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Abstract—Microarray gene expression data play a vital in 

biological processes, gene regulation and disease mechanism. 
Biclustering in gene expression data is a subset of the genes 
indicating consistent patterns under the subset of the conditions. 
Finding a biclustering is an optimization problem. In recent years, 
swarm intelligence techniques are popular due to the fact that many 
real-world problems are increasingly large, complex and dynamic. By 
reasons of the size and complexity of the problems, it is necessary to 
find an optimization technique whose efficiency is measured by 
finding the near optimal solution within a reasonable amount of time. 
In this paper, the algorithmic concepts of the Particle Swarm 
Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo 
Search (CS) algorithms have been analyzed for the four benchmark 
gene expression dataset. The experiment results show that CS 
outperforms PSO and SFL for 3 datasets and SFL give better 
performance in one dataset. Also this work determines the biological 
relevance of the biclusters with Gene Ontology in terms of function, 
process and component. 
 

Keywords—Particle swarm optimization, Shuffled frog leaping, 
Cuckoo search, biclustering, gene expression data. 

I. INTRODUCTION 
NA microarray technology measures the gene expression 
level of thousand of genes under multiple experimental 

conditions [1]. The conditions may belong to different time 
points or different environmental conditions. In a few cases 
the conditions may have come from cancerous tissues, healthy 
tissues, or different individuals. Later than the number of 
preprocessing steps, the low level microarray analysis of a 
microarray can be represented as a numerical matrix. In this 
matrix the rows represent different genes and columns 
represent experimental conditions. The row vector of a gene is 
called the expression pattern of the gene and a column vector 
is called the expression profile of the condition. Every element 
of this matrix represents the expression level of a gene under a 
specific condition, and is represented by a real number. It is 
typically the logarithm of the relative plethora of the mRNA 
of the gene under the particular condition. Fig. 1 depicts the 
structure of gene expression matrix. 

Given a gene expression matrix a common analysis goal is 
to group genes and conditions into subsets that convey 
biological significance. In its most universal form, this task 
translates to the computational problem known as clustering. 
Formally, for a given set of objects with the vector of 
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attributes for each object, then the clustering aims to partition 
the object into disjoint classes. So that the objects within a 
cluster are similar and the objects of disjoint clusters are 
dissimilar. For instance, when analyzing a gene expression 
matrix clustering may be applied to the genes for identifying 
groups of co-regulated genes or cluster the conditions for 
discovering groups of similar conditions. 
 

 
Fig. 1 Structure of gene expression matrix 

 
An investigation via clustering makes several premises that 

may not be completely adequate in all places. First the 
clustering can be applied to either genes or conditions; it 
implicitly directs the analysis of a particular aspect of the 
system. Secondly, clustering algorithms generally seek a 
disjoint cover of the set of elements, requiring that no gene or 
condition belongs to more than one cluster. 

The idea of a bicluster arises to a more flexible 
computational framework. For instance if two genes are 
related they can have similar expression patterns under certain 
conditions; similarly, for two related conditions, some genes 
may exhibit different expression patterns. As a result, each 
cluster may involve only a subset of genes and a subset of 
conditions. Biclustering is a co-occurring clustering of both 
rows and columns of a gene expression data. Explicitness a 
bicluster is a sub matrix spanned by a set of genes and a set of 
conditions. 

The difficulty of finding a partition of a set of objects into k 
groups which optimizes a stated condition of partition 
adequacy is not given as straightforward. Given n objects, the 
number of ways in which these objects can be partitioned into 
k non–empty subsets is [2] given in: 
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Equation (2) approximates (1), 
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Therefore, when the number of clusters k is not known in 

advance then the total number of valuations is given in (3), 
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Discovering significant biclusters in an expression data is a 

more difficult problem than clustering [3] and it is an NP-hard 
problem [4]. The problem of finding a coherent bicluster can 
be formulated as an optimization problem. An optimization 
problem is a problem which determines the set of potential 
solutions to the problem and defines one or more criteria 
which measure the quality of an individual solution. The 
solution is obtained by extracting the best solution from the set 
or an adequately high quality among the set. For a finite 
unimodal optimization problem, the basic algorithmic solution 
typically assesses exhaustively as many solutions as needed in 
the search space to prove a given solution is at least better than 
any other solution in the search space. This is the optimum 
solution returned by the algorithm. . Let S be a set of solutions 
to a problem, and let f : S → R be an objective function to be 
minimized and that measures the quality of these solutions 
then the optimal solution m ∈ S | ∀s ∈ S; f(m) < f(s). 

