
hypersonic flow, turbulence modeling 

I. INTRODUCTION 
HE  DES treatment of turbulence is aimed at the 
prediction of separated flows, thin and dense shock and 

boundary layers at unlimited Reynolds numbers and at a 
manageable cost. The claim is that it soundly combines fine-
tuned Reynolds-Averaged Navier– Stokes (RANS) technology 
in the boundary layers, and the simple power of Large-Eddy 
Simulation (LES) in the separated regions [1]. In the RANS 
regions, the turbulence model has full control over the  
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solution, but it is used within a plausible envelope. In the LES  
region, little control is left to the model, the larger eddies are 
resolved, and grid refinement directly expands the range of 
scales in the solution, and therefore the accuracy of the 
nonlinear interactions available to the largest eddies [2]. The 
computing-cost outcome is favorable enough that a 
challenging Separated flow, namely an airfoil at high angles of 
attack and fairly high Reynolds numbers, was treated quite 
successfully on personal computers [3]. The present author 
simulated a lot of varieties of supersonic and hypersonic 
laminar and turbulent flows by using laminar Navier stokes 
and RANS approaches [4-6].   The current author 
implemented the above mentioned approaches on laminar 
hypersonic flows and turbulent supersonic and hypersonic 
flows and got the desired results.  For hypersonic aircraft 
reentry vehicles mostly the flow is turbulent and the body is 
moving at high angles of attack [7, 8] so flow separation and 
thin and dense boundary layer is obvious.  The boundary 
layers are also squeezed between shock waves and body 
surfaces. So it is essential ingredients to properly capture the 
shock wave and resolution of boundary layers. Flow is also 
rapidly separating in such types of flows. There is need to 
properly resolve the all these phenomenon.  DES is a three-
dimensional, time-dependent approach which properly 
resolves the above mentioned phenomena by using hybrid 
philosophy of RANS and LES approaches on the expense of 
little increase in cost.  The present study deals with the detail 
implementation of time dependent DES approach and RANS 
approaches. First the RANS approach using Sparllart Almaras 
turbulent model is used and the aerodynamics characteristics 
are calculated for cone-cylinder and frustrum configurations. 
Then time dependent DES approached is used by using 
implicit solver and implicit time stepping (dual time steeping 
formulation) is used to simulate the hypersonic flow at Mach 
number 8. The second order Euler backward time stepping is 
used for the same. The finite volume and multiblock implicit 
solver is used for these calculations. Finally the simulated 
results are compared with the available experimental as well 
as theoretical  

II. GEOMETRICAL MODELS 
In the present investigation, Three different models have 

been used, namely (a) blunt cone with after body (b) blunt 
cone with after body and 5o frustum and (c) blunt cone with 
after body with 10o frustum, as shown in Fig.1 The first test 
model (blunt cone with after body) has been chosen for its 
simple design and represents AGARD configuration, HB-1 
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(Hypervelocity Ballistic model). The first part of the model is 
a blunt cone which has an apex angle of 41◦ and length of 
40.6mm. The second part of the model is the cylinder of 
51mm outer diameter and a length of 186mm. The model has 
a spherical nose radius of 15mm. The second and third test 
model (Blunt cone with after body and frustum) represents a 
simple AGARD configuration, HB-2. The geometry of the 
blunt cone remains the same and the length of the cylinder is 
reduced to 111mm with the outer diameter of 51mm. The 
frustum has an axial length of 75mm with a semi-vertex angle 
of 5◦ and 10o. For these three configurations, the total length 
of the model has been kept the same in order to maintain the 
exact L/D (i.e., length to diameter) ratio of the model. The 
details and test conditions are mentioned in reference [9] 

 
Fig: 1 Geometrical Model 

III. MESH GENERATION  
The algebraic method is used to generate three-dimensional 

boundary-fitted grids for blunt cone configurations. The height 
of the first grid next to the body is controlled, and the grids 
near to the body are normalized to achieve y+ less than 1. The 
H-H and C-type boundary- fitted grids are generated at first in 
order to simulate the aerodynamic forces accurately.  The 
mesh for Detached Eddy simulation is created very carefully. 
In shock wave region and corner expansion and compression 
regions and wake regions is meshed with very high accuracy 
so that the expansion ratio should be remained below 1.2. 
detailed study of Mesh generations for detached eddy 
simulations is given in reference [10] 

 
Fig: 2 Generation of mesh  

 

