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Abstract—The analysis of perforated steel members is a 3D 
problem in nature, therefore the traditional analytical expressions for 
the ultimate load of thin-walled steel sections cannot be used for the 
perforated steel member design. In this study, finite element method 
(FEM) and artificial neural network (ANN) were used to simulate the 
process of stub column tests based on specific codes. Results show that 
compared with those of the FEM model, the ultimate load predictions 
obtained from ANN technique were much closer to those obtained 
from the physical experiments. The ANN model for the solving the 
hard problem of complex steel perforated sections is very promising. 
 

Keywords—Artificial neural network, finite element method, 
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I. INTRODUCTION 

HIN-WALLED steel are widely used in many fields of 
civil engineering, bridges, storage racks, car bodies, 

railway coaches, transmission towers, and various types of 
equipment. Unlike other industrial applications, the columns 
used in storage racks are usually thin-walled steel sections 
contain arrays of perforations along the length, enabling beams 
to be clipped by connectors at variable heights and the bracings 
to be bolted to form the frames (Fig. 1). Despite their light 
weight and considerable height, storage racks are able to carry 
very high loads. In addition, upright members with 
mono-symmetrical sections are usually subjected to axial 
compression and bending about both axes. Nowadays, the 
ultimate load calculations on thin-walled columns can be made 
with some specific computer programs such as: Thin-Wall [1] 
and CUFSM [2], based on the finite strip method (FSM); and 
GBTUL [3], based on the generalized beam theory (GBT). The 
use of these specific programs has made the direct strength 
method very quick and effective. At the moment, unfortunately, 
they cannot be applied to perforated members, since FSM and 
GBT are essentially 2D theories but the analysis of perforated 
members is a 3D problem [4]. The FEM can certainly be 
applied, but the computational cost is significantly higher. So 
even if in the last many years, numerous investigations [5]-[7] 
were devoted to the effects of holes and members’ slenderness 
on the ultimate capacity of pallet rack uprights, it has not been 
achieved in generally accepted analytical design method for 
rack structures [8]. For this reason, the current design of these 
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structures is mostly based on experimental tests prescribed by 
specific codes. The increasing security demands from the 
storage racks make clear the need to explore novel ways of 
prediction on design load of thin-walled steel perforated 
sections furthermore. 

During the last few years, the use of ANNs has grown in 
popularity because neural networks represent a novel and 
modern approach that can provide solutions in problems for 
which conventional mathematics, algorithms, and 
methodologies are unable to find a satisfactory and acceptable 
solution [9]. In this paper, an attempt has been made to use 
ANN technology to overcome many of the difficulties 
associated with the design load of thin-walled steel perforated 
sections. Results have been compared with those of the 
traditional FEM. The relative experiments and research method 
are presented in detail. 

II. STUB COLUMN TESTS 

The stub column test can be used to synthetically evaluate 
the effective area accounting for perforations, cold forming 
processes, local and distortional buckling and their natural 
interactions. So, in accordance to AnnexA.2.1.2 (Alternative1) 
the stub column tests were performed in order to observe the 
influence of perforations and the effects of local buckling on 
the ultimate strength of these members. The length of 
specimens was taken to respect the code requirements, i.e.: (1) 
it shall include at least five pitches of the perforations, at the 
midway between two sets of perforations. The base and cap 
plates shall be bolted or welded to each end of the stub upright; 
(2) the length of specimens shall be three times the greatest flat 
width of the section (ignoring intermediate stiffeners). The 
end-devices, at both ends, consist of pressure pads 30 mm thick 
with an indentation of 5 mm and a ball bearing of 40 mm 
diameter. Details of the testing set-up and supporting system 
are presented in Fig. 2. Nine series of open cold-formed steel 
sections (Fig. 3) were selected as uprights in pallet racking have 
been tested and analyzed. Dimensions range of specimens is 
relatively wide: web of 45~120 mm, flange of 50~145 mm, and 
thickness of 1.8~2.5 mm. Two sections have intermediate and 
edge stiffener, five sections have only intermediate stiffener, 
and two sections have none. In order to build an ANN-based 
predictive model on thin-walled steel perforated sections, a 
total of 90 different data from stub columns compression 
experiments were collected from the shanghai Jingxing 
Logistic Equipment Engineering co., Ltd. 
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Fig. 1 Arrays of perforations of columns 
 