This work develops and implements the biclustering based 
on the most popular and robust bio inspired strategies Particle 
swarm optimization, Shuffled frog leaping and Cuckoo search 
algorithms. The remainder of this paper is organized as 
follows: Section II provides the structure of bicluster and 
related works in biclustering. Section III gives a general 
overview of the Particle swarm optimization, Shuffled frog 
leaping and Cuckoo search algorithms. Section IV presents the 
detailed experimental setup and results for comparing the 
performance of the PSO, SFL and CS. Section V gives the 
biological relevance of the biclusters with Gene Ontology for 
cuckoo search. 

II. BICLUSTER 

A. Structure of Biclusters 
Madeira and Oliveira [5] have identified four major groups 

of structures inside the submatrices are, 
a. Bicluster with constant value  

 μaij =  
b. Bicluster with constant values on rows or columns 
 ( iij αμa +=  or )iij α*μa =  and  

  ( jij βμa +=  or )jij β*μa =  

c. Bicluster with coherent values 
 jiij βαμa ++=  or jiij β*α*μa =  

d. Bicluster with coherent evolutions 

 iditirih aaaa ≤≤≤  or djtjrjhj aaaa ≤≤≤  
 
The bicluster sets are classified according to their relative 

structure [22]. According to the particular properties of each 
problem, one or more of these various types of biclusters are 
generally considered interesting. 

B. Review of Related Works 
At very first the biclustering approach for gene expression 

data using Mean Square Residue (MSR) is proposed by [6]. 
Their algorithm adopts a sequential covering strategy in order 
to return a list of n biclusters from an expression data matrix. 
Statistical-Algorithmic Method for Bicluster Analysis 
(SAMBA), a biclustering algorithm that performs the 
simultaneous bicluster identification by using exhaustive 
enumeration [4]. Murali and Kasif intended at finding 
conserved gene expression motifs (xMOTIFs). They defined 
an xMOTIF as a subset of genes that is simultaneously 
conserved across a subset of the conditions [7]. Ben-Dor et al. 
defined a bicluster as an Order-Preserving Sub-Matrix 
(OPSM) [8]. An Iterative Signature Algorithm (ISA) and 
provides a definition of biclusters as transcription modules to 
be retrieved from the expression data proposed by [9].   

 A Multi-Objective Evolutionary Algorithm (MOEA) based 
on Pareto dominancy presented by [10]. A Sequential 
Evolutionary BIclustering (SEBI) approach presented by 
[3].The term sequential refers the way in which bicluster are 
discovered, only one bicluster obtained per each run of the 
evolutionary algorithm. Liu & Wang introduced Maximum 
Similarity Bicluster (MSB) algorithm [11]. An approach that 
is based on the optimal re-ordering of the rows and columns of 
a data matrix so as to globally minimize dissimilarity metric is 
proposed by [12]. Liu et al. based their biclustering approach 
on the use of a PSO together with crowding distance as the 
nearest neighbor search strategy, which speeds up the 
convergence to the Pareto front and also guarantee diversity of 
solutions [13]. Coelho et al. presented an immune-inspired 
algorithm for biclustering based on the concepts of clonal 
selection and immune network theories adopted in the original 
aiNet algorithm [14]. 
      A Pattern-Driven Neighbourhood Search (PDNS) 
approach for the biclustering problem is proposed by [15]. 
Huang et al. proposed a new biclustering algorithm based on 
the use of an Evolutionary Approach (EA) together with 
hierarchical clustering [16]. Painsky and Rosset proposed 
Exclusive Row Biclustering for Gene Expression Using a 
Combinatorial Auction Approach [17]. It extracts the 
exclusive row biclusters via a combination of existing 
biclustering methods and combinatorial auction techniques. 
Ray et al. introduced a CoBi: Pattern Based Co-Regulated 
Biclustering of gene expression Data [18]. It is mainly used 
for grouping both positively and negatively regulated genes 
from microarray expression data. Recently a new biclustering 
algorithm based on association rule mining proposed by [19]. 
It grounded on association rule mining, which can support 
different well-known biclustering models. 
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III. LITERATURE REVIEW ON OPTIMIZATION TECHNIQUES 
At present, there are so many optimization techniques 

