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Abstract—The robustness of color-based signatures in the 
presence of a selection of representative distortions is investigated. 
Considered are five signatures that have been developed and 
evaluated within a new modular framework. Two signatures 
presented in this work are directly derived from histograms gathered 
from video frames. The other three signatures are based on temporal 
information by computing difference histograms between adjacent 
frames. In order to obtain objective and reproducible results, the 
evaluations are conducted based on several randomly assembled test 
sets. These test sets are extracted from a video repository that 
contains a wide range of broadcast content including documentaries, 
sports, news, movies, etc. Overall, the experimental results show the 
adequacy of color-histogram-based signatures for video 
fingerprinting applications and indicate which type of signature 
should be preferred in the presence of certain distortions.

Keywords—color histograms, robust hashing, video retrieval, 
video signature

I. INTRODUCTION

HE amount of accessible multimedia information is ever 
increasing. For the management of large-scale multimedia 

data, efficient organization of databases is required. One 
efficient management tool is video retrieval, which can also be 
used for a variety of other applications, such as content 
advertising, detection of duplicated video sequences and 
automatic detection of copyright violations.

In video retrieval, one or more videos are selected as query 
(query-by-example) and a list of similar videos from the 
database is returned in response. Recent approaches often use 
content-based video properties (e.g. color or texture features) 
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for matching. Most frequently, a robust or perceptual video 
hash or a video signature is used for video identification. First 
approaches developed a cryptographic hash [1], which is bit-
sensitive. Other approaches map the visual information onto a 
fixed-length hash code that remains practically unaltered in 
presence of distortions of the original signal [2]. Hence, robust 
hashing allows slightly altered (e.g. damaged) videos to be 
also recognized as being similar to the original unaltered 
video.

Radhakrishnan and Bauer [3] propose a robust signature 
based on projections of cropped coarse difference-images 
between adjacent frames onto randomly generated matrices. 
The output hash for each difference-image is of fixed length. A 
quantization using two reconstruction levels is afterwards 
applied using the median of the hash-elements as threshold. 
The final signature is the concatenation of all binary vectors. 
This description is highly robust against distortions introduced 
by video compression, spatial and brightness scaling, whereas
being sensitive to other geometric and frame-rate conversions. 
The binarization step described above is also used by Coskun 
and Sankur [2]. They determine and apply one-bit quantization 
to the most significant coefficients of 3D DCT for a given 
video signal. In addition to blurring and noise robustness, this 
hash code is also robust to distortions introduced by operations 
including video compression as well as contrast and brightness 
manipulation.

In this paper, the robustness of color-based signatures to 
specific types of distortions is evaluated. The main advantage 
of these signatures is the very low complexity required for 
their extraction. For some distortion types this might be at the 
cost of retrieval performance. For other distortion types, color-
based signatures might offer a very good efficiency-
complexity trade-off. The signatures are evaluated in a new, 
modular framework that allows easy plug-in of new data and 
signatures. 

The remainder of the paper is organized as follows. In 
section II, the framework and the proposed signatures are 
described. Section III summarizes the similarity measures used 
for each type of signature. The experimental results are 
presented in section IV. Finally, the conclusions are drawn and 
future research is discussed.
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II. SIGNATURE FRAMEWORK

A. Overview
The new framework pursues three objectives: the complete 

video retrieval process with all corresponding phases; a 
separate operation of the individual phases; and a modular 
system in which data and signatures can be easily added or 
removed. The first problem is addressed by covering a large 
number of aspects a fingerprinting task might involve: wide 
variety of data, including altered and damaged videos, feature 
extraction and matching, and benchmarking of the system. As 
depicted in Fig. 1, video processing is divided into five 
independent modules.

The first stage as depicted in Fig. 1 generates test sets of a 
predefined number of random clips extracted from the video 
repository (further explained in section IV.A). The distorted 
versions of all the query clips are added to each test set during
the second phase (see section IV.B). Next, the signatures are 
extracted from the query videos as well as from the sequences 
contained in the test sets. Matching of the query clips with the 
test sets is then conducted. Finally, the matching results are 
analyzed (see section IV.D) to assess the efficiency of the 
signatures.

B. Integrated Signatures
Five signatures have been implemented in this work. They 

all derive from the color histograms of the sequence frames 
(see Fig. 2). The histograms are 256-bin wide and the HSV 
color-space is used for their generation. As explained in [4],
the reliability of color information to characterize visual 
content makes it one of the most widely used features in 
retrieval tasks. The simple representation provided by color 
histograms and the ease of their comparison (e.g. Euclidean 
distance) is the other main reason for the chosen feature in the 
present descriptions. Such descriptions do not properly 
represent grayscale content, which is therefore out of scope. 
This paper investigates the robustness of color-based 
signatures to typical video distortions.