IV. GOVERNING EQUATIONS AND TURBULENCE MODELS 

A. Governing Equations 
The system of governing equations for a single-component 

fluid, written to describe the mean flow properties, is cast in 
integral Cartesian form for an arbitrary control volume V with 
differential surface area dA as follows:                   
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Vector H contains source terms such as body forces and 
energy sources. 
Here ρ, v, E, and p are the density, velocity, total energy per 
unit mass, and pressure of the fluid, respectively. Τ is the 
viscous stress tensor, and q is the heat flux. 
Total energy E is related to the total enthalpy H by 

                /E H p ρ= −                                   (2) 
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B. Turbulence Model 
To calculate the turbulent flows the SA turbulent model is 
used here. The transported variable in the Spalart-Allmaras 
model, v% , is identical to the turbulent kinematic viscosity 
except in the near-wall (viscous-affected) region. The 
transport equation for v% is 
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Where vG is the production of turbulent viscosity and vY is the 
destruction of turbulent viscosity that occurs in the near-wall 
region due to wall blocking and viscous damping. vσ % and 

2bC are constants and v is the molecular kinematic viscosity

vS % is a user-defined source term 
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Fig. 4 Drag, lift and pitching moment coefficients v angle of attack 

for cone-cylinder configuration 
In the above figure (4) aerodynamics characteristics are compared for 
DES, SA and AGARD data. The results are found in good agreement 

B. Test case 2 
 

The second configuration which is simulated is cone-
cylinder frustrum with 5o angle of flare or frustrum. The same 
configuration is simulated at 0 to 10o angle of attack. In figure 
(5) contours of Mach number, density, temperature and 
pressure at angle of attack 10o are shown. Both for SA model 
and DES model shock waves are properly captured and the 
reverse flow and flow separation is properly resolved. In 
figure (6) vorticity magnitude contour are shown for DES 
model. Vortices and vortex shedding phenomenon is shown 
clearly. 
 

 

 
Fig: 5 cone-cylinder frustrum 5 deg DES contours of mach, 

pressure, temperature and density at mach 8 angle of attack 10o 

 

 
Fig. 6 cone-cylinder frustrum 5 deg SA Model contours of mach, 

pressure, density and density at mach 8 angle of attack 10o 

 
In figure (7) the comparison of contours for both SA model 

and DES model are show. From the contours it is clearly 
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shown that how the Mach number and viscosity contours 
resolutions are varies between two models SA and DES. DES 
resolutions are much better than SA model. In figure (8) 
resolution and shock capturing with mesh refinement is shown 
for DES model.  

 

 
Fig: 7 cone-cylinder frustrum 5 deg DES and SA Model contours 

of turbulent viscosity Mach (at mach 8 angle of attack 10o 

 
Fig. 8 cone-cylinder frustrum5o contours of Mach number, 

density, at mach 8 and angle of attack  6o for DES 
 

In figure (9) computed results for drag. Lift and pitching 
moment coefficients are shown for cone-cylinder frustrum 5o 
configuration. As the angle of attack increased then the same 
are also increased as shown in graph. The results are compared 
with the results of agard data. 
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Fig: 9 Drag, lift and pitching moment coefficients v angle of attack 

for cone-cylinder frustrum 5o configuration 

C. Test case 3 
The last configuration is cone-cylinder frustrum 10o flare 

angle. The results are obtained at Mach number 8 and the 
contours of Mach number, density, temperature and total 
pressure are shown in the figure (10). The figure (11) shows 
that when the frustrum angle is increased then the lift and 
pitching moment coefficients are increased the results for both 
configurations 5o and 10o frustrum are compared. 
 

 

 
Fig: 10 frustrum 10o contours of Mach number density temperature 

and total pressure at mach 8 angle of attack 8o 
 

 
Fig: 11 Drag, lift and pitching moment coefficients v angle of attack 

for cone-cylinder frustum 5o and 10o configuration 
 

VI. CONCLUSION 
DES simulations are performed at Mach number 8 by using 

SA model and dual time stepping implicit formulations. The 
results are compared with standard SA turbulent model and 
Agard data. The Turbulent model SA resolved the boundary 
layers and high pressure gradient flows and shows acceptable 
results in boundary layers and wake expansion compression 
and separated region with y+ value less than 1. But when the 
same configurations are simulated with DES model then the 
wall regions and wake regions are properly resolved the 
turbulent viscosity is properly resolved by DES model by 
using the RANS and LES version of the same. The mesh is 
little modified for the LES part of the DES model to properly 
resolve the turbulent viscosity where the turbulent length 
scales is increased. So from these computations we have 
concluded that with the little expense of cost the DES models 
gives the better results for highly turbulent flows by using the 
RANS and LES nature of the model.  

. . 
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