available. This section presents a literature review of a few 
optimization techniques. The familiar methods linear 
programming [20], the quadratic programming [21] the 
dynamic programming [22] the Simplex method [23] and the 
gradient methods [24] are deterministic methods which make 
possible to resolve some types of optimization problems in a 
finished time period. In observation these problems are too 
complex and require too much time to resolve by deterministic 
methods. Metaheuristics are stochastic optimization it finds a 
solution in a reasonable time. Metaheuristics have usually an 
iterative behavior. The same pattern is repeated until a 
stopping criterion is met at the beginning for optimization.  

A. Particulate Swarm Optimization  
The particulate swarm optimization is a metaheuristic 

algorithm proposed by Kennedy and Eberhart [25]. This 
method inspired from animals social behavior in their moving 
in swarms. The most used example is the behavior of fish 
school [26], [27]. Indeed, these animals are characterized by a 
movement dynamics relatively complex, while individually 
each one has a limited intelligence and local knowledge 
focused on its position in the swarm. Thereby, each individual 
has knowledge only of the position and speed of its nearest 
neighbors. It therefore uses not only its own memory, but also 
local information of nearest neighbors to decide its own 
movement. Simple rules, such as "go with the same speed as 
others", "moving in the same direction" or "stay close 
neighbors" are among key behaviors that maintain cohesion of 
the swarm and allow the implementation of complex and 
adaptive collective behaviors. The swarm's global intelligence 
is a direct consequence of local interactions between different 
particles. Therefore, system performance as a whole is greater 
than the performance sum of its different parts. 

Procedure for PSO: 
1. Initialize a population of particles with random positions 

and velocities on N dimensions in the problem space. 
2. For each particle, evaluate the desired optimization fitness 

function in N variables. Compare particle's fitness 
evaluation with its pbest. If current value is better than 
pbest, then set pbest equal to the current value, and Pi 
equals to the current location Xi in N-dimensional space. 

3. Identify the particle in the swarm with the best success so 
far, and assign its index to the variable g. Change the 
velocity and position of the particle according to 
equations,

  
 

 
)idx-gd(p×)rand(×2c+)idx-id(p×)rand(×1c+idv×w=idp  

 

idv+idx=idx  
 

4. Loop to step 2 until a criterion is met, typically a 
sufficiently good fitness or a maximum number of 
iterations. 
 

B. Shuffled Frog-Leaping  
The shuffled frog-leaping algorithm is a memetic 

metaheuristic that is designed to seek a global optimal solution 
[28]. It is based on the evolution of memes carried by 
individuals and a global exchange of information among the 
population [29]. In sprit, it combines the reimbursement of the 
local search method of the particle swarm optimization [25], 
and the core idea of mixing information from parallel local 
searches to move toward a global solution [30]. 

Procedure for SFL: 
1. Initialize population of P frogs is created randomly.  
2. For each frog, evaluate the desired optimization fitness 

function in P frogs. 
3. Sort the frogs in a descending order according to their 

fitness.  
4. Divide the entire population into m memeplexes, each 

containing n frogs. In this process, the first frog goes to 
the first memeplex, the second frog goes to the second 
memeplex, frog m goes to the mth memeplex, and frog 
m+1 goes back to the first memeplex and so on. Within 
each memeplex, the frogs with the best and the worst 
fitness are identified as xb and xw, respectively.  