1. random test sets
generation

2. distortion
generation

3. descriptor
generation

4. matching

5. evaluation

descriptors

Descriptor
Repository

Test sets

distorted
sequences

Video
Repository

Fig. 1 Operation chain of the proposed framework

1) The SCMean Signature
The first signature is calculated as the normalized color 

histogram temporally averaged along the sequence frames. The 

average population mp of the m-th bin on the final histogram 
is calculated as follows:
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where M is the total number of bins. The population j
mp of the 

m-th bin of the j-th frame (j = 1,2,…,N) of the sequence is 
averaged, i.e. summed up and normalized by N, W (width) and 
H (height) (1). Hence, the description is a decimal vector of 
256 elements and is, referred to as SCMean.

This signature needs a single vector to represent the overall 
color content of the whole sequence. This computational 
saving may imply some detrimental loss of detail. Dissimilar 
videos are expected to have different color content, hence 
producing different descriptions. However, such a signature 
may be highly sensitive to color degradations.

2) The SCDiffHist Signature
The SCDiffHist signature characterizes the change in color 

between frames and is inspired by the color-shift signature 
described in [4], where the signature consists of the scalar 
distances between normalized color histograms of adjacent 
frames. For the SCDiffHist signature, the absolute 
unnormalized difference histogram, dj, between neighboring 
frames j and (j+1) is gathered.

1,...,2,1,,...,2,1,1 NjMmppd j
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The normalized mean histogram of these difference 
histograms, dj, is obtained as a decimal description with 256 
elements.
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Note that the largest possible distance between two 
histograms is now twice the dimensions of the frame. For this 
reason, the normalization factor is doubled (2WH).

3) The SCComp Signature
The first- and second-order moments of the difference 

histograms are used for the third signature. Two different 
criteria are considered for the calculation of moments. On the 
one hand, the average ytimextime cc ,, , of the centers of mass of 

every difference histogram (4) and their standard deviations
ytimextime ,, , (5) are estimated, both in x- and y-axis.
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where cj,x denotes the coordinate in x-direction of the center of 
mass of the j-th difference histogram, and N refers to the 
number of frames of the sequence.
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Fig. 2 Color histogram h(j) of frame j

On the other hand, the center of mass yspatialxspatial cc ,, ,

and the standard deviations yspatialxspatial ,, , in the mean 

difference histogram are calculated (6), (7), and (8). Here, the 
y coordinate of the centers of mass determined is coincident 
for both methods yyspatialytime ccc ,, . The y moments are 

normalized by W and H.
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where m corresponds to the bin number of the mean difference 
histogram, and M denotes the number of coefficients of a 
histogram.

All the equations for the y coordinate are similarly obtained 
with adjusted (4), (5), and (8), with the additional 
normalization factor 2WH.

The generated signature SCComp has only 7 decimal 
elements, as in (9):

],,,,,,[ ,,,,,, xspatialyspatialxtimeytimexspatialxtimey cccy (9)

SCComp inherits the potential weaknesses of SCMean and 
SCDiffHist. Despite the advantages it features in terms of its 
compactness, this signature describes the video signal very 
coarsely.

4) The SCHistBin Signature
The signature SCHistBin is a binary variation of the 

SCDiffHist signature. It is inspired by [2], [3], where the 
purpose is to obtain a higher degree of robustness. Here, the 
unnormalized mean difference histogram is quantized with two 

reconstruction levels, using the median of the bin populations 
as threshold. Any bin-value higher than the median is set to 1. 
The others are set to 0.

Binarization is expected to yield higher robustness to 
homogeneous color changes in the temporal direction 
compared to SCDiffHist. A higher degree of robustness is also 
reported in [2], [3].

5) The SCMeanHaar Signature
The last signature corresponds to the definition of MPEG-

7’s GoF/GoP descriptor [5]. The unnormalized mean color 
histogram is wavelet-transformed, using the Haar Transform, 
as defined in the MPEG-7 specification [6]. In this paper, it is 
referred to as SCMeanHaar.

III. SIMILARITY MEASURES

For the SCMean, SCDiffHist, and SCMeanHaar signatures, 
the 2 norm (Euclidean distance) is used as similarity measure, 
D, (10) between two signatures a and b.

2/1

1

2M

i ii baD (10)

For the SCComp signature, the similarity between two 
sequences (a,b)  is measured via area comparison.