 

Fig. 2 The testing set-up and supporting system of EN15512 [10]  
 

 

 

Fig. 3 Nine series of open cold-formed steel sections 

III. ANN MODEL DESIGN 

The use of ANNs has grown in popularity during the last few 
years. The reason for this is that neural networks represent a 
novel and modern approach that can provide solutions in 
problems for which conventional mathematics, algorithms, and 
methodologies are unable to find a satisfactory and acceptable 
solution [10]. These problems are usually very complex and 
some of the mechanisms involved have not been fully 
understood by the researchers dealing with them. Considering 
some salient features of ANN, there was proposed ANN-based 
ultimate load prediction system on thin-walled steel perforated 
sections. The internal detailed architecture of ANN is shown in 
Fig. 4. In intelligent model, there were nine input neurons such 
as perforated sections parameters and one output neuron, 
ultimate load, all listed in Table I. All the data are normalized, 
and it is pre-processed to be converted in the range (−1,1) 
before being fed into ANN. The feed-forward neural network 

architecture is fully connected, that is, each neuron in the 
hidden layer is connected to all the neurons in the previous and 
next layer. Each neuron constitutes a learning unit. The neural 
network was trained for a different combination of hidden layer 
neurons and nine were found to be most suitable for this 
specific data set. The training function, “trainlm”, had been 
transferred from the MATLAB ANN toolbox to realize the 
training of these models. The transformation function of hidden 
neuron was “tansig”, and “purelin” was the output layer 
function, which were also obtained from the ANN toolbox of 
the MATLAB software. The learning rate η was set from 0.01 
to 0.07, which can speed up the convergence of training 
function on the condition of accepted training precision (Fig. 
5).  

 

 

Fig. 4 ANN architecture 
 

 

Fig. 5 The iterative process of predictive model 

IV. FINITE ELEMENT MODEL 

The finite element (FE) method has proven to be a very 
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effective and powerful tool for analysis of perforated members 
and predicting their strength and behavior [4], [5]. Referring to 
AnnexA.2.1.2 of EN15512, a parametric FE model has been 
created with the ANSYS code [11]. Element type SHELL 181 
was selected to be used for the experiment simulations. The 
merit of this kind of four-node shell with six degrees of freedom 
per node lies in the linear and non-linear analysis, including 
large displacements and plasticity and rotations. In our model, 
all slots and holes have been exactly reproduced. The element 
type SOLID45 was also carefully applied for the load plates 
modelling. The eight-node solid three-dimensional element 
with three degrees of freedom per node is frequently used for 
linear and nonlinear analysis in the same way. On a central 
node of the outer face of both load plates, the displacements are 
properly appointed, i.e. the line defined by these two nodes is 
the load line. All node displacements of the bottom plate have 
been set up to zero, and the transversal displacements of the 
node at the top plate has also been set up to zero. The axial 
displacement of the load line is gradually increased step by step 
until the stub can be no longer in force. The displacement 
controlled method has been used to simulate the experimental 
process of ultimate load on the top end of the stub column. The 
displacement is added in continuous increments until it 
obviously begins to decrease or remains unchanged for an 
extraordinary lapse of displacement. At that moment, the 
maximum load in the stub can be considered the failure force, 
i.e. so-called ultimate load. As an example, the result is 
demonstrated for FEM simulation of M90 column compression 
in Fig. 7. 