5. Identify the frog with the global best fitness is defined as 
xg.  

6. Change the position of the frog with the worst fitness is 
adjusted as follows; 
 ( )gbi x -x()randD ×=  

  ii1i Dxx ×=+  where maximax DDD- ≤≤  
 
where rand is a random number between 0 and 1, and Dmax is 
the maximum allowed change in a frog’s position. If this 
process produces a better solution, it is replaced for the worst 
frog. Otherwise, the calculations in step 6 are repeated but 
with respect to the global best frog (i.e. Xb is replaced by Xg). 
If no improvement is possible, then a new solution is 
randomly generated to replace the worst frog. Hence, the 
calculations continue for a specific number of iterations. 

C. Cuckoo Search  
The cuckoo search is an optimization [31] based on the 

brood parasitism of the cuckoo species by laying their eggs in 
the nests of other host birds. If a host bird discovers the eggs 
which are not their own, it will either throw these foreign eggs 
away or simply abandon its nest and build a new nest 
elsewhere. Each egg in a nest represents a solution, and a 
cuckoo egg represents a new solution. The better new solution 
(cuckoo) is replaced with a solution which is not so good in 
the nest. 

Pseudo code for Cuckoo search: 
1. Generate an initial population of n host nests;  
2. while (t<Max Generation) or (stop criterion)  
3. Get a cuckoo randomly (say, i) and replace its solution by 

performing Levy flights; 
4. Evaluate its fitness Fi 
5. Choose a nest among n (say, j) randomly; 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

356

6. if (Fi < Fj) 
7. Replace j by the new solution; 
8. end if 
9. A fraction (pa) of the worse nests is abandoned and new 

ones are built; 
10. Keep the best solutions/nests; 
11. Rank the solutions/nests and find the current best; 
12. Pass the current best to the next generation; 
13. end while 

D. Biclustering Representation  
Each bicluster is encoded as an individual of the population 

(particle, frog, egg). Each population is fixed length of size m 
+ n, where m and n are the number of genes and conditions of 
the microarray dataset respectively. The first m bits represent 
m genes and the following n bits represent n conditions. Each 
bicluster is represented by a fixed sized binary string called a 
population, with a bit string for genes attached with another bit 
string for conditions. The population represents a candidate 
solution for this optimal bicluster generation problem. A bit is 
set to one if the corresponding gene and/or condition are 
present in the bicluster, and reset to zero otherwise. Fig. 2 
shows an encoded representation of a bicluster. 
 

 
Fig. 2 Encoding representation of a bicluster 

 
The cuckoo search works well for continuous optimization 

problem. So the individual dimension of an egg is represented 
by a real number. The mapping function for a population into 
a binary string representation of a bicluster is given in (4) as 
follows: 

 

⎩
⎨
⎧ <

=
1otherwise
00.5x

y ij
ij

   (4)
 

 
where 
xi - Random value generated for jth gene/condition of ith 
population 
yij - Binary string representation of bicluster of xij 

In yij, if a bit is set to 1 then the corresponding gene or 
condition belongs to the encoded bicluster; otherwise it is not. 
Fig. 3 shows the representation of the solution and its mapped 
bicluster representation. 
 