Fig. 3 Intersection areas of “temporal moment rectangles” (analog 
for the spatial moments)

As depicted in Fig. 3, the center of mass and the standard 
deviations define the center and the margins of a rectangle. 
The intersection of the areas described by the rectangles of two 
signatures is calculated and normalized with respect to the 
largest area (11), both for the temporal timearea. and spatial 

spatialarea. moments. The mean of timearea. and spatialarea.

is subtracted from 1, so that a perfect match has a distance 
0D (12).
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As SCHistBin is a binary signature, the normalized 
Hamming distance (13) is used for similarity estimation. That 
is, the number of deviating bits is normalized by the length M
of the signatures.

ba ii
ba

baMi
M

D
ii

,,,1,11 (13)

IV. EVALUATION

A. Data set
The developed signatures are tested on a large variety of 

video content, encoded in H.264/MPEG4-AVC format at 
QCIF (176 pixels x 144 pixels) resolution. The data is 
organized in shots or tracks. The latter are defined as a 
sequence of frames that corresponds to an uninterrupted 
camera operation [4].

100 query shots are matched against 20 randomly generated 
test sets. The query tracks were cleared beforehand, i.e. trivial 
sequences were removed (e.g. too short clips, static videos). 
The query clips represent a wide range of visual content (Fig. 
4): documentaries, sports, news, real/animated films, 
advertisements, and talk shows, among others. Each test set 
contains 2200 sequences, among which 1200 are distorted 
versions of the query tracks. A ground-truth set consists of a 
query track and distorted versions of it. For the retrieval 
experiment, each query shot has 12 distorted versions. The 
ground-truth size is thus always 13. However, there might be 
other visually similar sequences that are not listed as ground-
truth. This problem could be addressed by annotating the 
content of the video database accordingly. However, this is 
impractical due to its size: 770 000 tracks. This is the major 
motivation for drawing random subsets from the video 
repository for evaluation. Reliability of the results is achieved 
by repeating the subset evaluation sufficiently often. The 
number of test sets used is expected to provide the required 
generality of the results, independently of the analyzed data.

a) b) c)

d) e) f)

Fig. 4 Example query shots

B. Tested distortions
Some exemplary visual alterations affecting color content 

are tested. They are: additive white Gaussian noise (AWGN), 
with zero mean and a standard deviation of 50; salt & pepper 
noise (multicolor), with a 5% probability of occurrence; an 
additive cosine in time of amplitude 25.5 (of a maximum of 
255) and period 50 frames; and color inversion. The latter is 
chosen, in order to show the limitations of the proposed 
signatures. All distorted video signals are encoded with three 
different quantization steps: 16, 40, and 48. Example images
are shown in Fig. 5.

a) Original b) Gaussian noise c) Salt & pepper

d) Cosine distortion e) Color inversion

Fig. 5 Snapshots of evaluated distortions

C. Efficiency measure
As a measure of efficiency, the average retrieval rate (ARR)

[5] of each signature is considered. The parameter is 
calculated along the 20 test sets and for every query track. This 
value can be expressed as the ratio between the number of
correctly recovered sequences and the total number of 
sequences stored in the ground-truth sets:
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where L denotes the number of test sets considered (20 in this 
case), ARRi

qqNG ,12

refers to the average retrieval rate for every query 
shot and for the i-th test set, NQ is the number of query tracks 
used (100), and NG(q) expresses the number of sequences that 
belong to the ground-truth set of query q (in the present 
experiment, , as the query is ignored).

The threshold K(q) represents the highest rank in the list of 
results that a ground-truth sequence of query q can achieve and 
is defined in [5] as

qqNGqNGqK ,max2,4min . (15)

Every ground-truth sequence with a rank higher than K(q) is 
classified as missed, else it is a true positive match. For this 
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experiment, K(q) = 24.

D. Experimental results
Fig. 6 and Fig. 7 show the retrieval rates for each distortion 

type and each quantization step (QP). The standard deviation
of the ARR along the test sets is very low (under 0.46%) and 
is, therefore, not displayed. From the results, it is obvious that 
SCComp always has very low retrieval rates (below 30%). 
This is caused by a high loss of description accuracy. The 
highest rates are achieved by SCMeanHaar and SCMean,
closely followed by SCHistBin. SCMean shows a 
homogeneous response to the different types of distortion.

Fig. 6 ARR for different distortion classes

Fig. 7 ARR for different Quantization Parameters (QP)

Fig. 8 Overall ARR without color inversion

For all investigated signatures, the retrieval rates are very 
similar for different quantizations. Hence, all color-based 
signatures are relatively invariant to coding quantization.