 

Fig. 6 Mesh, constraint and load setting of simulation model 
 

 

Fig. 7 The comparison between FEM simulation and physical test 
(M90 column) 

 
TABLE I  

RELATIONAL MAPPING BETWEEN INPUT AND OUTPUT PARAMETERS 

Column  
type 

Input index Output index 
Web Width  

(mm) 
Thickness  

(mm) 
Flange 

 Width (mm) 
Opening  

Size (mm) 
Sample  

Length (mm) 
Ratio of hole

 area (%) 
Number  
of bends 

Number of  
right angles 

Number of  
reinforcement 

Ultimate load (N) 

M60 60 1.8 55 34 350 14.951 8 4 0 80309.17 

M75 75 1.8 58 45 400 12.190 12 4 1 122051.82 

M90A 90 2 65 50 400 11.287 12 4 1 137228.18 

M100B 100 2.5 90 52 400 10.667 20 4 3 205633.26 

M120A 120 3 95 76 500 8.889 12 4 1 269336.45 

 
TABLE II  

COMPARISON AMONG THE MEASURED VALUES, PREDICTED VALUES AND FINITE ELEMENT NUMERICAL VALUES 

Column type Measure (N) Predict (N) Absolute error (%) FEM (N) Absolute error (%) 

M45-1.5 48385.6 48429.2 0.09 49856.3 3.04 

M60-2 107142.8 104077.6 2.86 116348.7 8.59 

M75-1.8 120057 115392.3 3.89 130147.5 8.41 

M90A-2 136364.2 140316.6 2.90 144199.2 5.73 

M100B-2 159740 162860.8 1.95 167594.5 4.92 

M120A-3 268689.3 271741.8 1.14 283439.5 5.49 

M120B-3.5 413894 417135.6 0.78 449071.2 8.50 

… 

Mean absolute error (%) 1.85 6.05 

Correlation coefficient. R 0.99 0.97 

Cases with over 5% error 2 13 

 
V. RESULT AND DISCUSSION 

Within the total of 90 data sets from stub columns tests, the 
first 70 data sets are used for network training, and the others 

are set aside to evaluate the trained network’s performance 
(prediction). Network training is terminated based on the 
accepted prediction accuracy of these models such as for the 
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corresponding deviation not more than 5% between the 
expected values and the real values. After the completion of 
model development or training, the other 20 datasets are input 
to the intelligent model to verify the accuracy of model 
generalization. The results are shown in Table II, where 
“Measure”, “Predict”, and “FEM” refer to the measured values, 
the predicted values and finite element numerical values, 
respectively. Statistical parameters such as the correlation 
coefficient R between the expected and real value, and mean 
absolute error % are used to judge the predictive power of the 
ANN models. It is evident that the accuracy of the predictive 
models is relatively high in all (R>95%), while ANN model in 
the mean absolute error and the ratio of the cases with more 
than 5% error is lower than FEM model. So, the ANN models 
can be more suitable to assist the security estimation during the 
steel member design. 

VI. CONCLUSION 

Due to computational accuracy and complexity, the 
analytical expressions for the ultimate load of thin-walled steel 
perforated sections are not used for steel member design so far. 
In this paper, the load predictions from the neural network were 
compared with those obtained from the FEM model. It was 
found that the prediction performance based on ANN technique 
was apparently much better than those obtained from the FEM 
models. Of course, the advantages of FEM lie in that 
thin-walled section buckling and their mechanization is 
comparatively clear. We only demonstrate that, trained with the 
datasets from engineering experiment, the ANN model is able 
to predict the design load of different columns through 
continually self-learning, which can help the engineer to make 
the better design decision. Although the results of our work 
seem to be very preliminary, it has been observed that the ANN 
model for the solving the hard problem of complex perforated 
members design is promising. With advancement of advanced 
big data and cloud computing techniques, much of the 
engineer’s subject intuition in constructional steel industry will 
finally be replaced by more smart and friendly expert systems 
in the future. 
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