 
Fig. 3 Representation of the solution and its mapping to bicluster  

 

E. Fitness Function 
Mean Squared Residue problem has been introduced by 

Cheng and Church [6] for identifying biclusters. Let gene 
expression data matrix A has M rows and N columns where a 
cell aij is a real value that represents the expression level of 
gene i under condition j. Matrix A is defined by its set of rows, 
R = {r1 r2, ..., rM} and its set of columns C = {c1, c2, ..., cN}. 
Given a matrix, biclustering finds sub-matrices that are 
subgroups of genes and subgroups of conditions, where the 
genes exhibit highly correlated behavior for every condition. 
Given a data matrix A, the goal is to find a set of biclusters 
such that each bicluster exhibits some similar characteristics. 
Let AIJ = (I, J) represent a submatrix of A where I ∈ R and J ∈ 
C. AIJ contains only the elements aij belonging to the 
submatrix with set of rows I and set of columns J. The concept 
of bicluster was introduced by Cheng and Church [6] to find 
correlated subsets of genes and a subset of conditions. Let aiJ 
denote the mean of the ith row of the bicluster (I, J), aIj the 
mean of the jth column of (I, J), and aIJ the mean of all the 
elements in the bicluster. As given in more formally, 
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The residue of an element aij in a submatrix AIJ equals 
 

Ji,jI,JI,ji,ji, a-a-aar +=
 

 
The difference between the actual value of aij and its 

expected value predicted from its row, column and bicluster 
mean are given by the residue of an element. It also reveals its 
degree of coherence with the other entries of the bicluster it 
belongs to. The quality of a bicluster can be evaluated by 
computing the MSR H, i.e. the sum of all the squared residues 
of its elements is given in (5) 

 

( ) 2

I∈i J∈j
ji,, r

JI
1JI ∑ ∑=H

     (5)
 

 
The lowest score of H(I,J ) is 0 which indicates the gene 

expression levels vary in harmony. This includes the trivial or 
constant biclusters where there is no fluctuation. These trivial 
biclusters may not be interesting but need to be revealed and 
masked so more interesting ones can be found. The gene 
variance may be a complementary score to reject trivial 
biclusters. The gene variance can be represented in (6) as 
follows:  
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The optimization task is finding one or more biclusters by 

maintaining the two competing constraints, viz., homogeneity 
and gene variance. The fitness function for obtaining bicluster 
is defined in (7) as follows: 

 

J)Var(I,
1J)H(I,J) f(I, +=                      (7) 

 
to be derogated. In this way, the smaller the residue and the 
larger the gene variance are, the smaller the fitness value, i.e., 
the better the quality of that bicluster is. 

IV. EXPERIMENTAL ANALYSIS 

A. Data sets 
We have implemented the biclustering algorithm on four 

micro array data sets. In order to study its performance, 
namely the yeast Saccharomyces cerevisiae stress expression 
data [32], Arabidopsis thaliana expression data [33], yeast 
Saccharomyces cerevisiae cell cycle expression data [34] and 
rat CNS expression data [35] are used. The first Gasch yeast is 
Saccharomyces cerevisiae with 2993 genes and 173 
conditions. The second one Arabidopsis thaliana expression 
data contain 734 genes and 69 conditions. The third dataset 
yeast Saccharomyces cerevisiae cell cycle expression contains 
2884 genes and 17 experimental conditions. The rat CNS 
dataset has set of 112 genes under 9 conditions. The setting 
values of algorithmic control parameters of the mentioned 
algorithms are given below: 
− PSO Settings: c1 = c2 = 1.80 and ω = 0.60 have been used 

as recommended in [23]. 
− SFL Settings: p=20 and m=20 has been used as 

recommended in [26]. 
− CS Settings: λ = 1.50 and pa = 0.25 have been used as 

recommended in [28]. 
Figs. 4-7 show the fitness value obtained for yeast 

Saccharomyces cerevisiae stress expression data, Arabidopsis 
thaliana expression data, yeast Saccharomyces cerevisiae cell 
cycle expression data and rat CNS data respectively. The SFL 
performs better on yeast stress expression data and remaining 
three datasets CS outperforms PSO & SFL. The solution 
update in PSO is obtained through the personal best and global 
best of the particle position. It causes premature convergence.  

Because of the update is done within the population. The 
SFL contains number of memeplexes and the frogs in a 
memeplexes are shuffled after a designated number of 
iteration. It is a basis for diversification. In CS the fraction of 
worst solutions are destroyed and new solutions are generated 
periodically. So always there has been a diversification in 
solution. Clearly Fig. 8 shows the sample bicluster of size 16 × 
4 for rat CNS data. 