Among the tested distortions, the highest ARR scores are 
obtained for Gaussian noise for almost every signature. Here, 
SCDiffHist and SCMeanHaar are very robust. For salt & 
pepper noise, SCMean signature achieves over 80% with the 
other signatures achieving lower ARR values. For cosine 
distortion, SCMeanHaar achieves almost 85% ARR followed
by the other signatures. Not surprisingly, color inversion leads 
to very bad scores, as it contains complementary color 
distribution. This attack might be overcome if image-
difference were performed previous to histogram generation. 
Hence, Fig. 8 displays the overall retrieval rates for the three 

typical distortions, where color inversion is not considered. 
The results lie between 70% and 75% for SCMean,
SCDHistBin, and SCMeanHaar. SCComp is the worst color-
based signature. Although it is the only description that 
includes temporal information, it shows too low discrimination 
capability.

Overall, the most efficient signature appears to be SCMean.
Most of the signatures proposed are appropriate for identifying 
distorted video signals of identical content in applications, 
where the considered set of distortions occurs.

E. Size of the signatures
The size of the descriptions is independent of the length of 

the sequences and of the dimensions of the image, as listed in 
TABLE I for each of the signature types.

TABLE I
SIGNATURE SIZE IN BYTES

SCMean SCDiffHist SCComp SCHistBin SCMean-
Haar

2052 2052 61 34 2052

Considering that the average length of the sequences tested 
is 4.22 s and the required disk space for the coded bitstream of 
a single track is around 100 kbytes, the values of the table can 
be considered quite small. Three signatures are about 50 times 
smaller than the original video and two signatures around 1700 
and 3000 times smaller.

F. Complexity of the signature extraction and matching
For a sequence of N frames, width W and height H,

approximate computational complexity orders of the signature 
extraction and matching are summarized in TABLE II. The 
term WH refers to the M-bin histogram generation from the 
decoded frames. On the one hand, for every signature the 
extraction times highly depend on W, H, N, and M. On the 
other hand, the matching is always constant for SCComp and 
depends only on M when any of the other four signature types 
are matched.

TABLE II
COMPUTATIONAL COMPLEXITY OF EXTRACTION AND MATCHING

Signature Extraction Matching
SCMean O(WH + NM) O(M)

SCDiffHist O(WH + NM) O(M)
SCComp O(WH + NM) O(1)

SCHistBin O(WH + NM) O(M)
SCMeanHaar O(WH + NM) O(M)

TABLE III lists the signature extraction and matching 
speeds (on a CPU of 2.66 GHz and 8 GB of RAM, with QCIF
resolution, M = 256 bins, and a frame rate of 25 fps). The 
results show a very similar time-efficiency during the 
extraction for every signature type, which is validated by the 
complexity orders given by TABLE II. Due to the slightly 
higher time consumption introduced by the Haar Transform, 
only SCMeanHaar extracts less than 13 seconds of video per 
second, whereas the other four types of fingerprints reach a 
speed over 14.4 and under 14.8 seconds of video per second.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2487

Regarding the matching stage, the signatures compared by the 
Euclidean distance are the slowest, closely followed by 
SCHistBin (Hamming distance), and the fastest matches occur 
for SCComp (almost twice as fast as the slowest matching 
fingerprints).

TABLE III
COMPUTATIONAL SPEED OF EXTRACTION AND MATCHING

Signature Extraction
seconds of video / 

second

Matching
pairs of signatures / 

second
SCMean 14.43 20438

SCDiffHist 14.77 20438
SCComp 14.64 38261

SCHistBin 14.68 21256
SCMeanHaar 12.96 20438

V. CONCLUSIONS AND FUTURE WORK

Five signatures based on color histograms have been tested 
in the presence of various distortion types. The results show 
that limiting the descriptions to histogram moments causes 
very high loss of description accuracy, leading to inefficient 
video retrieval. The use of difference histograms does not 
seem to improve the robustness of the signatures in 
comparison to the original histograms. However, the 
difference histogram performs better, when binarization of the 
bin population is operated. Size reduction and lower matching 
complexity are additionally achieved. The mean color 
histogram shows similar results for different distortions. 
Therefore, this signature is considered as the steadiest and 
most satisfactory overall. Another advantage of all signatures 
is their compactness. Using a number of random subsets of the 
database, content-independence of the evaluation results is 
achieved.

Future work will focus on the improvement of the presented 
signatures as well as on further investigations on complexity 
reduction. Furthermore, other damage classes (e.g. geometric 
attacks, severe alterations on color content, or distortions in 
monochrome sequences) will be investigated. For such 
distortions, some other feature or a more robust version of the 
presented signatures may be necessary.
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