 
Fig. 4 Fitness value obtained for yeast stress data 

 

 
Fig. 5 Fitness value obtained for arabidopsis thaliana data 

 

 
Fig. 6 Fitness value obtained for yeast cell data 
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Fig. 7 Fitness value obtained for rat CNS data 

 

 
Fig. 8 Sample biclusters of size 16 × 4 for rat CNS data 

V. BIOLOGICAL ANALYSIS OF BICLUSTERS 
The cuckoo search finds the biological relevance of the 

biclusters on the yeast Saccharomyces cerevisiae cell cycle 
expression data in terms of the statistically significant GO 
annotation database. The Gene Ontology (GO) project 
provides three structured, controlled vocabularies that describe 
gene products in terms of their associated biological processes, 
cellular components and molecular functions in a species 
independent manner. The mining results to be understood by 
feeding the genes in each bicluster to Onto-Express and a 
hierarchy of functional annotations is obtained in terms of 
Gene Ontology for each bicluster. The degree of enrichment is 
calculated by p-values which use a cumulative hyper 
geometric distribution to compute the probability of observing 
the number of genes from a particular GO category (function, 
process and component) within each bicluster. The p-value is 
the probability that the genes are selected into the cluster by 
random. A small p-value implies that the cluster is highly 
differed found by chance. The annotations of genes for five 
ontologies including biolgoical process, cellular component, 
molecular function, deletion viability and regulatory pathway 
are obtained. 

A. Biological Annotation for Yeast Cell Cycle Using 
GOTermFinder Toolbox 

In order to discover the biological annotations for the 
biclusters, we use the GOTermFinder which is tool available 

in the Saccharomyces Genome Database (SGD) [36]. 
GOTermFinder is deliberate to search for the significant 
shared GO terms of the groups of genes and provides users 
with the means to identify the characteristics that the genes 
may have in common. Table I lists the significant common 
GO terms (or parent of GO terms) used to describe the set of 
genes in each bicluster for the process, function and 
component ontologies. Only the most significant terms are 
shown. For example to the bicluster BC1, the genes are mainly 
involved in DNA binding activity. The tuple (n=473, 
p=6.87×10-6) represents that out of 1482 genes in bicluster 
BC1, 473 genes belong to binding activity function, and the 
statistical significance is given by the p-value of p=6.87×10-6.  

 
 

TABLE I 
SIGNIFICANT GO TERMS (PROCESS, FUNCTION, COMPONENT) FOR THREE 

BICLUSTERS ON YEAST CELL CYCLE DATA 
Bic. 
No. 

No. of. 
Genes Process Function Component 

BC1 1482 
single organism 

(n=1021, 
p=5.97×10-86) 

DNA binding 
(n=473, 

p=6.87×10-6) 

intracellular 
organelle (n=1152, 

p=1.72×10-72) 

BC7 1500 
cellular 

(n=1384, 
p=6.27×10-162) 

hydrolase 
(n=296, 

p=4.12×10-16) 

cell part 
(n=1434, 

p=1.09×10-98) 

BC12 1491 
metabolic 
(n=1127, 

p=2.92×10-93) 

transferase 
(n=238, 

p=5.14×10-12) 

intracellular part 
(n=1354, 

p=5.30×10-83) 

V. CONCLUSION 
Swarm intelligence techniques are based on collective 

intelligence of groups of simple agents. All the swarm 
intelligence techniques are not efficient for all real time 
problems. A few algorithms are very efficient and they are 
popular tools for solving real-world problems. In this work the 
popular swarm intelligence techniques such as PSO, SFL and 
CS is applied for biclustering micro array gene expression 
data. Biclustering finds subsets of genes that show similar 
patterns under a specific subset of experimental conditions. 
The experimental results are analyzed with 4 different 
benchmark data sets. The results show that CS outperforms 3 
data sets and SFL for one data set.  
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